Artificial Intelligence

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Knowledge Representation: Propositional Logic

Starting today we will design agents that can form **representations** of a complex world, use a process of **inference** to derive new information about the world, and use that information to **deduce** what to do.

They are called **knowledge-based agents** – combine and recombine information about the world with current observations to uncover hidden aspects of the world and use them for action selection.

We need to know:

- how to represent knowledge?
- how to **reason** over that knowledge?

A knowledge-based agent uses a **knowledge base** – a set of sentences expressed in a given language – that can be updated by the operation TELL and can be queried about what is known using the operation ASK.

Answers to queries may involve **inference** – that is deriving new sentences from old sentences (inserted using the TELL operations).

The Wumpus world: a running example

A cave consisting of rooms connected by passageways, inhabited by the terrible **Wumpus**, a beast that eats anyone who enters its room, containing rooms with bottomless **pits** that will trap anyone, and a room with a heap of **gold**.

- The agent will perceive a **Stench** in the directly (not diagonally) adjacent squares to the square containing the Wumpus.
- In the squares directly adjacent to a pit, the agent will perceive a **Breeze**.
- In the square where the gold is, the agent will perceive a **Glitter**.
- When an agent walks into a wall, it will perceive a **Bump**.
- The Wumpus can be shot by an agent, but the agent has only one arrow.
 - Killed Wumpus emits a woeful **Scream** that can be perceived anywhere in the cave.

Performance measure

- +1000 points for climbing out of the cave with the gold
- -1000 for falling into a pit or being eaten by the Wumpus
- -1 for each action taken
- -10 for using up the arrow

Environment

- 4 \times 4 grid of rooms, the agent starts at [1,1] facing to the right

Sensors

– Stench, Breeze, Glitter, Bump, Scream

Actuators

- MoveForward, TurnLeft, TurnRight
- Grab, Shoot, Climb

The Wumpus world: environment

Fully observable?

NO, the agent perceives just its direct neighbour (partially observable)

Deterministic?

– YES, the result of action is given

Episodic?

– NO, the order of actions is important (sequential)

Static?

– YES, the Wumpus and pits do not move

Discrete?

– YES

One agent?

 YES, the Wumpus does not act as an agent, it is merely a property of environment

The Wumpus world: possible models

Assume a situation when there is no percept at [1,1], we went right to [2,1] and feel Breeze there.

- For pit detection we have 8
 (=2³) possible models (states of the neighbouring world).
- Only three of these models correspond to our knowledge base, the other models conflict the observations:
 - no percept at [1,1]
 - Breeze at [2,1]

Let us ask whether the room [1,2] is safe.

Is information $\alpha_1 = [1,2]$ is safe" entailed by our representation?

- we compare models for KB and for α_1
- every model of KB is also a model for α_1 so α_1 is entailed by KB

And what about the room [2,2]?

- we compare models for KB and for α_2
- some models of KB are not models of α_2
- α₂ is not entailed by KB and we do not know for sure if room [2,2] is safe

How to implement inference in general?

We will use **propositional logic**. Sentences are propositional expressions and a knowledge base is a conjunction of these expressions.

- **Propositional variables** describe the properties of the world
 - $P_{i,j} = true$ if there is a pit at [i, j]
 - **B**_{i,j} = **true** if the agent perceives Breeze at [i, j]

Propositional formulas describe

- known information about the world
 - ¬ **P**_{1,1} no pit at [1, 1] (we are there)
- general knowledge about the world (for example, Breeze means a pit in some neighbouring room)
 - $\mathbf{B}_{1,1} \Leftrightarrow (\mathbf{P}_{1,2} \lor \mathbf{P}_{2,1})$
 - $\mathbf{B}_{2,1} \Leftrightarrow (\mathbf{P}_{1,1} \lor \mathbf{P}_{2,2} \lor \mathbf{P}_{3,1})$
 - ...
- observations
 - $\neg \mathbf{B}_{1,1}$ no Breeze at [1, 1]
 - **B_{2,1}** Breeze at [2, 1]
- We will be using **inference** for propositional logic.

Syntax defines the allowable sentences.

- a propositional variable (and constants true and false) is an (atomic) sentence
- two sentences can be connected via logical connectives \neg , \land , \lor , \Rightarrow , \Leftrightarrow to get a (complex) sentence

Semantics defines the rules for determining the truth of a sentence with respect to a particular model.

- model is an assignment of truth values to all propositional variables
- an atomic sentence P is true in any model containing P=true
- semantics of complex sentences is given by the truth table

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false false	false trave	true	false false	false	true	true false
$false \ true$	true false	true false	$false \\ false$	true true	$true \\ false$	$false \\ false$
true	true	false	true	true	true	true

M is a **model** of sentence α , if α is true in M.

– The set of models for α is denoted M(α).

Entailment: KB $\models \alpha$

means that α is a logical consequence of KB

– KB entails α iff M(KB) \subseteq M(α)

We are interested in **inference methods**, that can find/verify consequences of KB.

- KB $\models_i \alpha$ means that algorithm i infers sentence α from KB
- the algorithm is **sound** iff KB $\models_i \alpha$ implies KB $\models \alpha$
- the algorithm is **complete** iff KB $\models \alpha$ implies KB $\models_i \alpha$

There are basically two classes of inference algorithms.

– model checking

- based on enumeration of a truth table
- Davis-Putnam-Logemann-Loveland (DPLL)
- local search (minimization of conflicts)

– inference rules

- theorem proving by applying inference rules
- a resolution algorithm

Enumeration

- We simply explore all the models using the generate and test method.
- Each model of KB must be also a model for $\alpha.$

								\sim
$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	true							
false	false	false	false	false	false	true	false	true
:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	true	\underline{true}
false	true	false	false	false	true	false	\underline{true}	\underline{true}
false	true	false	false	false	true	true	\underline{true}	\underline{true}
false	true	false	false	true	false	false	false	true
:	:	:	:	:	:	:	:	:
true	false	false						

The Wumpus world

pit at [1,2]

 $\alpha_1 = [1,2]$ is safe" = "

 $\neg P_{1,2}$ " is entailed by KB, as

of KB and hence there is no

 $P_{1,2}$ is always false for models

Sentence (formula) is **satisfiable** if it is true in, or satisfied by, *some* model. *Example*: $A \lor B$, C

Sentence (formula) is **unsatisfiable** if it is not true in *any* model.

Example: $A \land \neg A$

Entailment can then be implemented as checking satisfiability as follows: **KB** $\models \alpha$ if and only if **(KB** $\land \neg \alpha$) is unsatisfiable.

- proof by **refutation**
- proof by contradiction

Verifying if α is entailed by KB can be implemented as the satisfiability problem for the formula (KB $\wedge \neg \alpha$).

Usually the formulas are in a conjunctive normal form (CNF)

- literal is an atomic variable or its negation
- **clause** is a disjunction of literals
- formula in CNF is a conjunction of clauses

Example: $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$

Each propositional sentence (formula) can be represented in CNF.

 $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$ $(\mathsf{B}_{1,1} \Rightarrow (\mathsf{P}_{1,2} \lor \mathsf{P}_{2,1})) \land ((\mathsf{P}_{1,2} \lor \mathsf{P}_{2,1}) \Rightarrow \mathsf{B}_{1,1})$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1})$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})$ $(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$

Davis, Putnam, Logemann, Loveland

a sound and complete algorithm for verifying satisfiability of formulas in a CNF (finds its model)

Hill climbing merged with random walk

- minimizing the number of conflict (false) clauses
- one local step corresponds to swapping a value of the selected variable
- sound, but incomplete algorithm

```
function WALKSAT(clauses, p, max_flips) returns a satisfying model or failure

inputs: clauses, a set of clauses in propositional logic

p, the probability of choosing to do a "random walk" move, typically around 0.5

max_flips, number of value flips allowed before giving up

model \leftarrow a random assignment of true/false to the symbols in clauses

for each i = 1 to max_flips do

if model satisfies clauses then return model

clause \leftarrow a randomly selected clause from clauses that is false in model

if RANDOM(0, 1) \leq p then

flip the value in model of a randomly selected symbol from clause

else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure
```

WalkSAT vs. DPLL

The resolution algorithm proves unsatisfiability of the formula (KB $\land \neg \alpha$) converted to a CNF. It uses a **resolution rule** that resolves two clauses with complementary literals (P and \neg P) to produce a new clause:

$$\frac{l_1 \vee \ldots \vee l_k}{l_1 \vee \ldots \vee l_{j-1} \vee l_{j+1} \vee \ldots \vee l_k \vee m_1 \vee \ldots \vee m_{j-1} \vee m_{j+1} \vee \ldots \vee m_n}$$

where l_i and m_j are the complementary literals

The algorithm stops when

- no other clause can be derived (then $\neg KB \models \alpha$)
- an empty clause was obtained (then KB $\models \alpha$)

Sound and complete algorithm

Resolution algorithm

Many knowledge bases contain clauses of a special form – so called **Horn clauses**.

- Horn clause is a disjunction of literals of which at most one is positive *Example:* $C \land (\neg B \lor A) \land (\neg C \lor \neg D \lor B)$
- Such clauses are typically used in knowledge bases with sentences in the form of an implication (for example Prolog without variables)

Example: $C \land (B \Longrightarrow A) \land (C \land D \Longrightarrow B)$

We will solve the problem if a given propositional symbol – **query** – can be derived from the knowledge base consisting of Horn clauses only.

- we can use a special variant of the resolution algorithm running in linear time with respect to the size of KB
- forward chaining (from facts to conclusions)
- backward chaining (from a query to facts)

From the known facts we derive all possible consequences using the Horn clauses until there are no new facts or we prove the query.

This is a **data-driven method**.

Forward chaining in example

The query is decomposed (via the Horn clause) to sub-queries until the facts from KB are obtained.

Goal-driven reasoning.

The Wumpus world: knowledge base

For simplicity we will represent only the "physics" of the Wumpus world.

- we know that
 - ¬P_{1,1}

we also know why and where breeze appears

•
$$B_{x,y} \Leftrightarrow (P_{x,y+1} \lor P_{x,y-1} \lor P_{x+1,y} \lor P_{x-1,y})$$

- and why a smell is generated
 - $S_{x,y} \Leftrightarrow (W_{x,y+1} \lor W_{x,y-1} \lor W_{x+1,y} \lor W_{x-1,y})$
- and finally one "hidden" information that there is a single Wumpus in the world

•
$$W_{1,1} \vee W_{1,2} \vee ... \vee W_{4,4}$$

•
$$\neg W_{1,1} \lor \neg W_{1,2}$$

•
$$\neg W_{1,1} \lor \neg W_{1,3}$$

• ...

We can also include information about the **agent**.

- where the agent is
 - L_{1,1}
 - FacingRight¹
- and what happens when agent performs actions
 - $L_{x,y}^{t} \wedge \text{FacingRight}^{t} \wedge \text{Forward}^{t} \Longrightarrow L_{x+1,y}^{t+1}$
 - we need an upper bound for the number of steps and still it will lead to a huge number of formulas

The Wumpus world: a hybrid agent

© 2020 Roman Barták Department of Theoretical Computer Science and Mathematical Logic bartak@ktiml.mff.cuni.cz