Artificial Intelligence

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

We can do inference in propositional logic. Let us extend it to first-order logic now.

The main differences:

- quantifiers \rightarrow skolemization
- functions and variables \rightarrow unification

The core inference principles are known:

- forward chaining (deduction databases, production systems)
- backward chaining (logic programming)
- resolution (theorem proving)

Reasoning in first-order logic can be done by conversion to propositional logic and doing reasoning there.

- Grounding (propositionalization)
- instantiate variables by all possible terms
- atomic sentences then correspond to propositional variables
- And what about quantifiers?
- universal quantifiers: each variable is substituted by a term
- existential quantifier: skolemization (variable is substituted by a new constant)

Reducing FOL to PL: quantifiers

Universal instantiation

$$
\frac{\forall \mathrm{v} \alpha}{\text { Subst(\{v/g\}, } \alpha)}
$$

For a variable \mathbf{v} and a grounded term \mathbf{g}, apply substitution of \mathbf{g} for \mathbf{v}.
Can be applied more times for different terms g .

- Example: $\forall x \operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow E v i l(x)$ leads to:

$$
\text { King(John) } \wedge \text { Greedy(John) } \Rightarrow \text { Evil(John) }
$$

King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)
King(LeftLeg(John)) ^Greedy(LeftLeg(John)) \Rightarrow Evil(LeftLeg(John))

Existential instantiation

$$
\frac{\exists \mathrm{v} \alpha}{\operatorname{Subst}(\{\mathrm{v} / \mathrm{k}\}, \alpha)}
$$

For a variable \mathbf{v} and a new constant \mathbf{k}, apply substitution of \mathbf{k} for \mathbf{v}.
Can be applied once with a new constant that has not been used so far (Skolem constant)

- Example: $\exists x \operatorname{Crown}(x) \wedge \operatorname{OnHead}(x, J o h n)$ leads to:
$\operatorname{Crown}\left(C_{1}\right) \wedge \operatorname{OnHead}\left(C_{1}, J o h n\right)$

Reducing FOL to PL: an example

Let us start with a knowledge base in FOL (no functions yet):
$\forall x(\operatorname{King}(x) \wedge \operatorname{Greedy}(x) \Rightarrow \operatorname{Evil}(x))$
King(John)
Greedy(John)
Brother(Richard,John)
By assigning all possible constants for variables we will get a knowledge base in propositional logic:

King(John) \wedge Greedy(John) \Rightarrow Evil(John)
King(Richard) \wedge Greedy(Richard) \Rightarrow Evil(Richard)
King(John)
Greedy(John)
Brother(Richard,John)
Inference can be done in propositional logic then.
Problem: having even a single function symbol gives infinite number of terms: LeftLeg(John), LeftLeg(LeftLeg(John)),...

- Herbrand: there is an inference in FOL from a given $K B$ if there is an inference in PL from a finite subset of a fully instantiated KB
- We can add larger and larger terms to KB until we find a proof.
- However, if there is no proof, this procedure will never stop 0_{0}.

We can modify the inference rules to work with FOL:

- lifting - we will do only such substitutions that we need to do
- lifted Modus Ponens rule:

$$
\frac{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}, \mathrm{q}_{1} \wedge \mathrm{q}_{2} \wedge \ldots \wedge \mathrm{q}_{\mathrm{n}} \Rightarrow \mathrm{q}}{\operatorname{Subst}(\theta, \mathrm{q})}
$$

where θ is a substitution s.t. $\operatorname{Subst}\left(\theta, p_{i}\right)=\operatorname{Subst}\left(\theta, q_{i}\right)$ (for definite clauses with exactly one positive literal rules)

- We need to find substitution such that two sentences will be identical (after applying the substitution)
- King(John) $\wedge \operatorname{Greedy}(y) \operatorname{King}(x) \wedge \operatorname{Greedy}(x)$
- substitution \{x/John, y/John\}

How to find substitution θ such that two sentences p and q are identical after applying that substitution?

$-\operatorname{Unify}(p, q)=\theta$, where $\operatorname{Subst}(\theta, p)=\operatorname{Subst}(\theta, q)$

p	\mathbf{q}	$\boldsymbol{\theta}$
Knows(John, x)	Knows(John,Jane)	$\{x /$ Jane $\}$
Knows(John, $x)$	Knows $(y, O J)$	$\{x / O J, y / J o h n\}$
Knows(John, $x)$	Knows $(y$, Mother(y))	$\{y / J o h n, x /$ Mother(John) $\}\}$
Knows(John, $x)$	Knows $(x, O J)$	$\{f a i l\}$

- What if there are more such substitutions?

Knows(John, x) Knows (y, z)
$\stackrel{y}{\Rightarrow} \theta_{1}=\{y / J o h n, x / z\}$ or $\theta_{2}=\{y / J o h n, x / J o h n, z / J o h n\}$

- The first substitution is more general than the second one (the second substitution can be obtained by applying one more substitution after the first substitution \{z/John\}).
- There is a unique (except variable renaming) substitution that is more general than any other substitution unifying two terms - the most general unifier (mgu).

Unification algorithm

function $\operatorname{UNIFY}(x, y, \theta=e m p t y)$ returns a substitution to make x and y identical, or failure if $\theta=$ failure then return failure else if $x=y$ then return θ else if $\operatorname{Variable}$? (x) then return $\operatorname{Unify-\operatorname {Var}(x,y,\theta)}$ else if $\operatorname{Variable}$? (y) then return $\operatorname{Unify}-\operatorname{Var}(y, x, \theta)$ else if Compound? (x) and Compound? (y) then
explore the sentences recursively and build mgu until obtaining trivially unifiable or different sentences
return $\operatorname{UNify}(\operatorname{Args}(x), \operatorname{ArgS}(y), \operatorname{Unify}(\operatorname{Op}(x), \operatorname{Op}(y), \theta))$
else if List ? (x) and List ? (y) then
return $\operatorname{Unify}(\operatorname{Rest}(x), \operatorname{Rest}(y), \operatorname{Unify}(\operatorname{First}(x), \operatorname{First}(y), \theta))$
else return failure
function $\operatorname{UNIFY}-\operatorname{VAR}(v a r, x, \theta)$ returns a substitution
lists are being unified separately to omit cycles when representing the list as a term (First,Rest)
if $\{$ var $/$ val $\} \in \theta$ for some val then return Unify $(v a l, x, \theta)$
else if $\{x /$ val $\} \in \theta$ for some val then return Unify (var, val, θ)
else if Occur-Cнеск? (var, x) then return failure else return add $\{v a r / x\}$ to θ

Checking occurrence of variable var in term x

- x and $f(x)$ are not unifiable
- gives quadratic time complexity
- there are also linear complexity algorithms
- not always done (Prolog)

Assume a query Knows(John, x).
We can find an answer in the knowledge base by finding a fact unifiable with the query:

Knows(John, Jane) $\rightarrow\{x / J a n e\}$
Knows(y, Mother(y)) $\rightarrow\{x /$ Mother(John) $\}$
Knows(x, Elizabeth) \rightarrow fail

- ???
- Knows(x,Elizabeth) means that anybody knows Elizabeth (universal quantifier is assumed there), so John knows Elizabeth.
- The problem is that both sentences contain variable \mathbf{x} and hence cannot be unified.
- $\forall x \operatorname{Knows}(x$, Elizabeth) is identical to $\forall y \operatorname{Knows}(y$, Elizabeth)
- Before we use any sentence from KB, we rename its variables to new fresh variables not ever used before - standardizing apart.

According to US law, any American citizen is a criminal, if he or she sells weapons to hostile countries. Nono is an enemy of USA. Nono owns missiles that colonel West sold to them. Colonel West is a US citizen.
Prove that West is a criminal.
... any US citizen is a criminal, if he or she sells weapons to hostile countries:
American $(x) \wedge$ Weapon $(y) \wedge$ Sells $(x, y, z) \wedge$ Hostile $(z) \Rightarrow$ Criminal (x)

Owns(Nono, M_{1}) and Missile $\left(M_{1}\right)$
... colonel West sold missiles to Nono
Missile (x) ^ Owns(Nono, x) \Rightarrow Sells(West, x, Nono)
Missiles are weapons.
Missile (x) \Rightarrow Weapon (x)
Hostile countries are enemies of USA.
Enemy (x, America) \Rightarrow Hostile (x)
West is a US citizen ...
American(West)
Nono is an enemy of USA ...
Enemy(Nono,America)

All sentences in the example are definite clauses and there are no function symbols there.
To solve the problem we can use:

- forward chaining
- using Modus Ponens we can infer all valid sentences
- this is an approach used in deductive databases (Datalog) and production systems
- backward chaining
- we can start with a query Criminal(West) and look for facts supporting that claim
- this is an approach used in logic programming

Forward chaining in FOL

function $\mathrm{FOL}-\mathrm{FC}-\operatorname{AsK}(K B, \alpha)$ returns a substitution or false
inputs: $K B$, the knowledge base, a set of first-order definite clauses α, the query, an atomic sentence
while true do
take a rule from KB and rename its variables (standardizing apart) new $\leftarrow\}$
/ / The set of new sentences inferred on each iteration/
for each rule in $K B$ do
$\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right) \leftarrow$ STANDARDIZE-VARIABLES $($ rule $)$
for each θ such that $\operatorname{SUBST}\left(\theta, p_{1} \wedge \ldots \wedge p_{n}\right)=\operatorname{SUBST}\left(\theta, p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right)$ for some $p_{1}^{\prime}, \ldots, p_{n}^{\prime}$ in $K B$
$q^{\prime} \leftarrow \operatorname{SUBST}(\theta, q)$
infer all conclusions not yet present in KB
if q^{\prime} does not unify with some sentence already in $K B$ or new then add q^{\prime} to new
$\phi \leftarrow \operatorname{UNIFY}\left(q^{\prime}, \alpha\right)$
if ϕ is not failure then return ϕ

if new $=\{ \}$ then return false add new to $K B$
obtained sentences are placed to KB as theorems and the whole process is repeated

Forward chaining is a sound and complete inference algorithm.

- Beware! If the sentence is not entailed by KB then the algorithm may not finish (if there is at least one function symbol).

Forward chaining: an example

```
American(x) ^ Weapon(y) ^ Sells(x,y,z) ^ Hostile(z) # Criminal(x)
Owns(Nono,M1) and Missile(M1) (from \existsx Owns(Nono,x) ^ Missile(x))
Missile(x)^ Owns(Nono,x) => Sells(West,x,Nono)
Missile(x) => Weapon(x)
Enemy(x,America) => Hostile(x)
American(West)
Enemy(Nono,America)
```


Forward chaining: pattern matching

$$
\begin{aligned}
& \text { for each } \theta \text { such that } \operatorname{SUBST}\left(\theta, p_{1} \wedge \ldots \wedge p_{n}\right)=\operatorname{SuBST}\left(\theta, p_{1}^{\prime} \wedge \ldots \wedge p_{n}^{\prime}\right) \\
& \quad \text { for some } p_{1}^{\prime}, \ldots, p_{n}^{\prime} \text { in } K B
\end{aligned}
$$

How to find (fast) a set of facts $p_{1, \ldots,}^{\prime} p_{n}^{\prime}$ unifiable with the body of the rule?

- This is called pattern matching.
- Example 1: $\operatorname{Missile}(x) \Rightarrow$ Weapon(x)
- we can index the set of facts according to predicate name so we can omit failing attempts such as Unify(Missile(x),Enemy(Nono, America))
- Example 2: $\operatorname{Missile}(x) \wedge$ Owns(Nono, $x) \Rightarrow$ Sells(West, x, Nono)

1. we can find objects own by Nono which are missiles ...
2. or we can find missiles that are owned by Nono

Which order is better?

- Start with less options (if there are two missiles while Nono owns many objects then alternative 2 is faster) - recall the first-fail heuristic from constraint satisfaction

Forward chaining: an incremental approach

Example: $\operatorname{Missile}(x) \Rightarrow$ Weapon (x)

- during the iteration, the forward chaining algorithm infers that all known missiles are weapons
- during the second (and every other) iteration the algorithm deduces exactly the same information so KB is not updated
When should we use the rule in inference?
- if there is a new fact in KB that is also in the rule body

Incremental forward chaining

- a rule is fired in iteration t, if a new fact was inferred in iteration ($\mathrm{t}-1$) and this fact is unifiable with some fact in the rule body
- when a new fact is added to KB , we can verify all rules such that the fact unifies with a fact in rule body
- Rete algorithm
- the rules are pre-processed to a dependency network where it is faster to find the rules to be fired after adding a new fact

Forward chaining algorithm deduces all inferable facts even if they are not relevant to a query.

- to omit it we can use backward chaining
- another option is modifying the rules to work only with relevant constants using a so called magic set
Example: query Criminal(West)
$\operatorname{Magic}(x) \wedge$ American $(x) \wedge$ Weapon $(y) \wedge$ Sells $(x, y, z) \wedge$ Hostile (z) \Rightarrow Criminal (x)
Magic(West)
- The magic set can be constructed by backward exploration of used rules.

TESTY

Podnikoví správci pravidel
Mâte-li možnost dosíhnout flevil
 jako ie JBoss Rules nebo Jess, naskytá se otázka, v čem se tyto systény lisi od BRMS poctnikove trídy. Nêkolik rozdilu se mezi nimi prece jenom najde. Strana 18

Servery s architelturou x86

- based on rete algorithm
- XCON (R1)
- configuration of DEC computers
- OPS-5
- programming language based on forward chaining
- CLIPS
- A tool for expert system design from NASA
- Jess, JBoss Rules,...
- business rules

Backward chaining in FOL

function FOL-BC-Ask($K B$, goals, θ) returns a set of substitutions

 inputs: $K B$, a knowledge base goals, a list of conjuncts forming a query θ, the current substitution, initially the empty substitution $\}$ local variables: ans, a set of substitutions, initially empty
for each r in $K B$ where $\operatorname{Standardize-~} \operatorname{Apart}(r)=\left(p_{1} \wedge \ldots \wedge p_{n} \Rightarrow q\right)$ and $\theta^{\prime} \leftarrow \operatorname{Unify}\left(q, q^{\prime}\right)$ succeeds ans $\leftarrow \operatorname{FOL}-\mathrm{BC}-\mathrm{Ask}\left(K B,\left[p_{1}, \ldots, p_{n} \mid \operatorname{Rest}(\right.\right.$ goals $\left.\left.)\right], \operatorname{Compose}\left(\theta, \theta^{\prime}\right)\right) \cup$ ans return ans
add the rule body among the goals and recursively continue in goal reduction until obtaining an empty goal
find a rule whose head is unifiable with the first goal (from query)
composition of substitutions
$\operatorname{Subst}\left(\operatorname{Compose}\left(\theta, \theta^{\prime}\right), \mathrm{p}\right)=\operatorname{Subs}\left(\theta^{\prime}, \operatorname{Subst}(\theta, \mathrm{p})\right)$

```
Algorithm FOL-BC-Ask uses depth-first search to find all solutions (all substitutions) to a given
query.
We need linear space (in the length of the proof).
This algorithm is not complete (the same goals can be explored again and again).
```


Backward chaining: an example

```
American(x) ^ Weapon(y) ^ Sells(x,y,z) ^ Hostile(z) # Criminal(x)
Owns(Nono,M1) and Missile(M1) (from \existsx Owns(Nono,x) ^ Missile(x))
Missile(x) ^ Owns(Nono,x) => Sells(West,x,Nono)
Missile(x) => Weapon(x)
Enemy(x,America) => Hostile(x)
American(West)
Enemy(Nono,America)
```


Backward chaining is a method used in logic programming (Prolog).
criminal(X) :-
criminal(X) :-

owns (nono,m1).
missile (m1).
sells(west, X, nono) :-
missile (X), owns (nono, X).
weapon (X) :-
missile (X) .
hostile(X) :-
enemy (X , america).
american (west).
enemy (nono, america).
?- criminal (west).
?- criminal(west)
?- criminal(west)
?- american(west), weapon(Y)
?- american(west), weapon(Y)
sells(west,Y,Z), hostile(Z)
sells(west,Y,Z), hostile(Z)
?- weapon(Y), sells(west,Y,Z)
?- weapon(Y), sells(west,Y,Z)
hostile(Z)
hostile(Z)
?- missile(Y), sells(west,Y,Z)
?- missile(Y), sells(west,Y,Z)
hostile(Z)
hostile(Z)
?- sells(west,m1,Z), hostile(Z)
?- sells(west,m1,Z), hostile(Z)
?- missile(m1), owns(nono,m1)
?- missile(m1), owns(nono,m1)
hostile(nono)
hostile(nono)
?- owns(nono,m1), hostile(nono)
?- owns(nono,m1), hostile(nono)
?- hostile(nono)
?- hostile(nono)
?- enemy(nono,america)
?- enemy(nono,america)
?- true
?- true

Logic programming: properties

- fixed computation mechanism
- goal is reduced from left to right
- rules are explored from top to down
- returns a single solution, a next solution on request
- possible cycling (brother (X,Y) :- brother (Y,X))
- build-in arithmetic
-x is $1+2$.
- (numerically) evaluates the expression on right and unifies the result with the term on the left
- equality gives explicit access to unification
- $1+\mathrm{Y}=3$.
- It is possible to naturally exploit constraints (CLP - Constraint Logic Programming)
- negation as failure
- alive (X) :- not dead (X).
- „everyone is alive, if we cannot prove he is dead "
$-\rightarrow \operatorname{Dead}(x) \Rightarrow \operatorname{Alive}(x)$ is not a definite clause!
- Alive $(x) \vee \operatorname{Dead}(x)$
- „Everyone is alive or dead"

Resolution: a conjunctive normal form

To apply a resolution method we first need a formula in a conjunctive normal form.
$-\forall x[\forall y \operatorname{Animal}(y) \Rightarrow \operatorname{Loves}(x, y)] \Rightarrow[\exists y \operatorname{Loves}(y, x)]$

- remove implications
$\forall x[\neg \forall y \neg A n i m a l(y) \vee \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$
- put negation inside $(\neg \forall x p \equiv \exists x \neg p, \neg \exists x p \equiv \forall x \neg p)$
$\forall x[\exists y \neg(\neg$ Animal $(y) \vee \operatorname{Loves}(x, y))] \vee[\exists y \operatorname{Loves}(y, x)]$
$\forall x[\exists y \neg \neg \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$
$\forall x[\exists y \operatorname{Animal}(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists y \operatorname{Loves}(y, x)]$
- standardize variables
$\forall x[\exists y$ Animal $(y) \wedge \neg \operatorname{Loves}(x, y)] \vee[\exists z \operatorname{Loves}(z, x)]$
- Skolemize (Skolem functions)
$\forall x[$ Animal $(F(x)) \wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$
- remove universal quantifiers
[Animal(F(x)) $\wedge \neg \operatorname{Loves}(x, F(x))] \vee[\operatorname{Loves}(G(x), x)]$
- distribute \vee and \wedge
$[$ Animal $(F(x)) \vee \operatorname{Loves}(G(x), x)] \wedge[\neg \operatorname{Loves}(x, F(x)) \vee \operatorname{Loves}(G(x), x)]$

Resolution: inference rules

A lifted version of the resolution rule for first-order logic:

$$
\frac{\kappa_{1} \vee \cdots \vee 反_{k} \quad m_{1} \vee \cdots \vee m_{n}}{\left(\xi_{1} \vee \cdots \vee \kappa_{i-1} \vee \kappa_{i+1} \vee \cdots \vee k_{k} \vee m_{1} \vee \cdots \vee m_{j-1} \vee m_{j+1} \vee \cdots \vee m_{n}\right) \theta}
$$

where Unify $\left(\mathcal{K}_{\mathrm{i}}, \neg m_{\mathrm{j}}\right)=\theta$.
We assume standardization apart so variables are not shared by clauses.
To make the method complete we need to:

- extend the binary resolution to more literals
- use factoring to remove redundant literals (those that can be unified together)

Example:

$$
\frac{[\operatorname{Animal}(\mathrm{F}(\mathrm{x})) \vee \operatorname{Loves}(\mathrm{G}(\mathrm{x}), \mathrm{x})], \quad[\neg \operatorname{Loves}(\mathrm{u}, \mathrm{v}) \vee \neg \operatorname{Kills}(\mathrm{u}, \mathrm{v})]}{[\operatorname{Animal}(\mathrm{F}(\mathrm{x}))) \vee \neg \operatorname{Kills}(\mathrm{G}(\mathrm{x}), \mathrm{x})]}
$$

where $\theta=\{u / G(x), v / x\}$
Query α for KB is answered by applying the resolution rule to $\operatorname{CNF}(\mathrm{KB} \wedge \neg \alpha)$.

- If we obtain an empty clause, then $\mathrm{KB} \wedge \neg \alpha$ is not satisfiable and hence $K B=\alpha$.

This is a sound and complete inference method for first-order logic.

Resolution method: an example

American $(x) \wedge$ Weapon $(y) \wedge \operatorname{Sells}(x, y, z) \wedge$ Hostile $(z) \Rightarrow \operatorname{Criminal}(x)$ Owns(Nono,M1) and Missile(M1) (from $\exists x$ Owns(Nono,x) \wedge Missile(x))
Missile(x) \wedge Owns(Nono, $x) \Rightarrow$ Sells(West, x,Nono)
Missile(x) \Rightarrow Weapon(x)
Enemy(x,America) \Rightarrow Hostile(x)
American(West)
Enemy(Nono,America)

Resolution: a complex example

Everyone, who likes animals, is loved by somebody. Everyone, who kills animals, is loved by nobody. Jack likes all animals. Either Jack or Curiosity killed cat named Tuna. Cats are animals. Did Curiosity kill Tuna?

What if the query is „Who did kill Tuna?"

The answer is „Yes, somebody killed Tuna ". We can include an answer literal in the query.
\neg Kills(w,Tuna) \vee Answer(w)

- The previous non-constructive proof would give now: Answer(Curiosity) v Answer(Jack)
- Hence we need to use the original proof leading to:
\neg Kills(Curiosity, Tuna)

Resolution strategies

How to effectively find proofs by resolution?

- unit resolution
- the goal is obtaining an empty clause so it is good if the clauses are shortening
- hence we prefer a resolution step with a unit clause (contains one literal)
- in general, one cannot restrict to unit clauses only, but for Horn clauses this is a complete method (corresponds to forward chaining)
- a set of support
- this is a special set of clauses such that one clause for resolution is always selected from this set and the resolved clause is added to this set
- initially, this set can contain the negated query
- input resolution
- each resolution step involves at least one clause from the input - either query or initial clauses in KB
- this is not a complete method
- subsumption
- eliminates clauses that are subsumed (are more specific than) by another sentence in KB
- having $P(x)$, means that adding $P(A)$ and $P(A) \vee Q(B)$ to $K B$ is not necessary

How can we handle equalities in the inference methods?

- Axiomatizing equality

$$
\begin{aligned}
& \forall x \quad x=x \\
& \forall x, y \quad x=y \Rightarrow y=x \\
& \forall x, y, z \quad x=y \wedge y=z \Rightarrow x=z
\end{aligned}
$$

$$
\begin{aligned}
& \forall x, y \quad x=y \Rightarrow P(x) \Leftrightarrow P(y) \\
& \forall x, y \quad x=y \Rightarrow F(x)=F(y)
\end{aligned}
$$

- Special inference rules such as demodulation

$$
\frac{x=y \quad m_{1} \vee \cdots \vee m_{\mathrm{n}}}{\operatorname{sub}\left(x \theta, y \theta, m_{1} \vee \cdots \vee m_{\mathrm{n}}\right)}
$$

where $\operatorname{Unify}\left(x_{d} z\right)=\theta$, where appears somewhere in m_{i}, and $\operatorname{sub}(\mathbf{x}, \mathbf{y}, \mathbf{m})$ replaces \mathbf{x} for \mathbf{y} in \mathbf{m} Father(Father(x)) = PaternalGrandfather(x) Birthdate(Father(Father(Bella)), 1926)

Birthdate(PaternalGrandfather(Bella), 1926

- Extended unification
- handle equality directly by the unification algorithm

© $\mathbf{2 0 2 0}$ Roman Barták
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

