
Artificial	Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Knowledge	in	learning

So	far	we	learnt	a	function	input	→ output.
We	only	assumed	to	know	the	form	of	the	function	(such	as	
a	decision	tree)	defined	by	the	hypothesis	space.

Can	we	take	advantage	of	prior	knowledge	about	the	
world?
In	most	cases	the	prior	knowledge	is	represented	as	general	
first-order	logical	theories.

Some	methods:
– current-best-hypothesis	 search
– version	space	learning
– inductive	logic	programming



Logical	formulation	of	learning

Hypotheses,	 example	descriptions,	and	classification	will	be	represented	
using	logical	sentences.

Examples
– attributes	become	unary	predicates

Alternate(X1)	∧ ¬Bar(X1)	∧ ¬	Fri/Sat(X1)	∧	Hungry(X1)	∧	…
– classification	 is	given	by	literal	using	the	goal	predicate

WillWait(X1)	or	¬	WillWait(X1)

Hypothesis	will	have	the	form
∀x	Goal(x)	⇔ Cj(x)
Cj is	called	the	extension	of	the	predicate

∀r WillWait(r) ⇔ Patrons(r,Some)
∨ (Patrons(r,Full)	∧ Hungry(r)	∧ Type(r,French))
∨ (Patrons(r,Full)	∧ Hungry(r)	∧ Type(r,Thai)	∧ Fri/Sat(r))
∨ (Patrons(r,Full)	∧ Hungry(r)	∧ Type(r,Burger))

Hypothesis	space

Hypothesis	space	is	the	set	of	all	hypothesis.
The	learning	algorithm	believes	that	one	hypothesis	is	
correct,	that	is,	it	believes	the	sentence:
h1 ∨ h2 ∨ h3 ∨	…	∨ hn

Hypotheses	that	are	not	consistent	with	the	examples	can	
be	rules	out.
There	are	two	possible	ways	to	be	inconsistentwith	an	
example	(the	notions	originated	in	medicine	to	describe	
erroneous	results	from	lab	tests)

– false	negative	– hypothesis	says	the	example	should	be	
negative	but	in	fact	it	is	positive

– false	positive	– hypothesis	says	the	example	should	be	
positive	but	in	fact	it	is	negative



Current-best-hypothesis	search

The	idea	is	to	maintain	a	single	hypothesis,	and	
to	adjust	it	as	new	examples	arrive	in	order	to	
maintain	consistency

if	the	example	is	consistent with	the	hypothesis
then	do	not	change	 it

if	false	negative
then	generalize the	hypothesis

if	false	positive
then	specialize the	hypothesis

The	current-best-hypothesis	learning	algorithm



Specialization	and	generalization

How	to	implement	specialization	and	generalization	of	the	
hypothesis?

• If	hypothesis	h1 is	a	generalization	
of	hypothesis	h2,	then	we	must	have
∀x	C2(x)	⇒ C1(x)

• Ci is	typically	a	conjunction	of	predicates
– generalization	can	be	realized	by

dropping	conditions	or	by	adding	disjuncts
– specialization	can	be	realized	by	adding

extra	conditions	or	by	removing	disjuncts

A	restaurant	example:
– the	first	example	is	positive,	attribute	Alternate(X1)	is	true,	so	let	the	 initial	hypothesis	be

h1:	∀x	WillWait(x)	⇔ Alternate(x)
– the	second	example	is	negative,	hypothesis	predicts	it	to	be	positive,	so	it	is	a	false	positive; we	

need	to	specialize	by	adding	extra	condition
h2:	∀x	WillWait(x)	⇔ Alternate(x)	∧ Patrons(x,Some)

– the	thirst	example	is	positive,	the	hypothesis	predicts	it	to	be	negative,	so	it	is	a	false	negative;	we	
need	to	generalize	by	dropping	the	condition	Alternate
h3:	∀x	WillWait(x)	⇔ Patrons(x,Some)

– The	fourth	example	is	positive,	the	hypothesis	predicts	it	to	be	negative,	so	it	is	a	false	positive;	
we	need	to	generalize	by	adding	a	disjunct (we	cannot	drop	the	Patrons	condition)
h3:	∀x	WillWait(x)	⇔ Patrons(x,Some)	∨ (Patrons(x,Full)∧ Fri/Sat(x))

Current-best-hypothesis:	properties

After	each	modification	of	the	hypothesis	we	need	
to	check	all	the	previous	examples.
There	are	several	possible	generalizations	and	
specializations	and	we	may	need	to	backtrack
where	no	simple	modification	of	the	hypothesis	is	
consistent	with	all	the	data.
The	source	of	problems	– strong	commitment
– The	algorithm	has	to	choose	a	particular	hypothesis	as	
its	best	guess	even	though	it	does	not	have	enough	
data	yet	to	be	sure	of	the	choice.

A	solution	could	be	least-commitment	search.



Version	space	learning

The	hypothesis	space	can	be	viewed	as	a	disjunctive	sentence
h1 ∨ h2 ∨ h3 ∨	…	∨ hn

Hypothesis	inconsistent	with	a	new	example	is	removed	from	the	disjunction.
Assuming	the	original	hypothesis	space	does	in	fact	contain	the	right	answer,	
the	reduced	disjunction	must	still	contain	the	right	answer.
The	set	of	hypothesis	remaining	is	called	the	version	space.
The	version	space	learning	algorithm	(also	the	candidate	elimination	
algorithm).

This	approach	is	incremental:	one	never	has	to	go	back	and	reexamine	the	old	
examples

Representation	of	version	space

Hypothesis	 space	is	enormous,	 so	how	can	we	possibly	write	down	this	
enormous	disjunction?
We	have	an	ordering	of	hypothesis	space	(generalization/specialization)	
so	we	can	specify	boundaries,	where	each	boundary	will	be	a	set	of	
hypothesis	(a	boundary	set).

G	=	a	most	general	boundary
• consistent	with	all	observations	so	far
• there	are	no	consistent	hypotheses	

that	are	more	general
• initially	True

S	=	a	most	specific	boundary
• consistent	with	all	observations	so	far
• there	are	no	consistent	hypotheses	

that	are	more	specific
• initially	False

Everything	in	between	G-set	and	S-set	is	guaranteed	to	be	consistent	with	
the	examples	and	nothing	else	is	consistent.



Version	space	update

For	each	new	example	we	update	the	sets	G	and	S:
– false	positive	for	Si

Äthrow	Si out	of	the	S-set
– false	negative	for	Si

Äreplace	Si in	the	S-set	by	all	its	immediate	generalizations
– false	positive	for	Gi

Äreplace	Gi in	the	G-set	by	all	its	immediate	specilaizations
– false	negative	for	Gi

Äthrow	Gi out	of	the	G-set

The	algorithm	continues	until	one	of	three	things	happens:
– we	have	exactly	one	hypothesis	left	in	the	version	space
– the	version	space	collapses	(either	S	or	G	becomes	empty)
– we	run	out	of	examples	and	have	several	hypothesis	remaining	

in	the	version	space
• the	version	space	represents	a	disjunction	of	hypotheses
• if	the	hypothesis	disagree	in	classification,	one	possibility	is	to	take	the	
majority	vote

Properties	of	version	space	learning

If	the	domain	contains	noise	or	insufficient	attributes	for	
exact	classification,	the	version	space	will	always	collapse.

– to	date,	no	completely	 successful	solution	has	been	found

If	we	allow	unlimited	disjunction	in	the	hypothesis	space,
– the	S-set	will	always	contain	a	single	most-specific	hypothesis	

(the	disjunction	of	the	descriptions	of	positive	examples)
– the	G-set	will	contain	just	the	negation	of	the	disjunction	of	the	

descriptions	of	the	negative	examples
– can	be	addressed	by	allowing	only	limited	forms	of	disjunction	

by	including	a	generalization	hierarchy	of	more	general	
predicates:
• instead	of	WaitEstimate(x,30-60)	∨	WaitEstimate(x,>60)	we	can	use	
LongWait(x)

The	pure	version	space	algorithm	was	first	applied	in	the	
Meta-DENDRAL	system,	which	was	designed	to	learn	rules	for	
predicting	how	molecules	would	break	into	pieces	in	mass	
spectrometer.



Inductive	logic	programming

Inductive	logic	programming	(ILP)	combines
inductive	methods	with	the	power	of	first-order	
representations	(logic	programs).
ILP	works	well	with	relationshipsbetween	objects,
which	is	hard	for	attribute-only	approaches.
In	principle	the	general	knowledge-induction	problem	
is	to	solve	the	entailment	constraint:

Background	∧ Hypothesis	∧ Descriptions	|=	Classifications

Two	principal	approaches	to	ILP:
– top-down	inductive	learning	methods
(system	FOIL)

– inductive	learning	with	inverse	deduction
(system	PROGOL)

ILP	problem

Background	∧ Hypothesis	∧ Descriptions	|=	Classifications
• Examples	are	typically	given	as	Prolog	facts

Father(Philip,Charles), Father(Philip, Anne), …
Mother(Mum,Margaret), Mother(Mum, Elizabeth), …
Married(Diana, Charles), Married(Elizabeth, Philip), …
Male(Philip), Male(Charles), …
Female(Beatrice), Female(Margaret),…

• Similarly	known	classifications are	given	by	Prolog	facts:
Grandparent(Mum,Charles), Gradparent(Elizabeth, Beatrice), …
¬Gradparent(Mum,Harry), ¬Grandparent(Spencer,Peter), …

• Possible	hypothesis:
Grandparent(x,y) ⇔ [∃z Mother(x,z) ∧ Mother(z,y)] ∨

[∃z Mother(x,z) ∧ Father(z,y)] ∨
[∃z Father(x,z) ∧ Mother(z,y)] ∨
[∃z Father(x,z) ∧ Father(z,y)]

• We	can	exploit	background	knowledge:
Parent(x,y) ⇔ Mother(x,y) ∨ Father(x,y)

• Then	we	can	simplify	the	hypothesis:
Grandparent(x,y) ⇔ [∃z Parent(x,z) ∧ Parent(z,y)]



Top-down	learning

• Start	with	a	clause	with	an	empty	body
Grandfather(x,y) ←

• This	clause	classifies	every	example	as	positive,	so	it	needs	
to	be	specialized
– by	adding	literals	one	at	a	time	to	the	body

Grandfather(x,y) ← Father(x,y)
Grandfather(x,y) ← Parent(x,z)
Grandfather(x,y) ← Father(x,z)
…
• We	prefer	the	specialization	that	classifies	correctly	more	examples

– specialize	 this	clause	further
Grandfather(x,y) ← Father(x,z) ∧ Parent(z,y)

– if	background	knowledge	Parent	is	not	available	we	may	need	to	
add	more	clauses
Grandfather(x,y) ← Father(x,z) ∧ Father(z,y)
Grandfather(x,y) ← Father(x,z) ∧ Mother(z,y)
• each	clause	covers	some	positive	examples	and	no	negative	example

Top-down	learning	algorithm

System	FOIL	solved	a	long	sequence	of	exercises	 on	list-processing	 functions	
(for	example	append,	QuickSort).

Build new clauses covering 

positive examples

Literals are chosen from known 

predicates, equality/inequality 

literals, and arithmetic comparisons:

• they have to include a variable
that is already in clause

•we can exploit types (number, 

person,…)

• the choice of literal can be based 

on information gain



Inverse	resolution

Background	∧ Hypothesis	∧	Descriptions	|=	Classifications
• Classical	resolution	deduces	Classifications	from	Background,	

Hypothesis,	Descriptions.
• We	can	run	the	proof	backward,	find	Hypothesis	such	that	

the	proof	goes	through:
– for	resolvent C	produce	C1 and	C2 (if	C2 is	given	then	produce	C1)

¬Parent(Elizabeth,Anne) ∨ Grandparent(George,Anne)
¬	Parent(z,Anne) ∨ Grandparent(George,Anne)
¬	Parent(z,y) ∨ Grandparent(George,y)
…

© 2016 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz


