Artificial Intelligence

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

We are designing knowledge-based agents - they combine and recombine information about the world with current observations to uncover hidden aspects of the world and use them for action selection.

How to represent knowledge?

- so far propositional logic
- today first-order predicate logic

Programming languages

We are looking for a formal language that can

- represent knowledge
- reason with knowledge

What about programming languages ($\mathrm{C}++$, Java, \ldots) ?

- this is the most widely used class of formal languages
- facts are described via data structures
- array world[4,4]
- programs describe how to do computations (changing data structures)
- world[2,2] \leftarrow pit
- How to infer new information from existing facts?
- ad-hoc procedures changing data structures \rightarrow a procedural approach
- a declarative approach separates knowledge and inference mechanism (moreover, inference is general and problem independent)
- How to represent knowledge such as "pit at [2,2] or [3,1]"?
- variables in computer programs have unique values

Can we use natural languages (English, Czech, ...) to

 represent knowledge?- That would be great but there is no precise formal semantics for these languages!
- Currently, natural languages are seen as a medium for communication rather than for pure representation.
- the sentence itself does not code information, it also depends on context
- "Look!"
- another problem is ambiguity of natural languages
- spring, ...
"... if thought corrupts language, language can also corrupt thought."

Propositional logic is declarative with compositional semantic that is context-independent and unambiguous. However, some properties are cumbersome (not easy to model).

- Wumpus world: there is breeze next to a pit
- $B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$
- $B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right)$

Let us take inspiration from natural languages:

- we have nouns representing objects (pit, square, ...)
- verbs express relations between the objects (is next to, ...)
- some relations are in fact functions (is a father of)

Instead of pure facts (propositional logic) we will work with objects, relations, and functions. We will also express facts about some or all objects (first-order predicate logic FOL).

Propositional logic	facts that hold or not
First-order predicate logic	facts, objects and relations that hold between them
Temporal logic	facts, objects, relations, and times when they hold
Fuzzy logic	facts with degree of truth

First-order logic: syntax

- constants John, 2, Crown, ...
- predicates Brother, $>, \ldots$
- functions
- variables

Sqrt, LeftLeg, ...
x, y, a, b, \ldots

- connectives
$\neg, \Rightarrow, \wedge, \vee, \Leftrightarrow$
- equality
=
- quantifiers $\quad \forall, \exists$

First-order logic: an example

- constants (names of objects):
- Richard, John, TheCrown

- function symbols:
- LeftLeg
- terms (another form to name objects)
- LeftLeg(John)
- predicate symbols:
- Brother, OnHead, Person, King, Crown
- atomic sentences (describe relations between objects):
- Brother(Richard,John)
- complex sentences:
- King(Richard) \vee King(John)
- \quad King (Richard) \Rightarrow King(John)
- quantifiers (help to define sentences over more objects):
- $\forall x($ King $(x) \Rightarrow \operatorname{Person(x))}$

Beware: $\forall x$ (King(x) \wedge Person(x)) !!!

- $\exists x$ (Crown(x) \wedge OnHead(x,John))

Beware: $\exists x$ (Crown(x) \Rightarrow OnHead(x,John)) !!!

- $\quad \forall x, y$ (Brother $(x, y) \Rightarrow \operatorname{Brother}(y, x))$
- $\exists x, y$ (Brother(x, Richard) \wedge Brother(y,Richard))
- $\quad \exists x, y$ (Brother(x,Richard) \wedge Brother(y,Richard) $\wedge \neg(x=y)$)

Equality says that two terms refer to the same object (Father(John) = Henry).

Universal quantifier $\forall \mathbf{x} \mathbf{P}$

$-\mathbf{P}$ is true for any object \mathbf{x}

- corresponds to a conjunction of all formulas P
- $P($ John $) \wedge P($ Richard $) \wedge P($ TheCrown $) \wedge P($ LeftLeg $($ John $)) \wedge . .$.
- Typically connected with implication (to select the objects for which the sentence holds)
- $\forall x$ King $(x) \Rightarrow$ Person (x)

Existential quantifier $\exists \mathbf{x} \mathbf{P}$

- there is an object \mathbf{x} such that \mathbf{P} holds for it
- corresponds to a disjunction of all formulas P
- $\mathrm{P}($ John $) \vee \mathrm{P}($ Richard $) \vee \mathrm{P}($ TheCrown $) \vee \mathrm{P}($ LeftLeg $($ John $)) \vee \ldots$

Relations between quantifiers

- $\forall x \forall y$ is identical to $\forall y \forall x$ $\exists x \exists y$ is identical to $\exists y \exists x$
$-\exists x \forall y$ is not identical to $\forall y \exists x \quad$ ($\exists x \forall y \operatorname{Loves}(x, y)$ vs. $\forall y \exists x \operatorname{Loves}(x, y))$
- $\forall x P$ is identical to $\neg \exists x \neg P$
$\exists x P$ is identical to $\neg \forall x \neg P$

FOL and knowledge base

Similarly to propositional logic we will use operations TELL to add a sentence to knowledge base:

- TELL(KB, King(John))
$-\operatorname{TELL}(K B, \forall x(\operatorname{King}(x) \Rightarrow \operatorname{Person}(x)))$
- We are typically adding axioms (facts as atomic sentences, definitions using \Leftrightarrow and other complex sentences) and sometime even theorems (can be deduced from axioms, but they "speed up" further inference).
and operations ASK for querying the sentences entailed by KB:
- ASK(KB, King(John))
- ASK(KB, Person(John))
- ASK(KB, ヨx Person(x))

The domain of family relationships (kinship).
Objects = people
Unary predicates: Male, Female
Binary predicates (kinship relations): Parent, Sibling, Child, Grandparent, ...
Functions: Mother, Father

Axioms:

Plain facts:
Male(Jim)
Definitions:

$$
\begin{aligned}
& \forall m, c \text { Mother }(c)=m \Leftrightarrow \text { Female }(m) \wedge \text { Parent }(m, c) \\
& \forall p, c \text { Parent }(p, c) \Leftrightarrow C h i l d(c, p) \\
& \forall x, y \text { Sibling }(x, y) \Leftrightarrow x \neq y \wedge \exists p \text { Parent }(p, x) \wedge \text { Parent }(p, y)
\end{aligned}
$$

General information (but not definition)

$$
\begin{aligned}
& \forall x(\operatorname{Person}(x) \Rightarrow \ldots) \\
& \forall x(\ldots \Rightarrow \operatorname{Person}(x))
\end{aligned}
$$

Theorems:
$\forall x, y$ Sibling $(x, y) \Leftrightarrow \operatorname{Sibling}(y, x)$

The domain for numbers can also be constructed from a tiny kernel of (Peano) axioms.

Predicate: NatNum

Constant symbol: 0
Function symbol: S (successor)
Natural numbers are defined recursively:
NatNum(0)
$\forall n \operatorname{NatNum}(n) \Rightarrow \operatorname{NatNum}(S(n))$
Axioms constraining the successor function:
$\forall n 0 \neq S(n)$
$\forall m, n \quad m \neq n \Rightarrow S(m) \neq S(n)$
Definition of addition:
$\forall m \operatorname{NatNum}(m) \Rightarrow+(0, m)=m$

$$
(m+1)+n=(m+n)+1
$$

$\forall m, n \operatorname{NatNum}(m) \wedge \operatorname{NatNum}(n) \Rightarrow+(S(m), n)=S(+(m, n))$

Knowledge engineering

Knowledge engineering deals with the process of knowledge-base construction.

A knowledge engineer is someone who:

- investigates a particular domain
- How do the things work?
- This is usually done in co-operation with a problem expert.
- learns what concepts are important in that domain
- Which will be the queries asked and what do we need to find answers?
- creates a formal representation of the objects and relations in the domain
- How to encode facts and axioms so the computer can do inference?

Knowledge-engineering process

1. identify the task

- What is the range of questions?
- Wumpus: action selection or asking about the contents of the environment?

2. assemble the relevant knowledge (knowledge acquisition)

- How does the domain actually work?
- Wumpus: what does it mean to feel stench and breeze?

3. decide on a vocabulary of predicates, functions, and constants

- How to translate domain-level concepts to logic-level names?
- Wumpus: is a pit an object or a function of the square?
- The result is an ontology of the domain (vocabulary of notions).

4. encode general knowledge about the domain

- Which axioms hold in the domain?
- Wumpus: breeze means a pit in the neighbourhood square

5. encode a description of the specific problem instance

- What is the current state of the world?
- Wumpus: the agent is at square $(1,1)$ looking to the right

6. pose queries to the inference procedure and get answers

- How does the inference procedure operate on our KB?
- Wumpus: is cell $(2,2)$ really safe?

7. debug the knowledge base

- What is missing in the knowledge base?
- Wumpus: there is a single wumpus in the cave

Digital circuits

- 1 and 2 are input bits, 3 is a carry bit
- 1 is output bit for sum, 2 is output bit for carry

What is important in the domain?

- Does the circuit add properly?
- If the inputs are known, what is the output?
- If desired output is given, what should be the input?

Different queries may require different knowledge!

- What is the cost of the circuit?
- What is the size of the circuit?
- How much energy does the circuit consume?

KE process: knowledge acquisition

What do we know about digital circuits?

- circuits are composed from wires and gates
- signals 0 and 1 flow along wires
- signals flow to the input terminals of gates
- each gate produces signal on the output terminal
- there are four types of gates: AND, OR, XOR, NOT
- circuits have input and output terminals
- wires are used just as connections between terminals
- signal delay, energy consumption, shape of gates are not assumed

What constants, predicates, and functions?

- we describe circuits, gates, terminals, signals, and connections
- gates are denoted by constants $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{A}_{1}, \ldots$
- the behaviour of each gate is determined by its type
- we will use constants AND, OR, XOR, NOT
- types of gates are described by functions $\operatorname{Type}\left(\mathbf{X}_{\mathbf{1}}\right)=\mathbf{X O R}$
- We can also use predicates $\operatorname{Type}\left(\mathrm{X}_{1}, \mathrm{XOR}\right)$ or $\operatorname{XOR}\left(\mathrm{X}_{1}\right)$
- Beware! We will also need axioms to describe uniqueness of the gate type.
- terminals of gates can also be named by constants $\left(X_{1} \mathrm{In}_{1}, \ldots\right)$, but then we need to connect them to gates
- it is better to use functions $\operatorname{In}\left(\mathbf{1}, \mathbf{X}_{\mathbf{1}}\right)$, ...
- wires can be described by predicates
- Connected(Out(1, $\left.\left.X_{1}\right), \operatorname{In}\left(1, X_{2}\right)\right), \ldots$

- Beware! We connect the terminals not the gates.
- signals at terminals are determined by a function
- Signal(g) = 1

KE example: general knowledge

If two terminals are connected, then they have the same signal.
$-\forall \mathrm{t}_{1}, \mathrm{t}_{2}$ Connected $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow \operatorname{Signal}\left(\mathrm{t}_{1}\right)=\operatorname{Signal}\left(\mathrm{t}_{2}\right)$
The signal at every terminal is either 1 or 0.
$-\forall \mathrm{t} \operatorname{Signal}(\mathrm{t})=1 \vee \operatorname{Signal}(\mathrm{t})=0$

- $1 \neq 0$

The predicate "Connected" is commutative.
$-\forall t_{1}, t_{2}$ Connected $\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) \Rightarrow$ Connected $\left(\mathrm{t}_{2}, \mathrm{t}_{1}\right)$
The gate behaviour is determined by its type.
$-\forall \mathrm{g}$ Type $(\mathrm{g})=\mathrm{OR} \Rightarrow$
$\operatorname{Signal}(\operatorname{Out}(1, g))=1 \Leftrightarrow \exists$ n $\operatorname{Signal}(\operatorname{In}(\mathrm{n}, \mathrm{g}))=1$
$-\forall \mathrm{g} \operatorname{Type}(\mathrm{g})=$ AND \Rightarrow
Signal(Out $(1, \mathrm{~g}))=0 \Leftrightarrow \exists \mathrm{n} \operatorname{Signal}(\operatorname{In}(\mathrm{n}, \mathrm{g}))=0$
$-\forall \mathrm{g} \operatorname{Type}(\mathrm{g})=\mathrm{XOR} \Rightarrow$
Signal(Out $(1, g))=1 \Leftrightarrow \operatorname{Signal}(\operatorname{In}(1, g)) \neq \operatorname{Signal}(\operatorname{In}(2, g))$
$-\forall \mathrm{g}$ Type $(\mathrm{g})=$ NOT \Rightarrow
Signal(Out $(1, g)) \neq \operatorname{Signal}(\operatorname{In}(1, g))$

KE process: specific problem instance

$\operatorname{Type}\left(\mathrm{X}_{1}\right)=\mathrm{XOR}$
$\operatorname{Type}\left(\mathrm{X}_{2}\right)=\mathrm{XOR}$
$\operatorname{Type}\left(\mathrm{A}_{1}\right)=$ AND
$\operatorname{Type}\left(\mathrm{A}_{2}\right)=$ AND
$\operatorname{Type}\left(\mathrm{O}_{1}\right)=\mathrm{OR}$

Connected(Out($\left.\left.1, X_{1}\right), \operatorname{In}\left(1, X_{2}\right)\right)$
Connected(Out($1, \mathrm{X}_{1}$), In($\left.2, \mathrm{~A}_{2}\right)$)
Connected(Out $\left.\left(1, A_{2}\right), \operatorname{In}\left(1, \mathrm{O}_{1}\right)\right)$
Connected(Out($\left.1, \mathrm{~A}_{1}\right), \operatorname{In}\left(2, \mathrm{O}_{1}\right)$) Connected(Out(1, $\left.\mathrm{X}_{2}\right)$,Out($\left.1, \mathrm{C}_{1}\right)$) Connected(Out($1, \mathrm{O}_{1}$),Out($\left.2, \mathrm{C}_{1}\right)$)

Connected($\left.\operatorname{In}\left(1, \mathrm{C}_{1}\right), \operatorname{In}\left(1, \mathrm{X}_{1}\right)\right)$
Connected $\left(\operatorname{In}\left(1, \mathrm{C}_{1}\right), \operatorname{In}\left(1, \mathrm{~A}_{1}\right)\right)$
Connected $\left(\operatorname{In}\left(2, \mathrm{C}_{1}\right), \operatorname{In}\left(2, \mathrm{X}_{1}\right)\right)$
Connected $\left(\operatorname{In}\left(2, \mathrm{C}_{1}\right), \operatorname{In}\left(2, \mathrm{~A}_{1}\right)\right)$
Connected $\left(\operatorname{In}\left(3, C_{1}\right), \operatorname{In}\left(2, X_{2}\right)\right)$
Connected($\left.\operatorname{In}\left(3, C_{1}\right), \operatorname{In}\left(1, A_{2}\right)\right)$

KE process: querying and debugging

Query is a logical formula.

- What combination of inputs would cause the sum output to be 0 and carry-bit output to be 1 ?
- $\exists i_{1}, i_{2}, i_{3} \operatorname{Signal}\left(\operatorname{In}\left(1, C_{1}\right)\right)=i_{1} \wedge \operatorname{Signal}\left(\operatorname{In}\left(2, C_{1}\right)\right)=i_{2} \wedge \operatorname{Signal}\left(\operatorname{In}\left(3, C_{1}\right)\right)=i_{3} \wedge$ $\operatorname{Signal}\left(\right.$ Out $\left.\left(1, \mathrm{C}_{1}\right)\right)=0 \wedge \operatorname{Signal}\left(\operatorname{Out}\left(2, \mathrm{C}_{1}\right)\right)=1$
Answer is obtained as substitutions of variables i_{1}, i_{2}, i_{3}.
$-\left\{\mathrm{i}_{1} / 1, \mathrm{i}_{2} / 1, \mathrm{i}_{3} / 0\right\},\left\{\mathrm{i}_{1} / 1, \mathrm{i}_{2} / 0, \mathrm{i}_{3} / 1\right\},\left\{\mathrm{i}_{1} / 0, \mathrm{i}_{2} / 1, \mathrm{i}_{3} / 1\right\}$

Debug the knowledge base

- Some queries may give an unexpected (wrong) answer that indicates a problem in the knowledge base (wrong/missing axiom, ...).
- A typical problem is a missing axiom claiming that constants identify different objects.
- $1 \neq 0$

Hidden assumptions

Example:

- Assume the following claim:
- „In summer we will teach courses CS101, CS102, CS106, and EE101"
- so in FOL we have the facts
- Course(CS,101), Course(CS, 102), Course(CS,106), Course(EE,101)
- How many courses will we teach in summer?
- Something between one and infinity!!

Why?

- We usually assume having a complete information about the world, i.e., what is not explicitly said does not hold - this is called a closed world assumption (CWA).
- There is no such assumption in FOL, so we need to complete the knowledge base:

```
Course(d,n) }
    [d,n] = [CS,101] 
```

- We also assumed that different names (constants) denote different objects - this is called a unique name assumption (UNA)
- Again, we need to explicitly describe that objects are different:
- $[C S, 101] \neq[C S, 102]$, ...

© $\mathbf{2 0 2 0}$ Roman Barták
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

