Constraint Programming

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Arc consistency:

- The arc $\left(V_{i} V_{j}\right)$ is arc consistent iff for each value x from the domain D_{i} there exists a value y in the domain D_{j} such that the assignment $V_{i}=x$ a $V_{j}=y$ satisfies all the binary constraints on V_{i}, V_{j}.

Note: The concept of arc consistency is directional, i.e., arc consistency of $\left(V_{i}, V_{j}\right)$ does not guarantee consistency of $\left(V_{j}, V_{i}\right)$.

- CSP is arc consistent iff every $\operatorname{arc}\left(V_{i}, V_{j}\right)$ is arc consistent (in both directions).

Example:

Sometimes AC directly provides a solution.
any domain is empty \rightarrow no solution exists
all domains are singleton \rightarrow this is a solution
In general, AC decreases the search space.

How to strengthen the consistency level?

More constraints are assumed together!

Definition:

- The path $\left(V_{0}, V_{1}, \ldots, V_{m}\right)$ is path consistent iff for every pair of values $x \in D_{0}$ a $y \in D_{m}$ satisfying all the binary constraints on $\mathrm{V}_{0}, \mathrm{~V}_{\mathrm{m}}$ there exists an assignment of variables $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}-1}$ such that all the binary constraints between the neighbouring variables $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}+1}$ are satisfied.
- CSP is path consistent iff every path is consistent.

Beware:

- only the constraints between the neighboring variables must be satisfied

It is not very practical to make all paths consistent. Fortunately, it is enough to make path of length $\mathbf{2}$ consistent!

Theorem: CSP is PC if and only if all paths of length 2 are PC.

Proof:

1) $P C \Rightarrow$ paths of length 2 are $P C$
2) All paths of length 2 are $P C \Rightarrow \forall N$ paths of length N are $P C \Rightarrow P C$ induction using the path length
a) $N=2$ trivially true
b) $\mathrm{N}+1$ (assuming that the theorem holds for N)
i) take any $\mathrm{N}+2$ nodes $\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}+1}$

ii) take any two consistent values $x_{0} \in D_{0}$ a $x_{n+1} \in D_{n+1}$
iii) using a) find the value $x_{n} \in D_{n}$ st. $P_{0, n}$ and $P_{n, n+1}$ holds
iv) using induction find the other values $V_{0}, V_{1}, \ldots, V_{n}$

Relation between PC and AC

Does PC cover AC (if CSP PC, then is it also AC)?
$-\operatorname{arc}(i, j)$ is consistent (AC), if the path (i, j, i) is consistent (PC)

- PC implies AC

Is PC stronger than AC (is there any CSP whish is AC but not PC)?
Example: X in $\{1,2\}, Y$ in $\{1,2\}, Z$ in $\{1,2\}, \quad X \neq Z, X \neq Y, Y \neq Z$

- It is AC, but not PC $(X=1, Z=2$ is not consistent over $X, Y, Z)$

AC removes inconsistent values from the domains. What is done by PC algorithms?

- PC removes pairs of inconsistent values
- PC makes all relations explicit ($A<B, B<C \Rightarrow A+1<C$)
- unary constraint $=$ domain of the variable

PC algorithms will remove pairs of values
${ }^{\wedge}$, we need to represent the constraints explicitly

Binary constraints $=\{0,1\}$-matrix

0 - pair of values is inconsistent
1 - pair of values is consistent
Example (5-queens problem)
constraint between queens i and $j: r(i) \neq \mathrm{r}(\mathrm{j}) \&|\mathrm{i}-\mathrm{j}| \neq|\mathrm{r}(\mathrm{i})-\mathrm{r}(\mathrm{j})|$

Matrix representation for constraint A(1) - B(2)

00111
00011
10001
11000
11100

Matrix representation for constraint A(1) - C(3)

01011
10101
01010
10101
11010

Constraint intersection $\mathrm{R}_{\mathrm{ij}} \& \mathrm{R}_{\mathrm{ij}}^{\prime}$ bitwise AND

$A<B$	$\&$	$A \geq B-1$	\rightarrow	$B-1 \leq A<B$
011		110	010	
001	$\&$	111	$=$	001
000		111		000

Constraint join $R_{i k} * R_{k j} \rightarrow R_{i j}$
Binary matrix multiplication

A<B		$B<C \rightarrow A<C-1$		
011		011		001
001	*	001	$=$	000
000		000		000

$001 * 001=000$
000
000

Induced constraint is intersected with the original constraint
$R_{\mathrm{ij}} \&\left(\mathrm{R}_{\mathrm{ik}} * \mathrm{R}_{\mathrm{kj}}\right) \rightarrow \mathrm{R}_{\mathrm{ij}}$

\mathbf{R}_{25}	$\&$	$\left(\mathbf{R}_{21}\right.$	$*$	$\left.\mathbf{R}_{15}\right)$	\rightarrow	\mathbf{R}_{25}
01101		00111	01110		01101	
10110		00011	10111			
11011	$\&$		$10001 * 11011$			
010110						
01101		11000	11101		01010	
10110		11100	01110		10110	

Notes:

$\mathrm{R}_{\mathrm{ij}}=\mathrm{R}^{\mathrm{T}} \mathrm{j}_{\mathrm{j}}, \mathrm{R}_{\mathrm{i}}$ is a diagonal matrix representing the domain of variable $\operatorname{REVISE}((i, j))$ from the $A C$ algorithms is $R_{i i} \leftarrow R_{i j} \&\left(R_{i j} * R_{j j} * R_{j j}\right)$
A, B, C in $\{1,2,3\}, B>1$
$A<C, A=B, B>C-2$

How to make the path ($\mathbf{i}, \mathrm{k}, \mathrm{j}$) consistent?

$$
R_{\mathrm{ij}} \leftarrow R_{\mathrm{ij}} \&\left(R_{\mathrm{ik}} * R_{\mathrm{kk}} * R_{\mathrm{kj}}\right)
$$

How to make a CSP path consistent?
Repeated revisions of paths (of length 2) while any domain changes.
procedure PC-1(Vars,Constraints)
$\mathrm{n} \leftarrow \mid$ Vars $\mid, Y^{n} \leftarrow$ Constraints repeat
$Y^{0} \leftarrow Y^{n}$
for $k=1$ to n do for $\mathrm{i}=1$ to n do

until $Y^{n}=Y^{0}$
Constraints $\leftarrow Y^{0}$
end PC-1

How to improve PC-1?

Is there any inefficiency in PC-1?

- just a few „bits"
- it is not necessary to keep all copies of Y^{k} one copy and a bit indicating the change is enough

- some operations produce no modification ($\mathrm{Y}_{\mathrm{kk}}=\mathrm{Y}^{\mathrm{k}-1}{ }_{\mathrm{kk}}$)
- half of the operations can be removed $\left(Y_{j i}=Y^{\top}{ }_{i j}\right)$
- the grand problem
- after domain change all the paths are re-revised but it is enough to revise just the influenced paths

Algorithm of path revision
procedure REVISE_PATH((i,k,j))
$Z \leftarrow Y_{i j} \&\left(Y_{i k} * Y_{k k} * Y_{k j}\right)$
if $Z=Y_{i j}$ then return false $Y_{i j} \leftarrow Z$
return true end REVISE_PATH

If the domain is pruned then the influenced paths will be revised.

Because $Y_{j i}=Y_{i j}{ }^{\mathrm{j}}$ it is enough to revise only the paths ($\mathrm{i}, \mathrm{k}, \mathrm{j}$) where $\mathrm{i} \leq \mathrm{j}$.
Let the domain of the constraint (i, j) be changed when revising $(\mathrm{i}, \mathrm{k}, \mathrm{j})$:

Situation a: i<j

all the paths containing (i, j) or (j, i) must be re-revised but the paths ($\mathrm{i}, \mathrm{j}, \mathrm{j})$, ($\mathrm{i}, \mathrm{i}, \mathrm{j}$) are not revised again (no change)

$$
\begin{aligned}
S_{a}= & \{(i, j, m) \mid i \leq m \leq n \& m \neq j\} \\
& \cup\{(m, i, j) \mid 1 \leq m \leq j \& m \neq i\} \\
& \cup\{(j, i, m) \mid j<m \leq n\} \\
& \cup\{(m, j, i) \mid 1 \leq m<i\} \\
\left|S_{a}\right| & =2 n-2
\end{aligned}
$$

Situation b: i=j

all the paths containing i in the middle of the path are re-revised but the paths ($\mathrm{i}, \mathrm{i}, \mathrm{i}$) and ($\mathrm{k}, \mathrm{i}, \mathrm{k}$) are not revised again

$$
\begin{aligned}
& S_{b}=\{(p, i, m) \mid 1 \leq m \leq n \& 1 \leq p \leq m\}-\{(i, i, i),(k, i, k)\} \\
& \left|S_{b}\right|=n^{*}(n-1) / 2-2
\end{aligned}
$$

Paths in one direction only (attention, this is not DPC!)
After every revision, the affected paths are re-revised
Algorithm PC-2
procedure PC-2(G)
$\mathrm{n} \leftarrow \mid$ nodes $(\mathrm{G}) \mid$
$\mathrm{Q} \leftarrow\{(\mathrm{i}, \mathrm{k}, \mathrm{j}) \mid 1 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{n} \& \mathrm{i} \neq \mathrm{k} \& \mathrm{j} \neq \mathrm{k}\}$
while Q non empty do
select and delete ($\mathrm{i}, \mathrm{k}, \mathrm{j}$) from Q
if REVISE_PATH((i,k,j)) then
$\mathrm{Q} \leftarrow \mathrm{Q} \cup$ RELATED_PATHS($(i, k, j))$
end while
end PC-2

procedure RELATED_PATHS((i,k,j))
if $i<j$ then return S_{a} else return S_{b} end RELATED_PATHS

Other PC algorithms

- PC-3 (Mohr, Henderson 1986)
- based on computing supports for a value (like AC-4)
- If pair (a, b) at arc (i, j) is not supported by another variable, then a is removed from D_{i} and b is removed from D_{j}.
- this algorithm is not sound!
- PC-4 (Han, Lee 1988)
- correction of the PC-3 algorithm
- based on computing supports of pairs (b,c) at arc (i,j)
- PC-5 (Singh 1995)
- uses the ideas behind AC-6
- only one support is kept and a new support is looked for when the current support is lost

Directional path consistency

Similarly to AC we can decrease complexity of PC by assuming paths in one direction only.

Definition:

CSP is directional path consistent for a given order of variables if and only if all paths ($\mathrm{i}, \mathrm{k}, \mathrm{j}$) st. $\mathrm{i} \leq \mathrm{k}$ and $\mathrm{j} \leq \mathrm{k}$ are path consistent.

Notes:

- Notice that requirements $\mathrm{i} \leq \mathrm{k}$ and $\mathrm{j} \leq \mathrm{k}$ are different from $\mathrm{i} \leq \mathrm{j}$ that is used to break symmetries of paths!
- We can also use the requirement $\mathrm{i} \leq \mathrm{j}$ in DPC algorithms.

Algorithm DPC-1

Similarly to DAC-1 we can explore each path exactly once (by going in the reverse order).
We can remove some constraint checks via symmetry ($\mathrm{i} \leq \mathrm{j}$).
Algorithm DPC-1

```
procedure DPC-1(Vars,Constraints)
    n}\leftarrow|\mathrm{ Vars|, E & {(i,j)| i<j & C Ci,j <Constraints}
    for k = n to 1 by -1 do
        for i = 1 to k do
        for j = i to k do
            if (i,k)\inE & (j,k)\inE then
                C
                E}\leftarrow\textrm{E}\cup{(\textrm{i},\textrm{j})
            end for
            end for
    end for
end DPC-1
```


Clearly PC implies DPC.

What about the other direction (does DPC imply PC)?

Example:

 It is even not $A C$.

Drawbacks of PC

- memory consumption
- because PC eliminates pairs of values, we need to keep all the compatible pairs extensionally, e.g. using $\{0,1\}$-matrix
- bad ratio strength/efficiency
- PC removes more (or same) inconsistencies than AC, but the strength/efficiency ratio is much worse than for AC
- modifies the constraint network
- PC adds redundant arcs (constraints) and thus it changes connectivity of the constraint network
- this complicates using heuristics derived from the structure of the constraint network (like density, graph width etc.)
- $P C$ is still not a complete technique
- A,B,C,D in $\{1,2,3\}$
$A \neq B, A \neq C, A \neq D, B \neq C, B \neq D, C \neq D$
is PC but has no solution

Half way between AC and PC

Can we make an algorithm:

- that is stronger than AC,
- without the drawbacks of PC (memory consumption, changing the constraint network)?

We can do the PC consistency check only when there is a chance for filtering some value out!

Example:

PC is checked only when filtering out a value pair means filtering some of the values out of the domain.
How do we recognize such a situation?

- If a given value pair is the only support for one of the values.

Definition:

Node i is restricted path consistent if any only if:

- each arc going from i is arc consistent
- for each $\mathbf{a} \in D_{i}$ it holds that
if \mathbf{b} is the only support for \mathbf{a} in the node j then for each node k (connected to both i and j) we can find a value \mathbf{c} such that the pairs (\mathbf{a}, \mathbf{c}) and (\mathbf{b}, \mathbf{c}) are consistent with respective constraints (PC).

Algorithm RPC - initialisation

Based on AC-4: a support counter + a queue for PC

```
procedure INITIALIZE(G)
    \mp@subsup{Q}{AC}{}}\leftarrow{},\mp@subsup{Q}{PC}{}\leftarrow{},S\leftarrow{} % preparing data structures
    for each (i,j)\in\operatorname{arcs(G) do}
        for each }\textrm{a}\in\mp@subsup{D}{i}{}\mathrm{ do
        total }\leftarrow
            for each b\in\mp@subsup{D}{j}{}}\mathrm{ do
                If (a,b) is consistent according to the constraint C C i,j then
                total }\leftarrow\mathrm{ total + 1, S S,b}\leftarrow\mp@subsup{\textrm{S}}{\textrm{j},\textrm{b}}{}\cup{<\textrm{i},\textrm{a}>
            end for
            counter[(i,j),a] \leftarrow total
            if counter[(i,j),a] = 0 then
                Q QAC}\leftarrow\mp@subsup{Q}{AC}{}\cup{<i,a>},\mathrm{ delete a from }\mp@subsup{D}{i}{
            else if counter[(i,j),a] = 1 then
                        for each }k\mathrm{ such that (i,k) }\operatorname{arcs}(G)&(k,j)\in\operatorname{arcs}(G) d
                        Qpc}\leftarrow\leftarrow\mp@subsup{Q}{pc}{}\cup{(<i,a>,j,k)
            end if
        end for
    end for
    return (QAc, Qpc)
end INITIALIZE
```


Algorithm RPC - AC check

```
procedure PRUNE(Q (QAC, QPC )
    while Q Q AC non empty do
            select and delete any pair <j,b> from Q Q AC
            for each <i,a> from }\mp@subsup{S}{j,b}{}\mathrm{ do
                counter[(i,j),a]}\leftarrow\mathrm{ counter[(i,j),a] - 1
            if counter[(i,j),a]=0 & "a" is still in }\mp@subsup{D}{i}{}\mathrm{ then
                    delete "a" from Di
                    Q QAC
            else if counter[(i,j),a] = 1 then
                        for each }k\mathrm{ such that (i,k) }\in\operatorname{arcs}(G)&(k,j)\in\operatorname{arcs}(G) do
                Q QPC }\leftarrow\mp@subsup{Q}{PC}{}\cup{(<i,a>,j,k)
            else
                        for each }k\mathrm{ such that (i,k) }\in\operatorname{arcs}(G)& (k,j)\in\operatorname{arcs}(G) do
                                    if counter[(i,k),a] = 1 then
                                    \mp@subsup{Q}{PC}{}}\leftarrow<\mp@subsup{Q}{PC}{}\cup{(<i,a>,k,j)
            end if
        end for
    end while
    return QPC
end PRUNE
```

First, make the problem AC and then test PC for selected paths and restore AC if necessary.
procedure RPC(G)
$\left(\mathrm{Q}_{\mathrm{Ac}}, \mathrm{Q}_{\mathrm{PC}}\right) \leftarrow$ INITIALIZE(G)
$\mathrm{Q}_{\mathrm{PC}} \leftarrow \operatorname{PRUNE}\left(\mathrm{Q}_{\mathrm{AC}}, \mathrm{Q}_{\mathrm{PC}}\right) \quad$ \% first run of $A C$
while $Q_{P C}$ non empty do
select and delete any triple ($\left\langle i, a>, j, k\right.$) from $Q_{P C}$ if $a \in D_{i}$ then
$\left.\{\langle j, b\rangle\} \leftarrow\{<j, x\rangle \in S_{i a} \mid x \in D_{j}\right\} \quad$ \% the only support for a if $\left\{\langle k, c\rangle \in S_{i a} \cap S_{j b} \mid c \in D_{k}\right\}=\varnothing$ then counter $[(\mathrm{i}, \mathrm{j}), \mathrm{a}] \leftarrow 0$ delete "a" from D_{i} $\left.\mathrm{Q}_{\mathrm{PC}} \leftarrow \operatorname{PRUNE}(\{<\mathrm{i}, \mathrm{a}\rangle\}, \mathrm{Q}_{\mathrm{PC}}\right) \quad \%$ repeat $A C$ end if
end if
end while
end RPC

© 2013 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

