
Artificial	Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Introduction

We	will	describe	agents	that	can	improve	their	
behavior	through	diligent	study	of	their	own	
experiences.

– decision	trees
– regression
– artificial	neural	networks
– nonparametric	models
– support	vector	machines
– ensemble	learning	(boosting)

Why	learning	is	important?

Why	would	we	want	an	agent	to	learn	(instead	of	just	
program	in	that	improvement)?
• the	designer	cannot	anticipate	all	possible	 situations	 that	

the	agent	might	find	itself	in
– a robot	designed	to	navigate	mazes	must	learn	the	layout	of	

each	new	maze	 it	encounters

• the	designer	cannot	anticipate	all	changes	over	time
– a program	designed	to	predict	tomorrow’s	stock	market	prices	

must	learn	to	adapt	when	conditions	change	from	boom	to	bust

• sometimes	human	programmers	have	no	idea	how	to	
program	a	solution	 themselves
– most	people	are	good	at	recognizing	that	faces,	but	even	best	

programmers	are	unable	to	program	a	computer	to	accomplish	
that	task

Forms	of	learning

Any	component	of	an	agent	can	be	improved	by	learning.
The	improvements,	 and	the	techniques	used	to	make	them,	depend	of	

four	major	factors:
• which	component is	to	be	improved

– utility	function,	mapping	from	conditions	to	actions,,	…

• what	prior	knowledge	the	agent	already	has;
what	representation is	used	for	the	data	and	the	component
– logical	models,	Bayes	networks

• what	feedback	is	available	to	learn	from
– unsupervised	 learning

• the	agent	learns	patterns	in	thee	input	even	though	no	explicit	feedback	is	
supplied

– reinforcement	learning
• the	agent	learns	from	a	series	of	 reinforcements	– rewards	or	punishments

– supervised	 learning
• the	agent	observes	some	example	input-output	 pairs	and	learns	a	function	

that	maps	from	 input	to	output.

Supervised	learning

Given	a	training	 set	of	N	example	input-output	pairs	
(x1,y1),…,(xN,yN),	where	yi =	f(xi)	for	some	unknown	function	f
Discover	a	function	h,	that	approximates	the	true	function	f.

– function	h	– hypothesis – is	selected	from	a	hypothesis	space	
(for	example	linear	functions)

– hypothesis is	consistent,	if	h(xi)	=	yi
– the	accuracy	of	hypothesis	 is	measured	using	a	test	set	of	

examples

Types	of	tasks:
– classification:	the	set	of	outputs	yi is	a	finite	set	(such	as	sunny,	

cloudy	or	rainy)
– regression:	outputs	are	numbers	(such	as	temperature)

Ockham‘s	razor

How	do	we	choose	from	among	multiple	consistent	
hypotheses?
Prefer	the	simplest	hypothesis	consistent	with	the	
same	data.
– There	is	a	tradeoff	 between	complex	hypotheses	that	
fit	the	training	 data	well	and	simpler	hypotheses	 that	
may	generalize	 better	(overfitting).

How	to	define	simplicity?
– for	example	a	degree-1	polynomial	 is	simpler	than	a	
degree-7	polynomial	

The	above	principle	is	called	Ockham’s	razor	– the	
simplest	explanation	is	probably	the	correct	one.

Decision	trees

Decision	 tree	is	one	of	the	simplest	and	yet	most	successful	
forms	of	leaned	functions	– it	takes	as	input	a	vector	of	
attribute	values	and	returns	a	„decision“	a	single	output	value.

– a	decision	tree	reaches	its
decisions	by	performing
a	sequence	of	tests

Assume	a	binary	decision	(Boolean	classification)
– for	n	attributes	the	decision	function	can	be	described	using	a	

table	with	2n rows
– that	means	there	are	22n different	functions
– each	such	function	can	be	described	using	a	decision	tree	of	

maximal	depth	n
How	can	we	find	a	small	consistent	decision	tree?

Decision	trees	- example

The	hypothesis	space	is	defined	by	a	set	of	decision	
trees	and	we	want	a	tree	that	is	consistent	with	the	
examples	and	is	as	small	as	possible.

• examples	in	the	
form	(x,	y)

• we	assume	
Boolean	decisions	

• Will	we	wait	in	a	
restaurant?

Inducing	decision	trees

We	will	construct	a	small	(but	not	smallest)	consistent	decision	
tree	by	adopting	a	greedy	divide-and-conquer	 strategy:

– select	the	most	important	attribute	first
– divide	the	examples	based	on	the	attribute	value
– when	the	remaining	examples	are	in	the	same	category,	then	we	

are	done;	otherwise	 solve	smaller	sub-problems	 recursively
What	is	the	“most	important	attribute”?

– that	one	that	that	makes	the	most	difference	 to	the	classification	
of	examples

bad attribute
no help in
classification

good attribute
some examples
are classified

Decision	tree	learning

Algorithm	ID3
the most frequent
output from the parent

the most frequent
output in examples

the most informative
attributed

learning curve
proportion of correct
classification for a test set

Choosing	attribute	tests
How	to	select	the	best	attribute	 for	the	decision?

• We	will	use	the	notion	of	information	gain,	which	is	defined	in	terms	of	
entropy.

• Entropy	is	a	measure	of	the	uncertainty	of	a	random	variable.
– measured	in	”bits”	of	information	that	we	obtain	after	knowing	the	value	of	the	

random	variable
• a	coin	that	always	comes	up	heads	– has	no	uncertainty	and	thus	 its	entropy	is	defined	as	

zero
• a flip	of	a	fair	coin	is	equally	likely	to	come	up	heads	or	tails,	this	counts	as	”1	bit”	entropy
• The	roll	of	a	fair	four-sided	die	has	2-bits	of	entropy

H(V)	=	- !k p(vk)	log2(p(vk)),	where	vk are	values	of	random	variable	V
B(q)	=	- q.log2 q	- (1-q).log2(1-q)	 entropy	of	a	Boolean	variable
H(Goal)	=	B(p/(p+n)) entropy	of	a	set	of	p	positive	and	n	negative	examples

• An	attribute	A	divides	the	set	examples	into	subsets	based	on	its	value
– The	expected	entropy	remaining	after	testing	attribute	A

Remainder(A)	=	!	k B(pk /(pk +nk)).(pk +nk)/(p+n)
– the	information	gain	from	the	attribute	test	on	A

Gain(A)	=	B(p/(p+n))	- Remainder(A)

– Gain(Patrons)	≈ 0.541 Gain(Type) =	0

Overfitting

On	some	problems	the	algorithm	will	generate	a	large	tree	when	there	
is	actually	no	pattern	to	be	found.

Example:	Consider	 the	problem	of	trying	to	predict	whether	the	roll	of	
a	die	will	come	up	as	6	or	not.	Suppose	each	training	example	to	
include	attributes	for	the	color	of	the	die,	its	weight,	whether	the	
experimenters	had	their	fingers	crossed	etc..

– the	learning	algorithm	will	seize	any	pattern	it	can	find	in	the	input
– if	the	dice	is	fair,	the	right	thing	to	learn	is	a	tree	with	as	ingle	node	

that	says	“no”

This	problem	is	called	overfitting.
– occurs	even	when	the	target	function	is	not	at	all	random
– becomes	more	likely	as	the	hypothesis	space	and	the	number	of	input	

attributes	grows
– less	likely	as	we	increase	the	number	of	training	examples

Decision	tree	pruning

A	technique	called	decision	tree	pruning	combats	overfitting.
– take	a	test	node	that	has	only	leaf	nodes	as	descendants
– If	the	test	appears	 to	be	irrelevant	– detecting	only	noise	in	the	data	–

then	eliminate	the	test,	replacing	it	with	a	leaf	node

How	do	we	detect	that	a	node	is	testing	an	irrelevant	attribute?
– using	a	statistical	significance	test ($2 test)

• assume	that	there	is	no	underlying	pattern	(null	hypothesis)
• calculate	the	extent	to	which	the	actual	data	deviate	from	a	perfect	
absence	of	pattern
p‘k =	p	.	(pk+nk)/(p+n) n‘k =	n	.	(pk+nk)/(p+n)
∆ =	!k (pk-p‘k)2/p‘k +	(nk-n‘k)2/n‘k

• We	can	use	a	$2 table	to	see	 if	a	particular	∆ value	confirms	or	rejects	the	
null	hypothesis.

One	might	think	that	$2 pruning	can	be	used	already	when	
constructing	the	decision	tree	(early	stopping).

– The	problem	with	early	stopping	is	that	it	stops	us	from	recognizing	
situations	where	there	is	no	one	good	attribute,	but	there	are	
combinations	of	attributes	that	are	informative	(consider	the	XOR	
function	of	two	binary	attributes).

Applicability	of	decision	trees

In	order	to	extend	decision	tree	induction	to	a	wider	variety	problems,	a	
number	of	issues	must	be	addressed:

– missing	data	(not	all	the	attribute	values	are	known)
• How	show	one	classify	an	example?	How	should	one	modify	the	information-gain	formula?
• we	can	use	the	most	frequent	value	for	the	missing	value	of	the	attribute

– multivalued	attributes	(each	example	may	have	a	unique	value)
• information	gain	measure	gives	an	inappropriate	indication	of	the	attribute’s	usefulness
• It	is	possible	to	split	the	examples	based	on	just	one	value	of	the	attribute	leaving	the	

remaining	values	to	be	possibly	tested	later	in	the	tree.

– continuous	and	integer-valued	input	attributes
• infinitely	many	values	may	be	split	using	the	split	point	that	gives	the	highest	information	

gain	(start	by	sorting	the	values	of	the	attribute,	and	then	consider	only	the	split	points	that	
are	between	two	examples	in	sorted	order	that	have	different	classifications

• splitting	is	the	most	expensive	part	of	real-world	decision	tree	learning	applications

– continuous-valued	output	attributes
• for	predicting	a	numeric	output	value	we	need	a	regression	tree	where	each	leaf	has	a	

linear	function	of	some	subset	of	numerical	attributes
• The	learning	algorithm	must	decide	when	to	stop	splitting	and	begin	applying	regression

One	important	property	of	decision	trees	is	that	it	is	possible	
for	a	human	to	understand	 the	reason	for	the	output	of	the	
learning	algorithm	(this	property	is	not	shared	by	other	
formalisms	such	as	neural	networks).

Regression

How	to	handle	continuous-valued	inputs?
The	hypothesis	space	will	consists	of	linear	
functions.
– we	will	start	with	the	simplest	case:	regression	
with	a	univariate	linear	function	(“fitting	straight	
line”)

– then	we	will	cover	multivariate	linear	regression
– finally,	we	will	show	how	to	turn	linear	functions	
into	classifiers	by	applying	hard	and	soft	
thresholds

Univariate	linear	regression

Hypothesis	is	expressed	in	the	form	y	=	w1.x	+	w0
Let	hw(x)	=	w1.x	+	w0,	where	w =	[w0,w1]
We	are	looking	for	a	hypothesis hw,	that	fits	best	the	given	
examples	(we	are	looking	for	weights	w1 and	w0).
How	to	measure	the	error	with	respect	to	data?

– square	loss	function,	L2,	is	traditionally	used:
Loss(hw)	=&j (yj – hw(xj))2 =	&j (yj – (w1.xj +	w0))2

We	are	looking	for	w*	=	argminw Loss(hw)
– which	can	be	done	by	solving

'/'w0
!j (yj – (w1.xj +	w0))2 =	0

'/'w1
!j (yj – (w1.xj +	w0))2 =	0

– these	equations	have	a	unique	solution
w1 =	(N !j xj yj – !j xj !j yj)

/	(N &j xj2 – (!j xj)2)

w0 =	(!j yj – w1. !j	xj)	/	N

Beyond	linear	models

If	the	hypothesis	space	is	defined	by	non-linear	functions	then	
the	equations	'/'wi

Loss(hw)	=	0	will	often	have	no	closed-forum	
solution.

We	will	use	gradient	descent
– choose	any	starting	point	in	weight	space
– move	to	a	neighboring	point	that	is	downhill

wi←	wi – * '/'wi
Loss(hw),

where	* is	usually	called	the	learning	rate	(it	can	be	fixed	constant,	or	
it	can	decay	over	time	as	the	learning	process	proceeds)

– repeat	until	convergence

For	univariate	linear	regression	we	will	get:
w0←	w0 +	* &j (yj – hw(xj))	

w1←	w1 +	* &j (yj – hw(xj)).xj

Multivariate	linear	regression

Hypothesis	space	is	the	set	of	functions	of	the	form
hw(x)	=	w0 + Σi wixi
We	can	add	a	dummy	input	attribute,	which	is	
defined	as	always	equal	to	1:

hw(x)	=	wTx

Multivariate	linear	regression	problem	can	be	
solved	analytically	by	finding	weight	that	minimizes	
loss	'/'wi

Loss(hw)	=	0	
w*	=	(XTX)-1	XT	y
where	X	be	the	data	matrix	(the	matrix	of	inputs	with	
one	n-dimensional	 example	per	row)

Or	we	can	gradient	descent
wi ←	wi +	, Σj (yj – hw(xj)).xj,i

Linear	classifiers
Linear	functions	can	be	used	to	do	classification	as	well	as	regression.
• linear	separator

– we	are	looking	for	hw such	that
• hw(x)	=	1	if	w.x≥ 0,	otherwise	0

– Alternatively,	we	can	think	of	h	as	the	result
of	passing	the	linear	function	wx through
a	threshold	 function:
• hw(x)	=	Threshold(w.x),

where	Threshold(z)	 =	1,	if	z≥	0,	otherwise	0
• perceptron	learning	rule

wi←	wi +	, (y	– hw(x)).xi
– if	the	output	is	correct,	then	the	weights	are	not	changed
– if	hw(x)	≠ y,	then	the	weight	is	increased/decreased

based	on	xi
• we	can	soften	the	threshold	function	by	using

logistic	threshold	function
Threshold(z)	=	1	/	(1+e-z)
wi←	wi +	, (y	– hw(x)).	hw(x).(1-hw(x)).xi
– one	of	the	most	popular	classification	technique

Nonparametric	models

When	we	learn	the	hypothesis,	for	example	via	linear	
regression,	we	can	throw	away	the	training	data.
A	learning	model	that	summarizes	data	with	a	set	of	
parameters	of	fixed	size	(independent	of	the	number	of	
training	examples)	is	called	a	parametric	model.
When	there	are	thousands	or	billions	of	examples	to	learn	
from,	it	seems	like	a	better	idea	to	let	the	data	speak	for	
themselves	 rather	than	forcing	them	to	speak	through	a	tiny	
vector	of	parameters.
A	nonparametric	model	 is	one	that	cannot	be	characterized	by	
a	bounded	set	of	parameters.
Table	lookup:	a	new	example	x	 is	looked	for	in	a	lookup	table	
of	all	training	examples	and	it	is	there,	return	the	
corresponding	y.
When	x	is	not	in	the	table,	all	the	method	can	do	is	returning	
some	default	value.

Nearest	neighbor	models

Which	value	to	return	if	the	example	is	not	in	the	lookup	table?

Find	the	k	examples	that	are	nearest	to	x	(k-nearest	neighbors	
lookup)	and	compose	the	answer	from	their	y	values.

– to	do	classification	take	the	plurality	vote	for	the	neighbors	(which	
is	a	majority	vote	in	the	case	of	binary	classification);	to	avoid	ties,	
k	is	always	chosen	to	be	an	odd	number

Nearest	neighbors	– distance	

How	do	we	measure	the	distance?
Typically,	distances	are	measured	with	a	Minkowski
distance	defined	as

Lp(xj,xq)	=	(Σi |xj,i – xq,i|p)1/p
– p	=	1:	Manhattan	distance
– p	=	2:	Euclidian distance
– with	Boolean	attribute	values,	the	number	of	attributes	on	
which	two	points	differ	is	called	the	Hamming	distance

Be	careful	about	the	scale!
– it	is	common	to	apply	normalization
– instead	of	xj,i we	can	use	(xj,i – / i)/0i,
where	/ i je	is	the	mean	value	and
0i is	standard	deviation

Nearest	neighbors	– properties	

The	curse	of	dimensionality
– in	low-dimensional	spaces	with	plenty	of	data,	nearest	neighbors	work	

well
– but	as	the	number	of	dimension	rises	we	encounter	a	problem:	the	

nearest	neighbors	in	high-dimensional	spaces	are	usually	not	very	
near!

Looking	for	neighbors
How	do	we	actually	find	the	nearest	neighbors?

– table	lookup:	finding	an	element	 takes	time	O(N)
– binary	 tree:	finding	an	element	takes	time	O(log	N),	but	the	neighbors	

might	be	at	different	branches
• works	fine	if	the	number	of	examples	is	exponential	in	the	number	of	

attributes
– hash	table:	finding	an	element	takes	time	O(1)

• we	need	locally-sensitive	hash	(LSH)	– near	points	are	grouped	 together	in	the	
same	bin

• with	a	clever	used	of	randomized	algorithms,	we	can	find	an	approximate	
solution	

Nonparametric	regression
We	can	apply	nonparametric	approaches	to	regression.

Connect the dots
linear regression for two
neighboring points

3-nearest neighbors average
take the average y value for a
given set of neighbors

3-nearest neighbors linear
regression
linear regression of neighboring
points

Locally weighted regression
Linear regression where the examples
are weighted by distance via the kernel
function K
w* = argminw Σj K(Dist(xq,xj))(yj – w.xj)2

Support	Vector	Machines

The	support-vector	machine	(SVM)	is	currently	the	most	
popular	approach	of	„off-the-shelf“	supervised	learning.
There	are	three	properties	that	make	SVM	attractive:

– SVMs	construct	a	maximum	margin	separator	– a	decision	
boundary	with	the	largest	possible	distance	to	example	
points

– SVMs	create	a	linear	separating	hyperplane,	but	they	have	
the	ability	to	embed	the	data	into	a	higher-dimensional	
space,	using	the	so-called	kernel	trick

– SVMs	are	a	nonparametric	 method	 (in	practice	they	often	
end	up	retaining	only	a	small	fraction	of	the	number	of	
examples)

Maximum	margin	separator

Some	examples	are	more	important
than	others,	and	paying	attention	to
them	can	lead	to	better	generalization!
Examples	closer	to	the	separator	are
more	important.
SVMs	use	the	maximum	margin	separator
(the	separator	that	is	farthest	away	from
the	examples)

– can	be	found	via	dual	representation	by	solving	
argmax, Σj ,j – ½	Σ	j,k ,j	,k	yjyk (xj.xk),	where ,j ≥ 0,	Σ	j ,j	yj =	0

– this	is	a	quadratic	programming	optimization	problem
– the	data	enter	thee	expression	only	in	the	form	of	dot	products	of	pairs	of	points

The	expression	of	the	separator	itslef looks	as:
h(x)	=	sign(Σ	j ,j	yj (x.xj)	- b)

In	the	original	representation	 it	looks	as	w =	Σj ,j	.x j

Important	property
– the	weights	,j associated	with	each	data	point	are	zero	except	for	the	support	

verctors – the	points	closest	to	the	separator
– SVMs	gain	advantages	of	parametric	models	(we	keep	only	a	few	examples	such	

that	,	j≠ 0)

Kernel	function

What	if	the	examples	are	not	linearly	 separable?
The	input	vector	can	be	mapped	via	F	to	a	new	
vector	of	feature	values.
Then	we	look	for	a	linear	separator	between
points	F(xj)	instead	of	xj.
It	turns	out	that	F(xj)	F(xk)	can	often	be	
computed	without	first	computing	F	for	each	
point.
• F(xj)	F(xk)	=		(xj.xk)2

• this	expression	is	called	a	kernel	function
K(xj,xk)

• the	polynomial	 kernel	 	K(xj,xk)	=	(1+xjxk)d
corresponds	to	a	feature	space	whose	
dimension	 is	exponential	 in	d

f1 = (x1)2

f2 = (x2)2

f3 = 1 x1x2

Ensemble	learning

So	far	we	have	looked	at	learning	methods	in	which	
a	single	hypothesis	is	used	to	make	predictions.
The	idea	of	ensemble	learning	methods	is	to	select	
a	collection	(ensemble)	of	hypothesis	and	combine	
their	predictions
– the	hypotheses	vote	on	the	best	classification	 for	a	
new	example	– this	decreases	the	chances	of	
misclassification

– it	is	also	a	generic	way	of
enlarging	the	hypothesis
space
• linear	classifiers	can	be	used
to	describe	linearly
non-separable	 area

Boosting

Boosting is	a	a	widely	used	ensemble	method	based	on	a	
weighted	training	set:

– boosting	starts	with	weight	1	for	all	the	examples
– from	this	set	it	generates	the	first	hypothesis
– we	increase	weights	of	the	misclassified	examples,	while	
decreasing	weights	of	the	correctly	classified	examples

– we repeat	generating	of	a	next	hypothesis	until	K	
hypotheses	 are	obtained

– each	hypothesis	contributes	to	the	ensemble	hypothesis	
with	the	weight	according	to	how	well	it	performed	on	the	
training	set

– even	if	the	underlying	learning
method	 is	weak	(its	accuracy	is
slightly	better	than	random	guessing)
the	algorithm	can	return	a	hypothesis
that	classifies	the	examples	perfectly
for	large	enough	K

AdaBoost

© 2016 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

