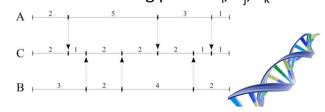

- **1. Decide a problem** to be solved and consult its appropriateness with the teacher.
- **2.** Solve the problem. The output for course credit consists of
 - code in SICStus Prolog with a constraint model
 - example data
 - documentation with the following sections
 - precise (formal) description of the problem
 - complete abstract description of the constraint model
 - "user manual" how to run the program
 - results of experiments (different models, different search strategies, different data)


- Path finding for multiple agents
- Path finding for a cleaning robot
- general scheduling with unary resources (JSSP)
- dinner party problem
- social golfer problem
- peaceable armies of queens
- open stacks problem
- 2D protein folding
- ...

Partial Digest Problem

DNA is cut at several locations by an application of enzyme. We know distances between all the cuts and we look for the exact positions of the cuts. Propose a constraint model to solve the problem.

Assume that DNA is cut by an enzyme and we know distances between neighboring points $a_i - a_{i-1}$. Now a different enzyme cuts DNA at different points b_j and again we know the distances $b_i - b_{i-1}$. Finally, both enzymes are applied together and DNA is cut in all points a_i and b_i so we get points c_i and again, we know the distances $c_i - c_{i-1}$ (note that some points a_i and b_j my overlap so the number of points c_k may be smaller than the sum of the numbers of points a_i and b_j). From the multisets of distances Δa_i , Δb_i , and Δc_i , find the all the cutting points a_i , b_i , c_k .

Double Digest Problem