Artificial Intelligence

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Knowledge Representation: First-Order Logic

We are designing **knowledge-based agents** – they combine and recombine information about the world with current observations to uncover hidden aspects of the world and use them for action selection.

How to represent **knowledge?**

- so far propositional logic
- today first-order predicate logic

Programming languages

We are looking for a **formal language** that can

- represent knowledge
- reason with knowledge

What about **programming languages** (C++, Java, ...)?

- this is the most widely used class of formal languages
- facts are described via data structures
 - array world[4,4]
- programs describe how to do computations (changing data structures)
 - world[2,2] \leftarrow pit
- How to infer new information from existing facts?
 - ad-hoc procedures changing data structures \rightarrow a **procedural approach**
 - a declarative approach separates knowledge and inference mechanism (moreover, inference is general and problem independent)
- How to represent knowledge such as "pit at [2,2] or [3,1]"?
 - variables in computer programs have unique values

Can we use **natural languages** (English, Czech, ...) to represent knowledge?

- That would be great but there is no precise formal semantics for these languages!
- Currently, natural languages are seen as a medium for communication rather than for pure representation.
 - the sentence itself does not code information, it also depends on context

- "Look!"

another problem is **ambiguity** of natural languages
 – spring, …

"... if thought corrupts language, language can also corrupt thought."

George Orwell, Politics and the English Language, 1946

Propositional logic is declarative with compositional semantic that is context-independent and unambiguous. However, some properties are cumbersome (not easy to model).

- Wumpus world: there is breeze next to a pit
 - $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$
 - $B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
 - ...

Let us take inspiration from natural languages:

- we have nouns representing **objects** (pit, square, ...)
- verbs express **relations** between the objects (is next to, ...)
- some relations are in fact **functions** (is a father of)

Instead of pure facts (propositional logic) we will work with objects, relations, and functions. We will also express facts about some or all objects (**first-order predicate logic – FOL**).

Propositional logic	facts that hold or not
First-order predicate logic	facts, objects and relations that hold between them
Temporal logic	facts, objects, relations, and times when they hold
Fuzzy logic	facts with degree of truth

First-order logic: syntax

- constants
- predicates
- functions
- variables
- connectives
- equality
- quantifiers

John, 2, Crown, ... Brother, >, ... Sqrt, LeftLeg, ... x, y, a, b, ... $\neg, \Rightarrow, \land, \lor, \Leftrightarrow$

 \forall, \exists

First-order logic: an example

- $\forall x, y \text{ (Brother}(x, y) \Rightarrow \text{Brother}(y, x))$
- ∃x,y (Brother(x,Richard) ∧ Brother(y,Richard))
- ∃x,y (Brother(x,Richard) ∧ Brother(y,Richard) ∧ ¬(x=y))
 Equality says that two terms refer to the same object (Father(John) = Henry).

- **constants** (names of objects):
 - Richard, John, TheCrown
- function symbols:
 - LeftLeg
- **terms** (another form to name objects)
 - LeftLeg(John)
- predicate symbols:
 - Brother, OnHead, Person, King, Crown
- atomic sentences (describe relations between objects):
 - Brother(Richard, John)
- complex sentences:
 - King(Richard) v King(John)
 - \neg King(Richard) \Rightarrow King(John)
- **quantifiers** (help to define sentences over more objects):
 - $\forall x (King(x) \Rightarrow Person(x))$ Beware: $\forall x (King(x) \land Person(x)) !!!$
 - ∃x (Crown(x) ∧ OnHead(x,John))
 Beware: ∃x (Crown(x) ⇒ OnHead(x,John)) !!!

Universal quantifier $\forall x P$

- P is true for any object x
- corresponds to a conjunction of all formulas P
 - P(John) ^ P(Richard) ^ P(TheCrown) ^ P(LeftLeg(John)) ^ ...
- Typically connected with implication (to select the objects for which the sentence holds)
 - $\forall x \operatorname{King}(x) \Rightarrow \operatorname{Person}(x)$

Existential quantifier $\exists x P$

- there is an object **x** such that **P** holds for it
- corresponds to a disjunction of all formulas P
 - P(John) ∨ P(Richard) ∨ P(TheCrown) ∨ P(LeftLeg(John)) ∨ ...

Relations between quantifiers

- $\forall x \forall y \text{ is identical to } \forall y \forall x$ $\exists x \exists y \text{ is identical to } \exists y \exists x$
- $\exists x \forall y \text{ is not identical to } \forall y \exists x \quad (\exists x \forall y \text{ Loves}(x,y) \text{ vs.} \forall y \exists x \text{ Loves}(x,y))$
- $\forall x P \text{ is identical to } \neg \exists x \neg P$ $\exists x P \text{ is identical to } \neg \forall x \neg P$

Similarly to propositional logic we will use **operations TELL** to add a sentence to knowledge base:

- TELL(KB, King(John))
- TELL(KB, $\forall x \text{ (King}(x) \Rightarrow \text{Person}(x)))$
- We are typically adding axioms (facts as atomic sentences, definitions using ⇔ and other complex sentences) and sometime even theorems (can be deduced from axioms, but they "speed up" further inference).

and **operations ASK** for querying the sentences entailed by KB:

The domain of family relationships (kinship).

Objects = people

Unary predicates: *Male, Female* Binary predicates (kinship relations): *Parent, Sibling, Child, Grandparent, ...* Functions: *Mother, Father*

Axioms:

Plain facts:

Male(Jim)

Definitions:

 $\forall m, c \ Mother(c) = m \Leftrightarrow Female(m) \land Parent(m, c)$ $\forall p, c \ Parent(p, c) \Leftrightarrow Child(c, p)$ $\forall x, y \ Sibling(x, y) \Leftrightarrow x \neq y \land \exists p \ Parent(p, x) \land Parent(p, y)$ **General information** (but not definition)

 $\forall x (Person(x) \Rightarrow ...) \\ \forall x (... \Rightarrow Person(x))$

Theorems:

 $\forall x, y \ Sibling(x, y) \Leftrightarrow Sibling(y, x)$

The domain for numbers can also be constructed from a tiny kernel of **(Peano) axioms**.

Predicate: NatNum

Constant symbol: *0*

Function symbol: S (successor)

Natural numbers are defined recursively: NatNum(0) $\forall n NatNum(n) \Rightarrow NatNum(S(n))$

Axioms constraining the successor function:

 $\forall n \ 0 \neq S(n)$ $\forall m, n \ m \neq n \Longrightarrow S(m) \neq S(n)$

Definition of **addition**:

 $\forall m \ NatNum(m) \Longrightarrow +(0,m) = m$

 $\forall m, n \ NatNum(m) \land NatNum(n) \Rightarrow +(S(m), n) = S(+(m, n))$

(m+1)+n = (m+n)+1

Knowledge engineering deals with the process of knowledge-base construction.

A **knowledge engineer** is someone who:

- **investigates** a particular domain
 - How do the things work?
 - This is usually done in co-operation with a problem expert.
- **learns** what **concepts** are important in that domain
 - Which will be the queries asked and what do we need to find answers?
- creates a formal representation of the objects and relations in the domain
 - How to encode facts and axioms so the computer can do inference?

Knowledge-engineering process

1. identify the task

- What is the range of questions?
- Wumpus: action selection or asking about the contents of the environment?

2. assemble the relevant knowledge (knowledge acquisition)

- How does the domain actually work?
- Wumpus: what does it mean to feel stench and breeze?

3. decide on a vocabulary of predicates, functions, and constants

- How to translate domain-level concepts to logic-level names?
- Wumpus: is a pit an object or a function of the square?
- The result is an **ontology** of the domain (vocabulary of notions).

4. encode general knowledge about the domain

- Which axioms hold in the domain?
- Wumpus: breeze means a pit in the neighbourhood square

5. encode a description of the specific problem instance

- What is the current state of the world?
- Wumpus: the agent is at square (1,1) looking to the right

6. pose queries to the inference procedure and get answers

- How does the inference procedure operate on our KB?
- Wumpus: is cell (2,2) really safe?

7. debug the knowledge base

- What is missing in the knowledge base?
- Wumpus: there is a single wumpus in the cave

KE process: identify the task

Digital circuits

- 1 and 2 are input bits,
 - 3 is a carry bit
- 1 is output bit for sum,
 2 is output bit for carry

What is important in the domain?

- Does the circuit add properly?
- If the inputs are known, what is the output?
- If desired output is given, what should be the input?

Different queries may require different knowledge!

- What is the cost of the circuit?
- What is the size of the circuit?
- How much energy does the circuit consume?

What do we know about digital circuits?

- circuits are composed from wires and gates
- signals 0 and 1 flow along wires
- signals flow to the input terminals of gates
- each gate produces signal on the output terminal
- there are four types of gates: AND, OR, XOR, NOT
- circuits have input and output terminals
- wires are used just as connections between terminals
- signal delay, energy consumption, shape of gates are not assumed

What constants, predicates, and functions?

- we describe circuits, gates, terminals, signals, and connections
 - gates are denoted by constants X₁, X₂, A₁, ...
 - the behaviour of each gate is determined by its type
 - we will use constants AND, OR, XOR, NOT
 - types of gates are described by functions Type(X₁) = XOR
 - We can also use predicates $Type(X_1, XOR)$ or $XOR(X_1)$
 - Beware! We will also need axioms to describe uniqueness of the gate type.
 - **terminals** of gates can also be named by constants $(X_1In_1, ...)$, but then we need to connect them to gates
 - it is better to use functions In(1, X₁), ...
 - wires can be described by predicates
 - Connected(Out(1, X₁), In(1, X₂)), ...
 - Beware! We connect the terminals not the gates.
 - signals at terminals are determined by a function
 - Signal(g) = 1

¢,

If two terminals are connected, then they have the same signal.

 $- \forall t_1, t_2 \text{ Connected}(t_1, t_2) \Rightarrow \text{Signal}(t_1) = \text{Signal}(t_2)$

The signal at every terminal is either 1 or 0.

- $\forall t Signal(t) = 1 \lor Signal(t) = 0$
- $-1 \neq 0$

The predicate "Connected" is commutative.

− $\forall t_1, t_2$ Connected(t_1, t_2) \Rightarrow Connected(t_2, t_1)

The gate behaviour is determined by its type.

-
$$\forall$$
g Type(g) = OR ⇒
Signal(Out(1,g)) = 1 ⇔ ∃n Signal(In(n,g)) = 1

 $\forall g \text{ Type}(g) = \text{AND} \Rightarrow$ Signal(Out(1,g)) = 0 $\Leftrightarrow \exists n \text{ Signal}(\text{In}(n,g)) = 0$

-
$$\forall$$
g Type(g) = XOR \Rightarrow
Signal(Out(1,g)) = 1 \Leftrightarrow Signal(In(1,g)) ≠ Signal(In(2,g))

$$- \forall g Type(g) = NOT \Rightarrow Signal(Out(1,g)) ≠ Signal(In(1,g))$$

KE process: specific problem instance

Connected(Out($1,X_1$),In($1,X_2$)) Connected(Out($1,X_1$),In($2,A_2$)) Connected(Out($1,A_2$),In($1,O_1$)) Connected(Out($1,A_1$),In($2,O_1$)) Connected(Out($1,X_2$),Out($1,C_1$)) Connected(Out($1,O_1$),Out($2,C_1$))

Type(
$$X_1$$
) = XOR
Type(X_2) = XOR
Type(A_1) = AND
Type(A_2) = AND
Type(O_1) = OR

Connected(In(1,C₁),In(1,X₁)) Connected(In(1,C₁),In(1,A₁)) Connected(In(2,C₁),In(2,X₁)) Connected(In(2,C₁),In(2,A₁)) Connected(In(3,C₁),In(2,X₂)) Connected(In(3,C₁),In(1,A₂))

Query is a logical formula.

- What combination of inputs would cause the sum output to be 0 and carry-bit output to be 1?
 - $\begin{array}{ll} & \exists i_1, i_2, i_3 \; \text{Signal}(\text{In}(1, C_1)) = i_1 \wedge \text{Signal}(\text{In}(2, C_1)) = i_2 \wedge \text{Signal}(\text{In}(3, C_1)) = i_3 \wedge \\ & \text{Signal}(\text{Out}(1, C_1)) = 0 \wedge \text{Signal}(\text{Out}(2, C_1)) = 1 \end{array}$

Answer is obtained as **substitutions of variables** i_1, i_2, i_3 . - $\{i_1/1, i_2/1, i_3/0\}, \{i_1/1, i_2/0, i_3/1\}, \{i_1/0, i_2/1, i_3/1\}$

Debug the knowledge base

- Some queries may give an unexpected (wrong) answer that indicates a problem in the knowledge base (wrong/missing axiom, ...).
 - A typical problem is a missing axiom claiming that constants identify different objects.

1 ≠ 0

Example:

- Assume the following claim:
 - "In summer we will teach courses CS101, CS102, CS106, and EE101"
 - so in FOL we have the facts
 - Course(CS,101), Course(CS, 102), Course(CS,106), Course(EE,101)
- How many courses will we teach in summer?
 - Something between one and infinity!!

Why?

- We usually assume having a complete information about the world, i.e., what is not explicitly said does not hold – this is called a closed world assumption (CWA).
- There is no such assumption in FOL, so we need to complete the knowledge base:

 $\begin{array}{l} \mathsf{Course}(\mathsf{d},\mathsf{n}) \Leftrightarrow \\ [\mathsf{d},\mathsf{n}] = [\mathsf{CS},\mathsf{101}] \lor [\mathsf{d},\mathsf{n}] = [\mathsf{CS},\mathsf{102}] \lor [\mathsf{d},\mathsf{n}] = [\mathsf{CS},\mathsf{206}] \lor [\mathsf{d},\mathsf{n}] = [\mathsf{EE},\mathsf{101}] \end{array}$

- We also assumed that different names (constants) denote different objects
 this is called a unique name assumption (UNA)
- Again, we need to explicitly describe that objects are different:
 - [CS,101] ≠ [CS,102], ...

© 2020 Roman Barták Department of Theoretical Computer Science and Mathematical Logic bartak@ktiml.mff.cuni.cz