Artificial Intelligence

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Starting today we will design agents that can form representations of a complex world, use a process of inference to derive new information about the world, and use that information to deduce what to do.

They are called knowledge-based agents combine and recombine information about the world with current observations to uncover hidden aspects of the world and use them for action selection.

We need to know:

- how to represent knowledge?
- how to reason over that knowledge?

A knowledge-based agent uses a knowledge base - a set of sentences expressed in a given language - that can be updated by the operation TELL and can be queried about what is known using the operation ASK.
Answers to queries may involve inference - that is deriving new sentences from old sentences (inserted using the TELL operations).

The Wumpus world: a running example

A cave consisting of rooms connected by passageways, inhabited by the terrible Wumpus, a beast that eats anyone who enters its room containing rooms with bottomless pits that will trap anyone, and a room with a heap of gold.

- The agent will perceive a Stench in the directly (not diagonally) adjacent squares to the square containing the Wumpus.

- In the squares directly adjacent to a pit, the agent will perceive a Breeze.
- In the square where the gold is, the agent will perceive a Glitter.
- When an agent walks into a wall, it will perceive a Bump.
- The Wumpus can be shot by an agent, but the agent has only one arrow.
- Killed Wumpus emits a woeful Scream that can be perceived anywhere in the cave.

The Wumpus world: agent's view

Performance measure

-+1000 points for climbing out of the cave with the gold

- -1000 for falling into a pit or being eaten by the Wumpus
- -1 for each action taken
- -10 for using up the arrow

Environment

-4×4 grid of rooms, the agent starts at [1,1] facing to the right

Sensors

- Stench, Breeze, Glitter, Bump, Scream

Actuators

- MoveForward, TurnLeft, TurnRight
- Grab, Shoot, Climb

The Wumpus world: environment

Fully observable?

- NO, the agent perceives just its direct neighbour (partially observable)

Deterministic?

- YES, the result of action is given

Episodic?

- NO, the order of actions is important (sequential)

Static?

- YES, the Wumpus and pits do not move

Discrete?

- YES

One agent?

- YES, the Wumpus does not act as an agent, it is merely a property of environment

The Wumpus world: the quest for gold

A $=$ Agent
G = Glitter, Gold
OK = Safe square
P = Pit
$\mathbf{v}=$ Visited
W = Wumpus
2.

some glitter there \Rightarrow I am rich ©
3.

\begin{tabular}{|c|c|c|c|}
\hline 1,4 \& 2,4 \& 3,4 \& 4,4

\hline $$
{ }^{1,3} \mathbf{W}!
$$ \& 2,3 \& 3,3 \& 4,3

\hline $$
\begin{array}{|c|}
\hline 1,2 \\
\hline \mathbf{A} \\
\mathbf{S K}
\end{array}
$$ \& 2,2

OK \& 3,2 \& 4,2

\hline $$
\begin{array}{|cc|}
\hline 1,1 & \\
& \mathbf{V} \\
\mathbf{O K}
\end{array}
$$ \& \[

$$
\begin{array}{|cc}
2,1 & \mathbf{B} \\
\mathbf{V} \\
\mathbf{O K}
\end{array}
$$
\] \& ${ }^{3,1} \mathbf{~ P}$ \& 4,1

\hline
\end{tabular}

5.

1,4	${ }^{2,4} \mathbf{P}$?	3,4	4,4
${ }^{1,3} \mathbf{W}$!	$\begin{array}{\|c} 2,3 \\ \underset{\mathbf{S} \mathbf{B}}{\mathbf{B}} \\ \hline \end{array}$	${ }^{3,3} \mathbf{P}$?	4,3
$\begin{array}{\|rc} 1,2 & \mathbf{S} \\ \mathbf{V} \\ \mathbf{O K} \end{array}$	$\begin{array}{\|cc\|} \hline 2,2 & \\ & \begin{array}{l} \text { V. } \\ \text { OK } \end{array} \\ \hline \end{array}$	3,2	4,2
$\begin{array}{\|cc\|} \hline 1,1 & \\ & \mathbf{V} \\ \mathbf{O K} \end{array}$	$\begin{array}{\|cc\|} \hline 2,1 & \\ & \mathbf{B} \\ \mathbf{V} \\ \mathbf{O K} \end{array}$	${ }^{3,1} \mathbf{P}$!	4,1

Assume a situation when there is no percept at [1,1], we went right to $[2,1]$ and feel Breeze there.

?	?	
	-	?

- For pit detection we have 8 ($=2^{3}$) possible models (states of the neighbouring world).
- Only three of these models correspond to our knowledge base, the other models conflict the observations:
- no percept at $[1,1]$
- Breeze at $[2,1]$

The Wumpus world: some consequences

Let us ask whether the room
[1,2] is safe.
Is information $\alpha_{1}=$ "[1,2] is safe" entailed by our representation?

- we compare models for KB and for α_{1}
- every model of KB is also a model for α_{1} so α_{1} is entailed by KB

And what about the room [2,2]?

- we compare models for KB and for α_{2}
- some models of KB are not models of α_{2}
- α_{2} is not entailed by KB and we do not know for sure if room $[2,2]$ is safe

How to implement inference in general?

We will use propositional logic. Sentences are propositional expressions and a knowledge base is a conjunction of these expressions.

- Propositional variables describe the properties of the world
- $\mathbf{P}_{\mathrm{i}, \mathrm{j}}=$ true if there is a pit at $[\mathrm{i}, \mathrm{j}]$
- $B_{i, j}=$ true if the agent perceives Breeze at $[i, j]$
- Propositional formulas describe
- known information about the world
- $\neg \mathbf{P}_{1,1}$ no pit at $[1,1]$ (we are there)
- general knowledge about the world (for example, Breeze means a pit in some neighbouring room)
- $\mathbf{B}_{1,1} \Leftrightarrow \quad\left(\mathbf{P}_{1,2} \vee \mathbf{P}_{2,1}\right)$
- $\mathbf{B}_{2,1} \Leftrightarrow\left(\mathbf{P}_{1,1} \vee \mathbf{P}_{2,2} \vee \mathbf{P}_{3,1}\right)$
- observations
- $\neg \mathbf{B}_{1,1}$ no Breeze at $[1,1]$
- $\mathbf{B}_{2,1} \quad$ Breeze at $[2,1]$
- We will be using inference for propositional logic.

Syntax defines the allowable sentences.

- a propositional variable (and constants true and false) is an (atomic) sentence
- two sentences can be connected via logical connectives \neg, \wedge, $v, \Rightarrow, \Leftrightarrow$ to get a (complex) sentence
Semantics defines the rules for determining the truth of a sentence with respect to a particular model.
- model is an assignment of truth values to all propositional variables
- an atomic sentence P is true in any model containing $P=$ true
- semantics of complex sentences is given by the truth table

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Propositional logic: entailment and inference

M is a model of sentence α, if α is true in M.

- The set of models for α is denoted $M(\alpha)$.

Entailment: KB $=\alpha$ means that α is a logical consequence of KB

- KB entails α iff $M(K B) \subseteq M(\alpha)$

We are interested in inference methods, that can find/verify consequences of KB.

- KB $\vdash_{i} \alpha$ means that algorithm i infers sentence α from KB
- the algorithm is sound iff $K B \vdash_{i} \alpha$ implies $K B \neq \alpha$
- the algorithm is complete iff $K B \neq \alpha$ implies $K B F_{i} \alpha$

There are basically two classes of inference algorithms.

- model checking
- based on enumeration of a truth table
- Davis-Putnam-Logemann-Loveland (DPLL)
- local search (minimization of conflicts)
- inference rules
- theorem proving by applying inference rules
- a resolution algorithm
function TT-Entails? $(K B, \alpha)$ returns true or false
inputs: $K B$, the knowledge base, a sentence in propositional logic α, the query, a sentence in propositional logic
symbols \leftarrow a list of the proposition symbols in $K B$ and α
return TT-CHECK-ALL (KB, α, symbols, $\})$
function TT-CHECK-ALL(KB, α, symbols, model) returns true or false if Empty? (symbols) then
if PL-TruE? ($K B$, model) then return PL-TruE? (α, model)
else return true // when KB is false, always return true
else
$P \leftarrow$ FIRST(symbols)
rest $\leftarrow \operatorname{REST}$ (symbols)
return (TT-CHECK-ALL $(K B, \alpha$, rest, model $\cup\{P=$ true $\}$) and
TT-CHECK-ALL $(K B, \alpha$, rest, model $\cup\{P=$ false $\}))$

The Wumpus world

$\alpha_{1}="[1,2]$ is safe" $=$
$\neg P_{1,2}$ " is entailed by $K B$, as $P_{1,2}$ is always false for models of $K B$ and hence there is no pit at $[1,2]$

- We simply explore all the models using the generate and test method.
- Each model of KB must be also a model for α.

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_{1}
false	true							
false	false	false	false	false	false	true	false	true
\vdots								
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	true	true
false	true	false	false	false	true	false	true	true
false	true	false	false	false	true	true	true	true
false	true	false	false	true	false	false	false	true
\vdots								
true	false	false						

Sentence (formula) is satisfiable if it is true in, or satisfied by, some model.
Example: $\mathrm{A} \vee \mathrm{B}, \mathrm{C}$
Sentence (formula) is unsatisfiable if it is not true in any model.
Example: $\mathrm{A} \wedge \neg \mathrm{A}$
Entailment can then be implemented as checking satisfiability as follows:
$K B=\alpha$ if and only if $(K B \wedge \neg \alpha)$ is unsatisfiable.

- proof by refutation
- proof by contradiction

Verifying if α is entailed by KB can be implemented as the satisfiability problem for the formula ($K B \wedge \neg \alpha$).

Usually the formulas are in a conjunctive normal form (CNF)

- literal is an atomic variable or its negation
- clause is a disjunction of literals
- formula in CNF is a conjunction of clauses

Example: $(\mathrm{A} \vee \neg \mathrm{B}) \wedge(\mathrm{B} \vee \neg \mathrm{C} \vee \neg \mathrm{D})$
Each propositional sentence (formula) can be represented in CNF.

Davis, Putnam, Logemann, Loveland
 - a sound and complete algorithm for verifying satisfiability of formulas in a CNF (finds its model)

Hill climbing merged with random walk

- minimizing the number of conflict (false) clauses
- one local step corresponds to swapping a value of the selected variable
- sound, but incomplete algorithm
function WALKSAT(clauses, p, max_flips) returns a satisfying model or failure inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move, typically around 0.5
max_flips, number of value flips allowed before giving up
model \leftarrow a random assignment of truelfalse to the symbols in clauses
for each $i=1$ to max_flips do
if model satisfies clauses then return model
clause \leftarrow a randomly selected clause from clauses that is false in model
if $\operatorname{RANDOM}(0,1) \leq p$ then
flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses
return failure

Random 3-SAT problem with 50 variables

- each clause consists of three different variables
- probability of using a negated symbol is 50%

The graph shows medians of runtime necessary to solve the problems (for 100 problems)

- DPLL is pretty efficient
- WalkSAT is even faster

Resolution principle

The resolution algorithm proves unsatisfiability of the formula ($K B \wedge \neg \alpha$) converted to a CNF. It uses a resolution rule that resolves two clauses with complementary literals (P and $\neg \mathrm{P}$) to produce a new clause:

$$
\frac{\mathfrak{C}_{1} \vee \ldots \vee \mathscr{C}_{\mathrm{k}} \quad m_{1} \vee \ldots \vee m_{\mathrm{n}}}{\mathfrak{l}_{1} \vee \ldots \vee \mathfrak{l}_{\mathrm{i}-1} \vee \mathfrak{l}_{\mathrm{i}+1} \vee \ldots \vee \mathscr{l}_{\mathrm{k}} \vee m_{1} \vee \ldots \vee m_{\mathrm{j}-1} \vee m_{\mathrm{j}+1} \vee \ldots \vee m_{\mathrm{n}}}
$$

where \mathscr{C}_{i} and m_{j} are the complementary literals
The algorithm stops when

- no other clause can be derived (then $\neg \mathrm{KB}=\alpha$)
- an empty clause was obtained (then $K B=\alpha$)

Sound and complete algorithm

Resolution algorithm

function PL-RESOLUTION $(K B, \alpha)$ returns true or false
inputs: $K B$, the knowledge base, a sentence in propositional logic α, the query, a sentence in propositional logic
clauses \leftarrow the set of clauses in the CNF representation of $K B \wedge \neg \alpha$
new $\leftarrow\}$
while true do
for each pair of clauses C_{i}, C_{j} in clauses do

For each pair of clauses with complementary literals produce all possible resolvents. They are added to KB for next resolution.
resolvents $\leftarrow \mathrm{PL}-\operatorname{ReSOLVE}\left(C_{i}, C_{j}\right)$
if resolvents contains the empty clause then return true
new \leftarrow new \cup resolvents
if new \subseteq clauses then return false clauses \leftarrow clauses \cup new
an empty clause corresponds to false (an empty disjunction)
\rightarrow the formula is unsatisfiable

```
we reached a fixed point (no new clauses added)
    formula is satisfiable and we can find its model
How to find a model?
    take the symbols Pi
                    if there is a clause with }\neg\mp@subsup{P}{i}{}\mathrm{ such that the other literals are false
                    with the current instantiation of }\mp@subsup{P}{1}{},\ldots,\mp@subsup{P}{i-1}{},\mathrm{ then }\mp@subsup{P}{i}{}=\mathrm{ false
                    otherwise P}\mp@subsup{P}{i}{}=\mathrm{ true
```


Horn clauses

Many knowledge bases contain clauses of a special form - so called Horn clauses.

- Horn clause is a disjunction of literals of which at most one is positive

Example: $C \wedge(\neg B \vee A) \wedge(\neg C \vee \neg D \vee B)$

- Such clauses are typically used in knowledge bases with sentences in the form of an implication (for example Prolog without variables)
Example: $C \wedge(B \Rightarrow A) \wedge(C \wedge D \Rightarrow B)$
We will solve the problem if a given propositional symbol query - can be derived from the knowledge base consisting of Horn clauses only.
- we can use a special variant of the resolution algorithm running in linear time with respect to the size of KB
- forward chaining (from facts to conclusions)
- backward chaining (from a query to facts)

From the known facts we derive all possible consequences using the Horn clauses until there are no new facts or we prove the query.

This is a data-driven method.

```
function PL-FC-ENTAILS?( }KB,q) returns true or fals
    inputs: }KB\mathrm{ , the knowledge base, a set of propositional definite clauses
        q, the query, a proposition symbol
    count }\leftarrow\textrm{a}\mathrm{ table, where count [c] is initially the number of symbols in clause c's premise
    inferred }\leftarrow\mathrm{ a table, where inferred [s] is initially false for all symbols
    queue}\leftarrow\mathrm{ a queue of symbols, initially symbols known to be true in KB
    while queue is not empty do
        p\leftarrow\operatorname{POP(queue)}
        if }p=q\mathrm{ then return true
        if inferred [ }p]=\mathrm{ false then
            inferred [p]}\leftarrow\mathrm{ true
            for each clause c in }KB\mathrm{ where p is in c.PREMISE do
            decrement count[c]
            if count[c]=0 then add c.CONCLUSION to queue
    return false
```

For each clause we keep the number of not yet verified premises that is decreased when we infer a new fact. The clause with zero unverified premises gives a new fact (from the head of the clause).

[^0]
Forward chaining in example

Backward chaining

The query is decomposed (via the Horn clause) to sub-queries until the facts from KB are obtained.
Goal-driven reasoning.

The Wumpus world: knowledge base

For simplicity we will represent only the "physics" of the Wumpus world.

- we know that
- $\neg \mathrm{P}_{1,1}$
- $\neg \mathrm{W}_{1,1}$
- we also know why and where breeze appears
- $B_{x, y} \Leftrightarrow\left(P_{x, y+1} \vee P_{x, y-1} \vee P_{x+1, y} \vee P_{x-1, y}\right)$
- and why a smell is generated
- $\mathrm{S}_{\mathrm{x}, \mathrm{y}} \Leftrightarrow\left(\mathrm{W}_{\mathrm{x}, \mathrm{y}+1} \vee \mathrm{~W}_{\mathrm{x}, \mathrm{y}-1} \vee \mathrm{~W}_{\mathrm{x}+1, \mathrm{y}} \vee \mathrm{W}_{\mathrm{x}-1, \mathrm{y}}\right)$
- and finally one "hidden" information that there is a single Wumpus in the world
- $W_{1,1} \vee W_{1,2} \vee \ldots \vee W_{4,4}$
- $\neg \mathrm{W}_{1,1} \vee \neg \mathrm{~W}_{1,2}$
- $\neg \mathrm{W}_{1,1} \vee \neg \mathrm{~W}_{1,3}$
- ...

We can also include information about the agent.

- where the agent is
- $\mathrm{L}_{1,1}$
- FacingRight ${ }^{1}$
- and what happens when agent performs actions
- $\mathrm{L}_{\mathrm{x}, \mathrm{y}}^{\mathrm{t}} \wedge$ FacingRight ${ }^{\mathrm{t}} \wedge$ Forward $^{\mathrm{t}} \Rightarrow \mathrm{L}^{\mathrm{t}+1}{ }_{\mathrm{x}+1, \mathrm{y}}$
- we need an upper bound for the number of steps and still it will lead to a huge number of formulas

The Wumpus world: a hybrid agent

function HYBRID-WUMPUS-AGENT (percept) returns an action

inputs: percept, a list, [stench,breeze,glitter,bump,scream]
persistent: $K B$, a knowledge base, initially the atemporal "wumpus physics"
t, a counter, initially 0 , indicating time
plan, an action sequence, initially empty plan, an action sequence, initially empty

Add information about current observation

Tell($K B$, Make-Percept-Sentence (percept, t))
TELL the $K B$ the temporal "physics" sentences for time t
safe $\leftarrow\left\{[x, y]: \operatorname{AsK}\left(K B, O K_{x, y}^{t}\right)=\right.$ true $\}$
if $\operatorname{AsK}\left(K B\right.$, Glitter $\left.^{t}\right)=$ true then plan $\leftarrow[$ Grab $]+$ PLAN-RoUTE $($ current,$\{[1,1]\}$, safe $)+[$ Climb $]$
if plan is empty then
unvisited $\leftarrow\left\{[x, y]: \operatorname{Ask}\left(K B, L_{x, y}^{t^{\prime}}\right)=\right.$ false for all $\left.t^{\prime} \leq t\right\}$ plan \leftarrow PLAN-RoUTE (current, unvisited \cap safe, safe)
if plan is empty and $\operatorname{AsK}\left(K B\right.$, HaveArrow $\left.^{t}\right)=$ true then possible_wumpus $\leftarrow\left\{[x, y]: \operatorname{Ask}\left(K B, \neg W_{x, y}\right)=\right.$ false $\}$ plan \leftarrow PLAN-SHOT (current, possible_wumpus, safe)
if plan is empty then // no choice but to take a risk not_unsafe $\leftarrow\left\{[x, y]: \operatorname{Ask}\left(K B, \neg O K_{x, y}^{t}\right)=\right.$ false $\}$ plan \leftarrow PLAN-ROUTE(current, unvisited \cap not_unsafe, safe)
if plan is empty then
plan $\leftarrow \operatorname{PLAN}-\operatorname{RoUTE}($ current, $\{[1,1]\}$, safe $)+[$ Climb $]$
action $\leftarrow \operatorname{Pop}(p l a n)$
Tell(KB, Make-Action-Sentence(action, t))
$t \leftarrow t+1$
return action

© $\mathbf{2 0 2 0}$ Roman Barták
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

[^0]: - sound and complete algorithm for Horn clauses
 - linear time complexity in the size of knowledge base

