
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Constraint Satisfaction

Introduction

So far we assumed the world states as blackboxes
(no internal structure was assumed) accessed via:

– successor function
– goal test
– heuristic function (distance to goal)

Today we will look inside the states:
– representing problems as constraint satisfaction

problems (CSPs)
• state has a structure that can be exploited during problem

solving

– general constraint satisfaction techniques
• depth-first search combined with inference via constraint

propagation

3

Logic-based puzzle, whose
goal is to enter digits 1-9 in
cells of 9´9 table in such a way,
that no digit appears twice
or more in every row, column,
and 3´3 sub-grid.

A bit of history
1979: first published in New York

under the name „Number Place“
1986: became popular in Japan

Sudoku – from Japanes "Sudji wa dokushin ni kagiru"
"the numbers must be single" or "the numbers must occur once"

2005: became popular in the western world

Sudoku?

Solving Sudoku

How to find out which digit to fill in?
• Use information that each

digit appears exactly once
in each row and column.

What if this is not enough?
• Look at columns

or combine information
from rows and columns

Sudoku: One More Step

If neither rows nor columns
provide enough information,
we can note allowed digits in
each cell.

The position of a digit can be
inferred from positions of
other digits and restrictions
of Sudoku that each digit
appears once in a column
(row, sub-grid).

Solving Sudoku in general

Each cell can be
represented as a
variable
with values taken from
a domain {1,…,9}.

All pairs of variables in a row, in a column,
and in a sub-grid are connected by
inequality constraints.
Values violating any constraint are
filtered out.

Such a formulation of problem is called
a constraint satisfaction problem.

CSP

Constraint satisfaction problem consists of:
– a finite set of variables

• describe some features of the world state that we are
looking for, for example position of queens at a chessboard

– domains – finite sets of values for each variable
• describe “options” that are available, for example the rows

for queens
• sometimes, there is a single common “superdomain” and

domains for particular variables are defined via unary
constraints

– a finite set of constraints
• a constraint is a relation over a subset of variables

for example rowA ¹ rowB
• a constraint can be defined in extension (a set of tuples

satisfying the constraint) or using a formula (see above)

CSP: a working example

Find colours for states (red, blue,
green) such that no neighbours
are coloured by the same colour.

Constraint model
• variables: {WA, NT, Q, NSW, V, SA, T}
• superdomain: {r, b, g}
• constraints: WA ≠ NT, WA ≠ SA ...

Can also be represented as a
constraint network (nodes =
variables, arc = constraints)

Problem solution
WA = r, NT = g, Q = r, NSW = g,
V = r, SA = b, T = g

Terminology

State is a partial assignment of values to variables.

A consistent state is an assignment that
does not violate any constraint.

A complete state is a state where each variable is
assigned to some value.

The goal is a complete consistent state.

Sometimes, there is an objective function defined over
the variables that evaluates the goal states by assigning
them real numbers.
Then we are looking for an optimal goal state, that is,
a goal state with the minimal (or maximal) value of the
objective function.

How to solve a CSP?
So far we know various search algorithms, so we
can apply them to CSPs too.

– the initial state: an empty assignment
– applicable actions: assigning a value to a certain

variable such that no constraint is violated
– the goal: a complete consistent assignment

Some notes:
– the same solving approach for all CSPs
– the goal state is always at depth n, where n is the

number of variables
• We can use DFS even without checking cycles!

– the order of actions is not important to reach the goal (a
CSP is a commutative problem)
• áWA=r, NT=gñ is the same as áNT=g, WA=rñ
• we can also use local search techniques

– it is possible to use different branching schemes to solve
CSPs, for example domain splitting

Backtracking

The core uninformed algorithm to solve a CSP:
– gradually assigns values to variables
– if no value can be assigned to a variable then goes back to the

previous variable and tries an alternative value for that variable

52 Chapter 6 Constraint Satisfaction Problems

3 2 6

9 3 5 1

1 8 6 4

8 1 2 9

7 8

6 7 8 2

2 6 9 5

8 2 3 9

5 1 3

3 2 6

9 3 5 1

1 8 6 4

8 1 2 9

7 8

6 7 8 2

2 6 9 5

8 2 3 9

5 1 3

4 8 9 1 5 7

6 7 4 8 2

2 5 7 9 3

5 4 3 7 6

2 9 5 6 4 1 3

1 3 9 4 5

3 7 8 1 4

1 4 5 7 6

6 9 4 7 8 2

1 2 3 4 5 6 7 8 9

A

B

C

D

E

F

G

H

 I

A

B

C

D

E

F

G

H

 I

1 2 3 4 5 6 7 8 9

(a) (b)

Figure 6.4 (a) A Sudoku puzzle and (b) its solution.

function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp,{ })

function BACKTRACK(csp,assignment) returns a solution or failure
if assignment is complete then return assignment
var← SELECT-UNASSIGNED-VARIABLE(csp,assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var ,assignment) do

if value is consistent with assignment then
add {var = value} to assignment
inferences← INFERENCE(csp, var ,assignment)
if inferences "= failure then

add inferences to csp
result←BACKTRACK(csp,assignment)
if result "= failure then return result
remove inferences from csp

remove {var = value} from assignment
return failure

Figure 6.5 A simple backtracking algorithm for constraint satisfaction problems. The
algorithm is modeled on the recursive depth-first search of Chapter ??. The functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES, implement the general-
purpose heuristics discussed in Section ??. The INFERENCE function can optionally im-
pose arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed
either by INFERENCE or by BACKTRACK), then value assignments (including those made by
INFERENCE) are retracted and a new value is tried.

Backtracking: an example

This is in fact depth-first search.
The real backtracking keeps only

the states on a single path, more
precisely, it keeps the partial
assignment of variables!

Backtracking: efficiency

How to influence efficiency of search?
– the choice of variable for assignment

• at the end, we need to assign values to all the variables, but
the order of variables influences the size of the search tree

• problem independent heuristics (such as fail-first)
– assigning the “right” values

• this is usually problem dependent
– early detection of “wrong” branches

• deducing extra information (for example via constraint
propagation)

– exploiting a problem structure
• some problems can be solved using backtrack-free search

(for example tree-structured CSPs)

Backtracking: variable ordering

• The most restricted variable first
– a variable with the smallest number of actions
– i.e. variable with the smallest current domain
– so called dom heuristic

• The most constrained variable first
– participates in the largest number of constraints
– so called deg heuristic
– frequently used when dom heuristic does not select a single variable

(dom+deg heuristic)

These are instances of the fail-first principle – assign first a variable
whose assignment will probably lead to a failure.

Backtracking: value ordering

When selecting a value for the variable, we prefer values
belonging to a solution with a high chance – a succeed-
first principle.
How to recognize such a value?

– for example a value that restricts least the other variables
(keeps the largest flexibility in the problem)

– the value can also be found by relaxing the problem, finding the
solution of the relaxed problem, and using values from this
solution (recall construction of heuristics)

– finding the generally best value is frequently computationally
expensive and hence problem-dependent heuristics are
usually preferred

red assigned to Q allows
using blue for SA

blue assigned to Q excludes
all colours for SA

Forward checking

Can we guess in advance that a given path does
not lead to the goal?

– After assigning a value to the variable we can check the
future constraints – constraints between the current variable
and not-yet instantiated variables – forward checking.

– constraint check = remove values violating the constraint

after assigning red to WA we can
remove that colour from NT and SA

after assigning green to Q we can
remove green from NT, SA, NSW

after assigning blue to V we remove
blue from NSW and SA and the domain
for SA becomes empty so we backtrack
immediately

Look ahead

Can we exploit the constraints even more?

– we can check the constraints even between the future variables;
then we can find that blue cannot be used for NT and SA and this is
the only colour in their domains

– because the assigned value is propagated through the constraints,
this method is called constraint propagation or look ahead

– this is implemented via maintaining consistency of constraints

Arc consistency

• each constraint is used to filter out values that violate the
constraint

• usually implemented in a directional way – remove values
from the domain of X that have no support (a consistent
value) in the domain of Y for the binary constraint (X,Y);
of course do it also in the reverse direction

– domain filtering in X is
done each time the
domain of Y changes

– filtering is repeated
while the domains are
changing until reaching
a fixed point or
emptying some domain

51

T W O

F O U R

T W O

F T U W R O

C3 C2 C1

Figure 6.2 (a) A cryptarithmetic problem. Each letter stands for a distinct digit; the aim is
to find a substitution of digits for letters such that the resulting sum is arithmetically correct,
with the added restriction that no leading zeroes are allowed. (b) The constraint hypergraph
for the cryptarithmetic problem, showing the Alldiff constraint (square box at the top) as
well as the column addition constraints (four square boxes in the middle). The variables C1,
C2, and C3 represent the carry digits for the three columns from right to left.

function AC-3(csp) returns false if an inconsistency is found and true otherwise
queue← a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj)← POP(queue)
if REVISE(csp, Xi, Xj) then

if size of Di = 0 then return false
for each Xk in Xi.NEIGHBORS - {Xj} do

add (Xk, Xi) to queue
return true

function REVISE(csp, Xi, Xj) returns true iff we revise the domain of Xi

revised← false
for each x in Di do

if no value y in Dj allows (x ,y) to satisfy the constraint between Xi and Xj then
delete x from Di

revised← true
return revised

Figure 6.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is
arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be
solved. The name “AC-3” was used by the algorithm’s inventor (?) because it was the third
version developed in the paper.

Algorithm AC-3

Domain filtering for variable Xi removes values
that have no support in the variable Xj, also, if any
value is deleted this information is passed to the
calling procedure. Knowing constraint semantics can
speedup constraint checking (for example X<Y).

If the domain of variable Xi
changed then verify all arcs
(constraints) leading to the
variable except the arc from
the variable Xj.

The algorithm can be applied
incrementally during search –
when X is instantiated put all
constraints related to X to the
queue.

Time complexity of AC-3 is O(ed3), where e is
the number of constraints and d is the size of
domain – we need to repeatedly (ed) check the
constraints (d2). This is not optimal, we can
remember the result of consistency checks - AC-4,
AC-3.1, AC-2001 with time complexity O(ed2).

´
i j

Stronger consistency

• We can generally define k-consistency, as the
consistency check where for a consistent assignment of
(k-1) variables we require a consistent value in one more
given variable.
– arc consistency (AC) = 2-consistency
– path consistency (PC) = 3-consistency

• If the problem is i-consistent "i=1,..,n (n is the number of
variables), then we can solve it in a backtrack-free way.
– DFS can always find a value consistent with the assignment of

previous variables
• Unfortunately, the time complexity of k-consistency is

exponential in k.

a b

a b
a b c

¹

¹
¹

X1

X2

X3

This problem is AC, but not PC.

Global constraints

Instead of stronger consistency techniques (expensive) usually global
constraints are used – a global constraint encapsulates a sub-problem
with a specific structure that can be exploited in the ad-hoc domain
filtering procedure.
Example:

global constraint all_different({X1,…, Xk})
– encapsulates a set of binary inequalities X1 ¹ X2, X1 ¹ X3, …, Xk-1 ¹ Xk
– all_different({X1,…, Xk}) = {(d1,…, dk) | "i diÎDi & "i¹j di ¹ dj}
– the filtering procedure is based on matching in bipartite graphs

a

b

c

X1

X2

X3

´´
a b

a b

a b c

¹

¹
¹

X1

X2
X3

1. find a maximal matching
2. remove arcs that are not

part of any maximal
matching

3. remove corresponding
values

Bipartite graph
• variables on one side, values on the

other side
• arcs connect a variable with values in

its domain

´ ´

Final notes

A declarative approach to problem solving
– construct a model (variables, domains, constraints)
– use a general constraint solver

Possible extensions
– optimisation problems

• applying branch-and-bound
– soft constraints

• constraints describe preferences rather than restrictions
• optimisation methods are applied there

Other solving approaches
– local search (the path to the goal is not important)
– integer programming (for linear constraints)

Application areas

Bioinformatics
• DNA sequencing
• determining 3D structures of

proteins

Planning
• autonomous action planning for

space probes
(Deep Space 1)

Manufacturing scheduling
• savings after applying CSP:

US$ 0.2-1 milion per day

More information

Constraint Solvers
– SICStus Prolog (available in labs)
– SWI Prolog
– ECLiPSe (Open Source, http://eclipse.crosscoreop.com/)
– GECODE (Open Source C++, http://www.gecode.org/)
– Choco (Open Source Java, http://www.emn.fr/z-info/choco-solver/)
– CP Optimizer
– …

Course Constraint Programming
– also taught in English
– Winter term
– http://ktiml.mff.cuni.cz/~bartak/podminky/

© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

