
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Knowledge Representation: First-Order Logic

We are designing knowledge-based
agents – they combine and recombine
information about the world with current
observations to uncover hidden aspects of
the world and use them for action selection.

How to represent knowledge?
– so far propositional logic
– today first-order predicate logic

Introduction

We are looking for a formal language that can
– represent knowledge
– reason with knowledge

What about programming languages (C++, Java, …)?
– this is the most widely used class of formal languages
– facts are described via data structures

• array world[4,4]
– programs describe how to do computations (changing data

structures)
• world[2,2] ¬ pit

– How to infer new information from existing facts?
• ad-hoc procedures changing data structures ® a procedural approach
• a declarative approach separates knowledge and inference mechanism

(moreover, inference is general and problem independent)
– How to represent knowledge such as “pit at [2,2] or [3,1]”?

• variables in computer programs have unique values

Programming languages

Can we use natural languages (English, Czech, ...) to
represent knowledge?

– That would be great but there is no precise formal semantics
for these languages!

– Currently, natural languages are seen as a medium for
communication rather than for pure representation.
• the sentence itself does not code information, it also depends on

context
– “Look!”

• another problem is ambiguity of natural languages
– spring, …

Natural languages

"... if thought corrupts language, language can
also corrupt thought."

George Orwell, Politics and the English Language, 1946

Propositional logic is declarative with compositional
semantic that is context-independent and unambiguous.
However, some properties are cumbersome (not easy to
model).

– Wumpus world: there is breeze next to a pit
• B1,1 Û (P1,2 Ú P2,1)
• B2,1 Û (P1,1 Ú P2,2 Ú P3,1)
• …

Let us take inspiration from natural languages:
– we have nouns representing objects (pit, square, …)
– verbs express relations between the objects (is next to, …)
– some relations are in fact functions (is a father of)

Instead of pure facts (propositional logic) we will work with
objects, relations, and functions. We will also express facts
about some or all objects (first-order predicate logic –
FOL).

Back to logic

Logical frameworks: a survey

Propositional logic facts that hold or not

First-order predicate logic facts, objects and
relations that hold
between them

Temporal logic facts, objects, relations,
and times when they
hold

Fuzzy logic facts with degree of truth

• constants John, 2, Crown, ...
• predicates Brother, >, ...
• functions Sqrt, LeftLeg, ...
• variables x, y, a, b, ...
• connectives ¬, Þ, Ù, Ú, Û
• equality =
• quantifiers ", $

First-order logic: syntax

– constants (names of objects):
• Richard, John, TheCrown

– function symbols:
• LeftLeg

– terms (another form to name objects)
• LeftLeg(John)

– predicate symbols:
• Brother, OnHead, Person, King, Crown

– atomic sentences (describe relations
between objects):
• Brother(Richard,John)

– complex sentences:
• King(Richard) Ú King(John)
• ¬King(Richard) Þ King(John)

– quantifiers (help to define sentences over
more objects):
• "x (King(x) Þ Person(x))

Beware: "x (King(x) Ù Person(x)) !!!
• $x (Crown(x) Ù OnHead(x,John))

Beware: $x (Crown(x) Þ OnHead(x,John)) !!!
• "x,y (Brother(x,y) Þ Brother(y,x))
• $x,y (Brother(x,Richard) Ù Brother(y,Richard))
• $x,y (Brother(x,Richard) Ù Brother(y,Richard) Ù ¬(x=y))

Equality says that two terms refer to the same object (Father(John) = Henry).

First-order logic: an example

CHAPTER 8
FIRST-ORDER LOGIC

Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief ∈ [0, 1]
Fuzzy logic facts with degree of truth ∈ [0, 1] known interval value

Figure 8.1 Formal languages and their ontological and epistemological commitments.

R

on headbrother

brother

person person
king

crown

Figure 8.2 A model containing five objects, two binary relations (brother and on-head), three
unary relations (person, king, and crown), and one unary function (left-leg).

Universal quantifier "x P
– P is true for any object x
– corresponds to a conjunction of all formulas P

• P(John) Ù P(Richard) Ù P(TheCrown) Ù P(LeftLeg(John)) Ù …
– Typically connected with implication (to select the objects for

which the sentence holds)
• "x King(x) Þ Person(x)

Existential quantifier $x P
– there is an object x such that P holds for it
– corresponds to a disjunction of all formulas P

• P(John) Ú P(Richard) Ú P(TheCrown) Ú P(LeftLeg(John)) Ú …

Relations between quantifiers
– "x "y is identical to "y "x
$x $y is identical to $y $x

– $x "y is not identical to "y $x ($x "y Loves(x,y) vs."y $x Loves(x,y))
– "x P is identical to ¬$x ¬P
$x P is identical to ¬"x ¬P

Quantifiers

Similarly to propositional logic we will use
operations TELL to add a sentence to knowledge
base:

– TELL(KB, King(John))
– TELL(KB,"x (King(x) Þ Person(x)))
– We are typically adding axioms (facts as atomic

sentences, definitions using Û and other complex
sentences) and sometime even theorems (can be
deduced from axioms, but they “speed up” further
inference).

and operations ASK for querying the sentences
entailed by KB:

– ASK(KB, King(John))
– ASK(KB, Person(John))
– ASK(KB, $x Person(x))

a database query

we need some inference here

in addition to YES/NO answers we
also ask for the value of x for which
the sentence holds – substitution
{x/John}

FOL and knowledge base

The kinship domain
The domain of family relationships (kinship).
Objects = people
Unary predicates: Male, Female
Binary predicates (kinship relations): Parent, Sibling, Child, Grandparent, …
Functions: Mother, Father
Axioms:

Plain facts:
Male(Jim)

Definitions:
"m,c Mother(c)=m Û Female(m) Ù Parent(m,c)
"p,c Parent(p,c) Û Child(c,p)
"x,y Sibling(x,y) Û x ≠ y Ù $p Parent(p,x) Ù Parent(p,y)

General information (but not definition)
"x (Person(x) Þ …)
"x (… Þ Person(x))

Theorems:
"x,y Sibling(x,y) Û Sibling(y,x)

The numbers domain

The domain for numbers can also be constructed from a tiny
kernel of (Peano) axioms.
Predicate: NatNum
Constant symbol: 0
Function symbol: S (successor)
Natural numbers are defined recursively:

NatNum(0)
"n NatNum(n) Þ NatNum(S(n))

Axioms constraining the successor function:
"n 0 ≠ S(n)
"m,n m≠n Þ S(m)≠S(n)

Definition of addition:
"m NatNum(m) Þ +(0,m) = m
"m,n NatNum(m) Ù NatNum(n) Þ +(S(m),n) = S(+(m,n))

(m+1)+n = (m+n)+1

Umělá inteligence I, Roman
Barták

Knowledge engineering deals with the process of
knowledge-base construction.
A knowledge engineer is someone who:

– investigates a particular domain
• How do the things work?
• This is usually done in co-operation with a problem expert.

– learns what concepts are important in that domain
• Which will be the queries asked and what do we need to find

answers?
– creates a formal representation of the objects and

relations in the domain
• How to encode facts and axioms so the computer can do

inference?

knowledge engineering Knowledge engineering

1. identify the task
– What is the range of questions?
– Wumpus: action selection or asking about the contents of the environment?

2. assemble the relevant knowledge (knowledge acquisition)
– How does the domain actually work?
– Wumpus: what does it mean to feel stench and breeze?

3. decide on a vocabulary of predicates, functions, and constants
– How to translate domain-level concepts to logic-level names?
– Wumpus: is a pit an object or a function of the square?
– The result is an ontology of the domain (vocabulary of notions).

4. encode general knowledge about the domain
– Which axioms hold in the domain?
– Wumpus: breeze means a pit in the neighbourhood square

5. encode a description of the specific problem instance
– What is the current state of the world?
– Wumpus: the agent is at square (1,1) looking to the right

6. pose queries to the inference procedure and get answers
– How does the inference procedure operate on our KB?
– Wumpus: is cell (2,2) really safe?

7. debug the knowledge base
– What is missing in the knowledge base?
– Wumpus: there is a single wumpus in the cave

Knowledge-engineering process

Digital circuits
– 1 and 2 are input bits,

3 is a carry bit
– 1 is output bit for sum,

2 is output bit for carry

What is important in the domain?
– Does the circuit add properly?
– If the inputs are known, what is the output?
– If desired output is given, what should be the input?

Different queries may require different knowledge!
– What is the cost of the circuit?
– What is the size of the circuit?
– How much energy does the circuit consume?

KE process: identify the task

70 Chapter 8 First-Order Logic

R J

R

R J

R

R J

R

R J

R

R J

R

Figure 8.5 Some members of the set of all models for a language with two constant symbols,
R and J , and one binary relation symbol, under database semantics. The interpretation of the
constant symbols is fixed, and there is a distinct object for each constant symbol.

1
2

3

1

2

X1 X2

A1

A2

O1

C1

Figure 8.6 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.

What do we know about digital circuits?
– circuits are composed from wires and gates
– signals 0 and 1 flow along wires
– signals flow to the input terminals of gates
– each gate produces signal on the output terminal
– there are four types of gates: AND, OR, XOR, NOT
– circuits have input and output terminals
– wires are used just as connections between terminals
– signal delay, energy consumption, shape of gates are

not assumed

knowledge acquisition KE process: knowledge acquisition

70 Chapter 8 First-Order Logic

R J

R

R J

R

R J

R

R J

R

R J

R

Figure 8.5 Some members of the set of all models for a language with two constant symbols,
R and J , and one binary relation symbol, under database semantics. The interpretation of the
constant symbols is fixed, and there is a distinct object for each constant symbol.

1
2

3

1

2

X1 X2

A1

A2

O1

C1

Figure 8.6 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.

What constants, predicates, and functions?
• we describe circuits, gates, terminals, signals, and

connections
– gates are denoted by constants X1, X2, A1, …
– the behaviour of each gate is determined by its type

• we will use constants AND, OR, XOR, NOT
• types of gates are described by functions Type(X1) = XOR
• We can also use predicates Type(X1,XOR) or XOR(X1)

– Beware! We will also need axioms to describe uniqueness of the gate type.
– terminals of gates can also be named by constants (X1In1, …), but

then we need to connect them to gates
• it is better to use functions In(1, X1), …

– wires can be described by predicates
• Connected(Out(1, X1),In(1, X2)), …
• Beware! We connect the terminals not the gates.

– signals at terminals are determined by a function
• Signal(g) = 1

KE process: vocabulary

70 Chapter 8 First-Order Logic

R J

R

R J

R

R J

R

R J

R

R J

R

Figure 8.5 Some members of the set of all models for a language with two constant symbols,
R and J , and one binary relation symbol, under database semantics. The interpretation of the
constant symbols is fixed, and there is a distinct object for each constant symbol.

1
2

3

1

2

X1 X2

A1

A2

O1

C1

Figure 8.6 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.

If two terminals are connected, then they have the same
signal.

– "t1,t2 Connected(t1, t2) Þ Signal(t1) = Signal(t2)
The signal at every terminal is either 1 or 0.

– "t Signal(t) = 1 Ú Signal(t) = 0
– 1 ≠ 0

The predicate “Connected” is commutative.
– "t1,t2 Connected(t1, t2) Þ Connected(t2, t1)

The gate behaviour is determined by its type.
– "g Type(g) = OR Þ

Signal(Out(1,g)) = 1 Û $n Signal(In(n,g)) = 1
– "g Type(g) = AND Þ

Signal(Out(1,g)) = 0 Û $n Signal(In(n,g)) = 0
– "g Type(g) = XOR Þ

Signal(Out(1,g)) = 1 Û Signal(In(1,g)) ≠ Signal(In(2,g))
– "g Type(g) = NOT Þ

Signal(Out(1,g)) ≠ Signal(In(1,g))

KE example: general knowledge

70 Chapter 8 First-Order Logic

R J

R

R J

R

R J

R

R J

R

R J

R

Figure 8.5 Some members of the set of all models for a language with two constant symbols,
R and J , and one binary relation symbol, under database semantics. The interpretation of the
constant symbols is fixed, and there is a distinct object for each constant symbol.

1
2

3

1

2

X1 X2

A1

A2

O1

C1

Figure 8.6 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.

Type(X1) = XOR
Type(X2) = XOR
Type(A1) = AND
Type(A2) = AND
Type(O1) = OR

Connected(Out(1,X1),In(1,X2)) Connected(In(1,C1),In(1,X1))
Connected(Out(1,X1),In(2,A2)) Connected(In(1,C1),In(1,A1))
Connected(Out(1,A2),In(1,O1)) Connected(In(2,C1),In(2,X1))
Connected(Out(1,A1),In(2,O1)) Connected(In(2,C1),In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1),In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1),In(1,A2))

KE process: specific problem instance

70 Chapter 8 First-Order Logic

R J

R

R J

R

R J

R

R J

R

R J

R

Figure 8.5 Some members of the set of all models for a language with two constant symbols,
R and J , and one binary relation symbol, under database semantics. The interpretation of the
constant symbols is fixed, and there is a distinct object for each constant symbol.

1
2

3

1

2

X1 X2

A1

A2

O1

C1

Figure 8.6 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.

Query is a logical formula.
• What combination of inputs would cause the sum output

to be 0 and carry-bit output to be 1?
– $i1,i2,i3 Signal(In(1,C1)) = i1 Ù Signal(In(2,C1)) = i2 Ù Signal(In(3,C1)) = i3 Ù

Signal(Out(1,C1)) = 0 Ù Signal(Out(2,C1)) = 1

Answer is obtained as substitutions of variables i1,i2,i3.
– {i1/1, i2/1, i3/0}, {i1/1, i2/0, i3/1}, {i1/0, i2/1, i3/1}

Debug the knowledge base
• Some queries may give an unexpected (wrong) answer

that indicates a problem in the knowledge base
(wrong/missing axiom, …).
– A typical problem is a missing axiom claiming

that constants identify different objects.
• 1 ≠ 0

KE process: querying and debugging

Example:
• Assume the following claim:

– „In summer we will teach courses CS101, CS102, CS106, and EE101“
– so in FOL we have the facts

• Course(CS,101), Course(CS, 102), Course(CS,106), Course(EE,101)
• How many courses will we teach in summer?

– Something between one and infinity!!

Why?
– We usually assume having a complete information about the world, i.e.,

what is not explicitly said does not hold – this is called a closed world
assumption (CWA).

– There is no such assumption in FOL, so we need to complete the
knowledge base:

Course(d,n) Û
[d,n] = [CS,101] Ú [d,n] = [CS,102] Ú [d,n] = [CS,206] Ú [d,n] = [EE,101]

– We also assumed that different names (constants) denote different objects
– this is called a unique name assumption (UNA)

– Again, we need to explicitly describe that objects are different:
• [CS,101] ¹ [CS,102], …

Hidden assumptions

© 2020 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

