
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

First-Order Logic: Inference Techniques

We can do inference in propositional logic. Let us
extend it to first-order logic now.
The main differences:
– quantifiers ® skolemization
– functions and variables ® unification

The core inference principles are known:
– forward chaining (deduction databases, production

systems)
– backward chaining (logic programming)
– resolution (theorem proving)

Inference in FOL

Reasoning in first-order logic can be done by
conversion to propositional logic and doing
reasoning there.

– Grounding (propositionalization)
• instantiate variables by all possible terms
• atomic sentences then correspond to propositional variables

– And what about quantifiers?
• universal quantifiers: each variable is substituted by a term
• existential quantifier: skolemization (variable is substituted

by a new constant)

Reducing FOL to PL

Universal instantiation
"v a

Subst({v/g}, a)
For a variable v and a grounded term g, apply substitution of g for v.
Can be applied more times for different terms g.
– Example: "x King(x) Ù Greedy(x) Þ Evil(x) leads to:

King(John) Ù Greedy(John) Þ Evil(John)
King(Richard) Ù Greedy(Richard) Þ Evil(Richard)
King(LeftLeg(John)) Ù Greedy(LeftLeg(John)) Þ Evil(LeftLeg(John))
…

Existential instantiation
$v a

Subst({v/k}, a)
For a variable v and a new constant k, apply substitution of k for v.
Can be applied once with a new constant that has not been used so far

(Skolem constant)
– Example: $x Crown(x) Ù OnHead(x,John) leads to:

Crown(C1) Ù OnHead(C1,John)

Reducing FOL to PL: quantifiers

Let us start with a knowledge base in FOL (no functions yet):
"x (King(x) Ù Greedy(x) Þ Evil(x))
King(John)
Greedy(John)
Brother(Richard,John)

By assigning all possible constants for variables we will get a knowledge
base in propositional logic:

King(John) Ù Greedy(John) Þ Evil(John)
King(Richard) Ù Greedy(Richard) Þ Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)

Inference can be done in propositional logic then.

Problem: having even a single function symbol gives infinite number of
terms: LeftLeg(John), LeftLeg(LeftLeg(John)),…
– Herbrand: there is an inference in FOL from a given KB if there is an

inference in PL from a finite subset of a fully instantiated KB
– We can add larger and larger terms to KB until we find a proof.
– However, if there is no proof, this procedure will never stop L.

Reducing FOL to PL: an example

We can modify the inference rules to work with FOL:
– lifting – we will do only such substitutions that we need

to do
– lifted Modus Ponens rule:

p1, p2, …, pn, q1 Ù q2 Ù… Ù qn Þ q
Subst(q,q)

where q is a substitution s.t. Subst(q,pi) = Subst(q,qi)
(for definite clauses with exactly one positive literal –
rules)

– We need to find substitution such that two sentences
will be identical (after applying the substitution)
• King(John) Ù Greedy(y) King(x) Ù Greedy(x)
• substitution {x/John, y/John}

Inference in FOL

How to find substitution q such that two sentences p
and q are identical after applying that substitution?

– Unify(p,q) = q , where Subst(q,p) = Subst(q,q)
p q q
Knows(John,x) Knows(John,Jane) {x/Jane}
Knows(John,x) Knows(y,OJ) {x/OJ, y/John}
Knows(John,x) Knows(y,Mother(y)) {y/John, x/Mother(John)}}
Knows(John,x) Knows(x,OJ) {fail}

– What if there are more such substitutions?
Knows(John,x) Knows(y,z)

Ä q1 = {y/John, x/z} or q2 = {y/John, x/John, z/John}

• The first substitution is more general than the second one (the second
substitution can be obtained by applying one more substitution after the first
substitution {z/John}).

– There is a unique (except variable renaming) substitution that is more
general than any other substitution unifying two terms – the most
general unifier (mgu).

Unification

Unification algorithm

explore the sentences recursively and
build mgu until obtaining trivially
unifiable or different sentences

Checking occurrence of variable var in term x
• x and f(x) are not unifiable
• gives quadratic time complexity
• there are also linear complexity algorithms
• not always done (Prolog)

complex terms must have the same
“name” and unifiable arguments

lists are being unified separately to
omit cycles when representing the list
as a term (First,Rest)

Assume a query Knows(John, x).
We can find an answer in the knowledge base by finding a
fact unifiable with the query:

Knows(John, Jane) ® {x/Jane}
Knows(y, Mother(y)) ® {x/Mother(John)}
Knows(x, Elizabeth) ® fail
– ???
– Knows(x,Elizabeth) means that anybody knows Elizabeth (universal

quantifier is assumed there), so John knows Elizabeth.
– The problem is that both sentences contain variable x and hence

cannot be unified.
– "x Knows(x,Elizabeth) is identical to "y Knows(y,Elizabeth)
– Before we use any sentence from KB, we rename its variables to

new fresh variables not ever used before – standardizing apart.

Standardizing apart

According to US law, any American citizen is a criminal, if he or she sells
weapons to hostile countries. Nono is an enemy of USA. Nono owns missiles
that colonel West sold to them. Colonel West is a US citizen.
Prove that West is a criminal.

... any US citizen is a criminal, if he or she sells weapons to hostile countries:
American(x) Ù Weapon(y) Ù Sells(x,y,z) Ù Hostile(z) Þ Criminal(x)

Nono … owns missiles, i.e. $x Owns(Nono,x) Ù Missile(x):
Owns(Nono,M1) and Missile(M1)

… colonel West sold missiles to Nono
Missile(x) Ù Owns(Nono,x) Þ Sells(West,x,Nono)

Missiles are weapons.
Missile(x) Þ Weapon(x)

Hostile countries are enemies of USA.
Enemy(x,America) Þ Hostile(x)

West is a US citizen …
American(West)

Nono is an enemy of USA …
Enemy(Nono,America)

Example

All sentences in the example are definite clauses
and there are no function symbols there.

To solve the problem we can use:
• forward chaining
– using Modus Ponens we can infer all valid sentences
– this is an approach used in deductive databases

(Datalog) and production systems
• backward chaining
– we can start with a query Criminal(West) and look

for facts supporting that claim
– this is an approach used in logic programming

Inference techniques

Forward chaining is a sound and complete inference algorithm.
– Beware! If the sentence is not entailed by KB then the algorithm may not

finish (if there is at least one function symbol).

take a rule from KB and
rename its variables
(standardizing apart)

infer all conclusions not yet
present in KB

obtained sentences are placed
to KB as theorems and the
whole process is repeated

if we infer a sentence unifiable
with the query then we can
return the corresponding mgu

Forward chaining in FOL

Forward chaining: an example

American(x) Ù Weapon(y) Ù Sells(x,y,z) Ù Hostile(z) Þ Criminal(x)
Owns(Nono,M1) and Missile(M1) (from $x Owns(Nono,x) Ù Missile(x))
Missile(x) Ù Owns(Nono,x) Þ Sells(West,x,Nono)
Missile(x) Þ Weapon(x)
Enemy(x,America) Þ Hostile(x)
American(West)
Enemy(Nono,America)

72 Chapter 9 Inference in First-Order Logic

function FOL-FC-ASK(KB ,α) returns a substitution or false
inputs: KB , the knowledge base, a set of first-order definite clauses

α, the query, an atomic sentence

while true do

new← { } // The set of new sentences inferred on each iteration
for each rule in KB do

(p1 ∧ . . . ∧ pn ⇒ q)← STANDARDIZE-VARIABLES(rule)
for each θ such that SUBST(θ,p1 ∧ . . . ∧ pn) = SUBST(θ,p′

1 ∧ . . . ∧ p′
n)

for some p′
1, . . . , p

′
n in KB

q ′← SUBST(θ, q)
if q ′ does not unify with some sentence already in KB or new then

add q ′ to new
φ←UNIFY(q ′,α)
if φ is not failure then return φ

if new = { } then return false
add new to KB

Figure 9.3 A conceptually straightforward, but inefficient, forward-chaining algorithm. On
each iteration, it adds to KB all the atomic sentences that can be inferred in one step
from the implication sentences and the atomic sentences already in KB . The function
STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have
not been used before.

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Figure 9.4 The proof tree generated by forward chaining on the crime example. The initial
facts appear at the bottom level, facts inferred on the first iteration in the middle level, and
facts inferred on the second iteration at the top level.

72 Chapter 9 Inference in First-Order Logic

function FOL-FC-ASK(KB ,α) returns a substitution or false
inputs: KB , the knowledge base, a set of first-order definite clauses

α, the query, an atomic sentence

while true do

new← { } // The set of new sentences inferred on each iteration
for each rule in KB do

(p1 ∧ . . . ∧ pn ⇒ q)← STANDARDIZE-VARIABLES(rule)
for each θ such that SUBST(θ,p1 ∧ . . . ∧ pn) = SUBST(θ,p′

1 ∧ . . . ∧ p′
n)

for some p′
1, . . . , p

′
n in KB

q ′← SUBST(θ, q)
if q ′ does not unify with some sentence already in KB or new then

add q ′ to new
φ←UNIFY(q ′,α)
if φ is not failure then return φ

if new = { } then return false
add new to KB

Figure 9.3 A conceptually straightforward, but inefficient, forward-chaining algorithm. On
each iteration, it adds to KB all the atomic sentences that can be inferred in one step
from the implication sentences and the atomic sentences already in KB . The function
STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have
not been used before.

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Figure 9.4 The proof tree generated by forward chaining on the crime example. The initial
facts appear at the bottom level, facts inferred on the first iteration in the middle level, and
facts inferred on the second iteration at the top level.

72 Chapter 9 Inference in First-Order Logic

function FOL-FC-ASK(KB ,α) returns a substitution or false
inputs: KB , the knowledge base, a set of first-order definite clauses

α, the query, an atomic sentence

while true do

new← { } // The set of new sentences inferred on each iteration
for each rule in KB do

(p1 ∧ . . . ∧ pn ⇒ q)← STANDARDIZE-VARIABLES(rule)
for each θ such that SUBST(θ,p1 ∧ . . . ∧ pn) = SUBST(θ,p′

1 ∧ . . . ∧ p′
n)

for some p′
1, . . . , p

′
n in KB

q ′← SUBST(θ, q)
if q ′ does not unify with some sentence already in KB or new then

add q ′ to new
φ←UNIFY(q ′,α)
if φ is not failure then return φ

if new = { } then return false
add new to KB

Figure 9.3 A conceptually straightforward, but inefficient, forward-chaining algorithm. On
each iteration, it adds to KB all the atomic sentences that can be inferred in one step
from the implication sentences and the atomic sentences already in KB . The function
STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have
not been used before.

Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Figure 9.4 The proof tree generated by forward chaining on the crime example. The initial
facts appear at the bottom level, facts inferred on the first iteration in the middle level, and
facts inferred on the second iteration at the top level.

Forward chaining: pattern matching

How to find (fast) a set of facts p‘1,…, p‘n unifiable with the
body of the rule?

– This is called pattern matching.
– Example 1: Missile(x) Þ Weapon(x)

• we can index the set of facts according to predicate name so we
can omit failing attempts such as Unify(Missile(x),Enemy(Nono,
America))

– Example 2: Missile(x) Ù Owns(Nono,x) Þ Sells(West,x,Nono)
1. we can find objects own by Nono which are missiles …
2. or we can find missiles that are owned by Nono
Which order is better?

– Start with less options (if there are two missiles while Nono owns many
objects then alternative 2 is faster) – recall the first-fail heuristic
from constraint satisfaction

Pattern matching is an NP-complete problem.

Diff(wa,nt) Ù Diff(wa,sa) Ù Diff(nt,q) Ù Diff(nt,sa) Ù Diff(q,nsw) Ù
Diff(q,sa) Ù Diff(nsw,v) Ù Diff(nsw,sa) Ù Diff(v,sa) Þ Colorable()

Diff(Red,Blue), Diff (Red,Green), Diff(Green,Red), Diff(Green,Blue), Diff(Blue,Red), Diff(Blue,Green)!
73

Q
NT

WA

SA

V

NSW

T

Diff (wa,nt) ∧Diff (wa , sa) ∧
Diff (nt , q) ∧Diff (nt , sa) ∧
Diff (q,nsw) ∧Diff (q, sa) ∧
Diff (nsw , v) ∧Diff (nsw , sa) ∧
Diff (v, sa) ⇒ Colorable()

Diff (Red ,Blue) Diff (Red ,Green)

Diff (Green ,Red) Diff (Green ,Blue)

Diff (Blue,Red) Diff (Blue,Green)

(a) (b)

Figure 9.5 (a) Constraint graph for coloring the map of Australia. (b) The map-coloring
CSP expressed as a single definite clause. Each map region is represented as a variable
whose value can be one of the constants Red , Green , or Blue (which are declared Diff).

function FOL-BC-ASK(KB , query) returns a generator of substitutions
return FOL-BC-OR(KB , query ,{ })

function FOL-BC-OR(KB , goal , θ) returns a substitution
for each rule in FETCH-RULES-FOR-GOAL(KB , goal) do

(lhs ⇒ rhs)← STANDARDIZE-VARIABLES(rule)
for each θ′ in FOL-BC-AND(KB , lhs , UNIFY(rhs , goal , θ)) do

yield θ′

function FOL-BC-AND(KB , goals , θ) returns a substitution
if θ = failure then return

else if LENGTH(goals) = 0 then yield θ
else

first ,rest← FIRST(goals), REST(goals)
for each θ′ in FOL-BC-OR(KB , SUBST(θ, first), θ) do

for each θ′′ in FOL-BC-AND(KB , rest , θ′) do

yield θ′′

Figure 9.6 A simple backward-chaining algorithm for first-order knowledge bases.

Example: Missile(x) Þ Weapon(x)
– during the iteration, the forward chaining algorithm infers that

all known missiles are weapons
– during the second (and every other) iteration the algorithm

deduces exactly the same information so KB is not updated
When should we use the rule in inference?

– if there is a new fact in KB that is also in the rule body
Incremental forward chaining

– a rule is fired in iteration t, if a new fact was inferred in iteration
(t-1) and this fact is unifiable with some fact in the rule body

– when a new fact is added to KB, we can verify all rules such that
the fact unifies with a fact in rule body

– Rete algorithm
• the rules are pre-processed to a dependency network

where it is faster to find the rules to be fired after
adding a new fact

Forward chaining: an incremental approach

Forward chaining algorithm deduces all inferable
facts even if they are not relevant to a query.
– to omit it we can use backward chaining
– another option is modifying the rules to work only with

relevant constants using a so called magic set
Example: query Criminal(West)

Magic(x) Ù American(x) Ù Weapon(y) Ù Sells(x,y,z) Ù Hostile(z)
Þ Criminal(x)

Magic(West)

– The magic set can be constructed
by backward exploration of used rules.

Forward chaining: a magic set

• based on rete
algorithm

• XCON (R1)
– configuration of DEC

computers
• OPS-5
– programming language

based on forward
chaining

• CLIPS
– A tool for expert

system design from
NASA

• Jess, JBoss Rules,…
– business rules

Production systems

take the first goal and apply the so-far
found substitution

find a rule whose
head is unifiable
with the first goal
(from query)

add the rule body among the goals
and recursively continue in goal
reduction until obtaining an empty
goal

composition of substitutions
Subst(Compose(q, q‘), p) = Subs(q‘, Subst(q,p))

Algorithm FOL-BC-Ask uses depth-first search to find all solutions (all substitutions) to a given
query.
We need linear space (in the length of the proof).
This algorithm is not complete (the same goals can be explored again and again).!

Backward chaining in FOL

Backward chaining: an example

American(x) Ù Weapon(y) Ù Sells(x,y,z) Ù Hostile(z) Þ Criminal(x)
Owns(Nono,M1) and Missile(M1) (from $x Owns(Nono,x) Ù Missile(x))
Missile(x) Ù Owns(Nono,x) Þ Sells(West,x,Nono)
Missile(x) Þ Weapon(x)
Enemy(x,America) Þ Hostile(x)
American(West)
Enemy(Nono,America)

Backward chaining is a method used in logic programming
(Prolog).

criminal(X) :-
american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

owns(nono,m1).
missile(m1).
sells(west,X,nono) :-

missile(X), owns(nono,X).
weapon(X) :-

missile(X).
hostile(X) :-

enemy(X,america).
american(west).
enemy(nono,america).

?- criminal(west).

?- criminal(west).

?- american(west), weapon(Y),
sells(west,Y,Z), hostile(Z).

?- weapon(Y), sells(west,Y,Z),
hostile(Z).

?- missile(Y), sells(west,Y,Z),
hostile(Z).

?- sells(west,m1,Z), hostile(Z).

?- missile(m1), owns(nono,m1),
hostile(nono).

?- owns(nono,m1), hostile(nono).

?- hostile(nono).

?- enemy(nono,america).

?- true.

Logic programming

rule bodyrule head

• fixed computation mechanism
– goal is reduced from left to right
– rules are explored from top to down

• returns a single solution, a next solution on request
– possible cycling (brother(X,Y) :- brother(Y,X))

• build-in arithmetic
– X is 1+2.
– (numerically) evaluates the expression on right and unifies the result with

the term on the left
• equality gives explicit access to unification

– 1+Y = 3.
– It is possible to naturally exploit constraints

(CLP – Constraint Logic Programming)
• negation as failure

– alive(X) :- not dead(X).
• „everyone is alive, if we cannot prove he is dead “

– ¬Dead(x) Þ Alive(x) is not a definite clause!
• Alive(x) Ú Dead(x)
• „Everyone is alive or dead“

Logic programming: properties

To apply a resolution method we first need a formula in a
conjunctive normal form.
– "x ["y Animal(y) Þ Loves(x,y)] Þ [$y Loves(y,x)]
– remove implications
"x [¬"y ¬Animal(y) Ú Loves(x,y)] Ú [$y Loves(y,x)]

– put negation inside (¬"x p º $x ¬p, ¬ $x p º "x ¬p)
"x [$y ¬(¬Animal(y) Ú Loves(x,y))] Ú [$y Loves(y,x)]
"x [$y ¬¬Animal(y) Ù ¬Loves(x,y)] Ú [$y Loves(y,x)]
"x [$y Animal(y) Ù ¬Loves(x,y)] Ú [$y Loves(y,x)]

– standardize variables
"x [$y Animal(y) Ù ¬Loves(x,y)] Ú [$z Loves(z,x)]

– Skolemize (Skolem functions)
"x [Animal(F(x)) Ù ¬Loves(x,F(x))] Ú [Loves(G(x),x)]

– remove universal quantifiers
[Animal(F(x)) Ù ¬Loves(x,F(x))] Ú [Loves(G(x),x)]

– distribute Ú and Ù
[Animal(F(x)) Ú Loves(G(x),x)] Ù [¬Loves(x,F(x)) Ú Loves(G(x),x)]

Resolution: a conjunctive normal form

A lifted version of the resolution rule for first-order logic:
l1 Ú ··· Ú lk, m1 Ú ··· Ú mn

(l1 Ú ··· Ú li-1 Ú li+1 Ú ··· Ú lk Ú m1 Ú ··· Ú mj-1 Ú mj+1 Ú ··· Ú mn)q

where Unify(li, ¬mj) = q.
We assume standardization apart so variables are not shared by clauses.
To make the method complete we need to:

– extend the binary resolution to more literals
– use factoring to remove redundant literals (those that can be unified together)

Example:
[Animal(F(x)) Ú Loves(G(x),x)], [¬Loves(u,v) Ú ¬Kills(u,v)]

[Animal(F(x)) Ú ¬Kills(G(x),x)]

where q = {u/G(x), v/x}
Query a for KB is answered by applying the resolution rule to CNF(KB Ù ¬a).

– If we obtain an empty clause, then KB Ù ¬a is not satisfiable and hence KB╞ a.
This is a sound and complete inference method for first-order logic.

Resolution: inference rules

Resolution method: an example

American(x) Ù Weapon(y) Ù Sells(x,y,z) Ù Hostile(z) Þ Criminal(x)
Owns(Nono,M1) and Missile(M1) (from $x Owns(Nono,x) Ù Missile(x))
Missile(x) Ù Owns(Nono,x) Þ Sells(West,x,Nono)
Missile(x) Þ Weapon(x)
Enemy(x,America) Þ Hostile(x)
American(West)
Enemy(Nono,America)

Resolution method applied to definite
clauses is actually backward
chaining, where the clauses to resolve
are determined.!

75

path(a,c)

/Y b

link(a,c) path(a,Y)

link(a,Y)

link(b,c)

path(a,c)

path(a,Y) link(Y,c)

path(a,Y’) link(Y’,Y)

(a) (b)

Figure 9.10 (a) Proof that a path exists from A to C. (b) Infinite proof tree generated when
the clauses are in the “wrong” order.

Criminal(x) ¬Criminal(West)

¬Enemy(Nono, America)Enemy(Nono,America)

Weapon(x) ¬Weapon(y)

Missile(M) ¬Missile(y)

Sells(West,x,Nono) ¬Sells(West,M ,z)

¬American(West) American(West)

¬Missile(M) M1Missile(M)

¬Owns(Nono,M) Owns(Nono,M)

Hostile(x) ¬Hostile(Nono)

^^^ ^

^ ^ ^

^ ^ ^

^ ^

^ ^ ^

^ ^

^

^

Figure 9.11 A resolution proof that West is a criminal. At each resolution step, the literals
that unify are in bold and the clause with the positive literal is shaded blue.

Everyone, who likes animals, is loved by somebody. Everyone, who kills
animals, is loved by nobody. Jack likes all animals. Either Jack or
Curiosity killed cat named Tuna. Cats are animals.
Did Curiosity kill Tuna?

"x ["y Animal(y) Þ Loves(x,y)] Þ [$y Loves(y,x)]

"x [$y Animal(y) Ù Kills(x,y)] Þ ["z ¬Loves(z,x)]
"x Animal(x) Þ Loves(Jack,x)
Kills(Jack,Tuna) Ú Kills(Curiosity, Tuna)
Cat(Tuna)
"x Cat(x) Þ Animal(x)
¬ Kills(Curiosity,Tuna)

Animal(F(x)) Ú Loves(G(x),x)
¬ Loves(x,F(x)) Ú Loves(G(x),x)
¬ Animal(y) Ú ¬Kills(x,y) Ú ¬ Loves(z,x)
¬ Animal(x) Ú Loves(Jack,x)
Kills(Jack,Tuna) Ú Kills(Curiosity,Tuna)
Cat(Tuna)
¬ Cat(x) Ú Animal(x)
¬ Kills(Curiosity,Tuna)

Resolution: a complex example

76 Chapter 9 Inference in First-Order Logic

Loves(y Jack) Loves(G(Jack Jack)

Kills(Curiosity Tuna)Jack, Tuna Kills(Curiosity Tuna)Cat(x) Animal xCat(Tuna)

Animal(F(Jack)) Loves G Jack , Jack Animal(F(x)) Loves G x , xLoves y, x Kills(x Tuna)

Kills(Jack Tuna)Loves y, x Animal(z) Kills x, zAnimal(Tuna) Loves(x F(x)) Loves G x , x Animal x Loves(Jack x)

^^

^ ^ ^ ^

^^^

Figure 9.12 A resolution proof that Curiosity killed the cat. Notice the use of factoring
in the derivation of the clause Loves(G(Jack), Jack). Notice also in the upper right, the
unification of Loves(x, F (x)) and Loves(Jack, x) can only succeed after the variables have
been standardized apart.

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Some set S of ground instances is unsatisfiable

Resolution can find a contradiction in S

There is a resolution proof for the contradiction in S

Lifting lemma

Ground resolution
theorem

Herbrand’s theorem

Figure 9.13 Structure of a completeness proof for resolution.

What if the query is „Who did kill Tuna?“

The answer is „Yes, somebody killed Tuna “.
We can include an answer literal in the query.

¬ Kills(w,Tuna) Ú Answer(w)
– The previous non-constructive proof would give now:

Answer(Curiosity) Ú Answer(Jack)
– Hence we need to use the original proof leading to:
¬ Kills(Curiosity,Tuna)

¬ Kills(w,Tuna)Kills(Jack,Tuna) Ú Kills(Curiosity,Tuna)

Kills(Curiosity,Tuna)

{w/Jack}

{w/Curiosity}

Resolution: non-constructive proofs

How to effectively find proofs by resolution?
• unit resolution

– the goal is obtaining an empty clause so it is good if the clauses are
shortening

– hence we prefer a resolution step with a unit clause (contains one literal)
– in general, one cannot restrict to unit clauses only, but for Horn clauses this

is a complete method (corresponds to forward chaining)
• a set of support

– this is a special set of clauses such that one clause for resolution is always
selected from this set and the resolved clause is added to this set

– initially, this set can contain the negated query
• input resolution

– each resolution step involves at least one clause from the input – either
query or initial clauses in KB

– this is not a complete method
• subsumption

– eliminates clauses that are subsumed (are more specific than) by another
sentence in KB

– having P(x), means that adding P(A) and P(A) Ú Q(B) to KB is not necessary

Resolution strategies

Equality

How can we handle equalities in the inference methods?

• Axiomatizing equality
"x x=x
"x,y x=y Þ y=x
"x,y,z x=y Ù y=z Þ x=z

• Special inference rules such as demodulation
x=y m1 Ú ··· Ú mn
sub(x q, y q , m1 Ú ··· Ú mn)

where Unify(x, z) = q, where appears somewhere in mi, and sub(x, y, m) replaces x for y in m

Father(Father(x)) = PaternalGrandfather(x) Birthdate(Father(Father(Bella)), 1926)
Birthdate(PaternalGrandfather(Bella), 1926

• Extended unification
– handle equality directly by the unification algorithm

"x,y x=y Þ P(x) Û P(y)
"x,y x=y Þ F(x) = F(y)
…

© 2020 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

