
Constraint Programming
Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Consistency Techniques: Path Consistency

Previously
Arc consistency:

– The arc (Vi,Vj) is arc consistent iff for each value x from the domain Di there exists a value
y in the domain Dj such that the assignment Vi =x a Vj = y satisfies all the binary
constraints on Vi, Vj.

Note: The concept of arc consistency is directional, i.e., arc consistency of (Vi,Vj) does not
guarantee consistency of (Vj,Vi).

– CSP is arc consistent iff every arc (Vi,Vj) is arc consistent (in both directions).

Example:

Sometimes AC directly provides a solution.
any domain is empty ® no solution exists
all domains are singleton ® this is a solution

In general, AC decreases the search space.

CSP is arc consistent
but there is no solution!

X¹ZX¹Y

Y¹Z

{1,2}

{1,2} {1,2}

X

Y
Z

Path consistency (PC)

How to strengthen the consistency level?
More constraints are assumed together!

Definition:
– The path (V0,V1,…, Vm) is path consistent iff for every pair of

values xÎD0 a yÎDm satisfying all the binary constraints on
V0,Vm there exists an assignment of variables V1,…,Vm-1 such
that all the binary constraints between the neighbouring
variables Vi,Vi+1 are satisfied.

– CSP is path consistent iff every path is consistent.

Beware:
– only the constraints between

the neighboring variables must
be satisfied

V0 V1

V2
V3

V4

???

PC and paths of length two

It is not very practical to make all paths consistent.
Fortunately, it is enough to make path of length 2 consistent!

Theorem: CSP is PC if and only if all paths of length 2 are PC.
Proof:

1) PC Þ paths of length 2 are PC
2) All paths of length 2 are PC Þ "N paths of length N are PC Þ PC
induction using the path length

a) N=2 trivially true
b) N+1 (assuming that the theorem holds for N)

i) take any N+2 nodes V0,V1,…, Vn+1
ii) take any two consistent values x0ÎD0 a xn+1ÎDn+1
iii) using a) find the value xnÎDn st. P0,n and Pn,n+1 holds
iv) using induction find the other values V0,V1,…, Vn

0

n+1

1

n

Montanari (1974)

Relation between PC and AC

Does PC cover AC (if CSP PC, then is it also AC)?
– arc (i, j) is consistent (AC), if the path (i,j,i) is consistent

(PC)
– PC implies AC

Is PC stronger than AC (is there any CSP whish is AC but
not PC)?
Example: X in {1,2}, Y in {1,2}, Z in {1,2}, X¹Z, X¹Y, Y¹Z

• It is AC, but not PC (X=1, Z=2 is not consistent over X,Y,Z)

AC removes inconsistent values from the domains.
What is done by PC algorithms?

– PC removes pairs of inconsistent values
– PC makes all relations explicit (A<B,B<C Þ A+1<C)
– unary constraint = domain of the variable

Representation of constraints

PC algorithms will remove pairs of values
Ä we need to represent the constraints explicitly

Binary constraints = {0,1}-matrix
0 – pair of values is inconsistent
1 – pair of values is consistent

Example (5-queens problem)
constraint between queens i and j: r(i) ¹ r(j) & |i-j| ¹ |r(i)-r(j)|

1
2
3
4
5

A B C D EMatrix representation for
constraint A(1) - B(2)

Matrix representation for
constraint A(1) - C(3)

´
´́´
´0 0 1 1 1

0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
1 1 1 0 0

0 1 0 1 1
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
1 1 0 1 0

Operations over constraints

Constraint intersection Rij & R‘ij
bitwise AND

A<B & A³B-1 ® B-1£A<B
011 110 010
001 & 111 = 001
000 111 000

Constraint join Rik * Rkj ® Rij
Binary matrix multiplication

A<B * B<C ® A<C-1
011 011 001
001 * 001 = 000
000 000 000

Induced constraint is intersected with the original constraint
Rij & (Rik * Rkj) ® Rij
R25 & (R21 * R15) ® R25
01101 00111 01110 01101
10110 00011 10111 10110
11011 & 10001 * 11011 = 01010
01101 11000 11101 01101
10110 11100 01110 10110

1
2
3
4
5

A B C D E

´
´

´

´́
´́
´

Notes:
Rij = RTji, Rii is a diagonal matrix representing the domain of variable
REVISE((i,j)) from the AC algorithms is Rii ¬ Rii & (Rij * Rjj * Rji)

Composing constraints

A,B,C in {1,2,3}, B>1
A<C, A=B, B>C-2

A<C

B>C-2
A=B

B>1

C

A

& * *
011
001
000

100
010
001

000
010
001

110
111
111

=
000
001
000

Algorithm PC-1

How to make the path (i,k,j) consistent?
Rij¬ Rij & (Rik * Rkk * Rkj)

How to make a CSP path consistent?
Repeated revisions of paths (of length 2) while any domain changes.

procedure PC-1(Vars,Constraints)
n ¬ |Vars|, Yn ¬ Constraints
repeat

Y0 ¬ Yn
for k = 1 to n do

for i = 1 to n do
for j = 1 to n do

Ykij ¬ Yk-1ij & (Yk-1ik * Yk-1kk * Yk-1kj)
until Yn=Y0
Constraints ¬ Y0

end PC-1

Mackworth (1977)

If we use
Ykii ¬ Yk-1ii & (Yk-1ik * Yk-1kk * Yk-1ki)

then we get AC-1

How to improve PC-1?

Is there any inefficiency in PC-1?
– just a few „bits“

• it is not necessary to keep all copies of Yk

one copy and a bit indicating the change is enough
• some operations produce no modification (Yk

kk = Yk-1
kk)

• half of the operations can be removed (Yji = YT
ij)

– the grand problem
• after domain change all the paths are re-revised

but it is enough to revise just the influenced paths

Algorithm of path revision

procedure REVISE_PATH((i,k,j))
Z ¬ Yij & (Yik * Ykk * Ykj)
if Z=Yij then return false
Yij ¬ Z
return true

end REVISE_PATH

If the domain is pruned
then the influenced

paths will be revised.

Influenced paths

Because Yji = YT
ij it is enough to revise only the paths (i,k,j) where i£j.

Let the domain of the constraint (i,j) be changed when revising (i,k,j):

Situation a: i<j
all the paths containing (i,j) or (j,i) must be re-revised
but the paths (i,j,j), (i,i,j) are not revised again (no change)
Sa = {(i,j,m) | i £ m £ n & m¹j}

È {(m,i,j) | 1 £ m £ j & m¹i}
È {(j,i,m) | j < m £ n}
È {(m,j,i) | 1 £ m < i}

| Sa | = 2n-2

Situation b: i=j
all the paths containing i in the middle of the path are re-revised
but the paths (i,i,i) and (k,i,k) are not revised again
Sb = {(p,i,m) | 1 £ m £ n & 1 £ p £ m} - {(i,i,i),(k,i,k)}
| Sb | = n*(n-1)/2 - 2

i j

Algorithm PC-2

Paths in one direction only (attention, this is not DPC!)
After every revision, the affected paths are re-revised

Algorithm PC-2

procedure PC-2(G)
n ¬ |nodes(G)|
Q ¬ {(i,k,j) | 1 £ i £ j £ n & i¹k & j¹k}
while Q non empty do

select and delete (i,k,j) from Q
if REVISE_PATH((i,k,j)) then

Q ¬ Q È RELATED_PATHS((i,k,j))
end while

end PC-2

procedure RELATED_PATHS((i,k,j))
if i<j then return Sa else return Sb

end RELATED_PATHS

Mackworth (1977)

Other PC algorithms

• PC-3 (Mohr, Henderson 1986)
– based on computing supports for a value (like AC-4)

• If pair (a,b) at arc (i,j) is not supported by another variable,
then a is removed from Di and b is removed from Dj.

– this algorithm is not sound!

• PC-4 (Han, Lee 1988)
– correction of the PC-3 algorithm
– based on computing supports of pairs (b,c) at arc (i,j)

• PC-5 (Singh 1995)
– uses the ideas behind AC-6
– only one support is kept and a new support is looked for when

the current support is lost

Directional path consistency

Similarly to AC we can decrease complexity of PC by
assuming paths in one direction only.

Definition:
CSP is directional path consistent for a given order of variables if
and only if all paths (i,k,j) st. i £ k and j £ k are path consistent.

Notes:
• Notice that requirements i £ k and j £ k are different from i £ j that is

used to break symmetries of paths!
• We can also use the requirement i £ j in DPC algorithms.

i j k i jk

´

Algorithm DPC-1

Similarly to DAC-1 we can explore each path exactly once
(by going in the reverse order).

We can remove some constraint checks via symmetry (i £ j).
Algorithm DPC-1

procedure DPC-1(Vars,Constraints)
n ¬ |Vars|, E ¬ { (i,j) | i<j & Ci,jÎConstraints}
for k = n to 1 by -1 do

for i = 1 to k do
for j = i to k do

if (i,k)ÎE & (j,k)ÎE then
Cij ¬ Cij & (Cik * Ckk * Ckj)
E ¬ E È {(i,j)}

end for
end for

end for
end DPC-1

Relation between DPC, PC, and AC
Clearly PC implies DPC.
What about the other direction (does DPC imply PC)?

Example:

C::{1,2,3}

A<C
{(1,2),(1,3),(2,3)}

B::{1,2,3}A::{1,2,3}

A<B
{(1,2),(1,3),(2,3)}

B<C
{(1,2),(1,3),(2,3)}

´
´ ´

´´

CSP is DPC, but not PC!
It is even not AC.

C::{3}

A<C
{(1,3)}

B::{2}A::{1}

A<B
{(1,2)}

B<C
{(2,3)}PC and AC network

Drawbacks of PC

• memory consumption
– because PC eliminates pairs of values, we need to keep all

the compatible pairs extensionally, e.g. using {0,1}-matrix

• bad ratio strength/efficiency
– PC removes more (or same) inconsistencies than AC, but the

strength/efficiency ratio is much worse than for AC

• modifies the constraint network
– PC adds redundant arcs (constraints) and thus it changes connectivity of the

constraint network
– this complicates using heuristics derived from the structure of the

constraint network (like density, graph width etc.)

• PC is still not a complete technique
– A,B,C,D in {1,2,3}

A¹B, A¹C, A¹D, B¹C, B¹D, C¹D
is PC but has no solution

1,2,3 1,2,3

1,2,3 1,2,3

¹

¹

¹

¹
¹ ¹

e f

a
b c

d

e f

a
b c

d

´
´

´

Half way between AC and PC

Can we make an algorithm:
– that is stronger than AC,
– without the drawbacks of PC (memory consumption,

changing the constraint network)?

We can do the PC consistency check only when
there is a chance for filtering some value out!
Example:

Restricted path consistency

PC is checked only when filtering out a value pair means filtering some
of the values out of the domain.
How do we recognize such a situation?

– If a given value pair is the only support for one of the values.

Definition:
Node i is restricted path consistent if any only if:
– each arc going from i is arc consistent
– for each a Î Di it holds that

if b is the only support for a in the node j then for each node k
(connected to both i and j) we can find a value c such that the
pairs (a,c) and (b,c) are consistent with respective constraints
(PC).

a b
i j

c k

Berlandier (1995)

Algorithm RPC - initialisation

procedure INITIALIZE(G)
QAC ¬ {} , QPC ¬ {} , S ¬ {} % preparing data structures
for each (i,j)Îarcs(G) do

for each aÎDi do
total ¬ 0
for each bÎDj do

if (a,b) is consistent according to the constraint Ci,j then
total ¬ total + 1, Sj,b ¬ Sj,b È {<i,a>}

end for
counter[(i,j),a] ¬ total
if counter[(i,j),a] = 0 then

QAC ¬ QAC È {<i,a>}, delete a from Di
else if counter[(i,j),a] = 1 then

for each k such that (i,k)Îarcs(G) & (k,j)Îarcs(G) do
QPC ¬ QPC È {(<i,a>,j,k)}

end if
end for

end for
return (QAC, QPC)

end INITIALIZE

Based on AC-4: a support counter + a queue for PC

Algorithm RPC – AC check

procedure PRUNE(QAC, QPC)
while QAC non empty do

select and delete any pair <j,b> from QAC
for each <i,a> from Sj,b do

counter[(i,j),a] ¬ counter[(i,j),a] - 1
if counter[(i,j),a] = 0 & "a" is still in Di then

delete "a" from Di
QAC ¬ QAC È {<i,a>}

else if counter[(i,j),a] = 1 then
for each k such that (i,k)Îarcs(G) & (k,j)Îarcs(G) do

QPC ¬ QPC È {(<i,a>,j,k)}
else

for each k such that (i,k)Îarcs(G) & (k,j)Îarcs(G) do
if counter[(i,k),a] = 1 then

QPC ¬ QPC È {(<i,a>,k,j)}
end if

end for
end while
return QPC

end PRUNE

Algorithm RPC

First, make the problem AC and then test PC for selected
paths and restore AC if necessary.

procedure RPC(G)
(QAC, QPC) ¬ INITIALIZE(G)
QPC ¬ PRUNE(QAC, QPC) % first run of AC
while QPC non empty do

select and delete any triple (<i,a>,j,k) from QPC
if aÎDi then

{<j,b>} ¬ {<j,x> Î Sia | xÎDj } % the only support for a
if {<k,c> Î Sia Ç Sjb | c Î Dk } = Æ then

counter[(i,j),a] ¬ 0
delete "a" from Di
QPC ¬ PRUNE({<i,a>}, QPC) % repeat AC

end if
end if

end while
end RPC

© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

