

Constraint Programming

Roman Barták

Department of Theoretical Computer Science and Mathematical Logic

Consistency Techniques: Path Consistency

Arc consistency:

- **The arc** (V_i, V_j) is **arc consistent** iff for each value *x* from the domain D_i there exists a value *y* in the domain D_j such that the assignment $V_i = x$ a $V_j = y$ satisfies all the binary constraints on V_i , V_j .

Note: The concept of arc consistency is directional, i.e., arc consistency of (V_i, V_j) does not guarantee consistency of (V_j, V_i) .

- **CSP** is **arc consistent** iff every arc (V_i, V_j) is arc consistent (in both directions).

Example:

Sometimes **AC directly provides a solution**.

any domain is empty \rightarrow no solution exists all domains are singleton \rightarrow this is a solution In general, AC **decreases the search space**.

How to strengthen the consistency level?

More constraints are assumed together!

Definition:

- The path $(V_0, V_1, ..., V_m)$ is path consistent iff for every pair of values $x \in D_0$ a $y \in D_m$ satisfying all the binary constraints on V_0, V_m there exists an assignment of variables $V_1, ..., V_{m-1}$ such that all the binary constraints between the neighbouring variables V_i, V_{i+1} are satisfied.
- CSP is path consistent iff every path is consistent.

Beware:

 only the constraints between the neighboring variables must be satisfied

n+1

It is not very practical to make all paths consistent. Fortunately, it is enough to make path of length 2 consistent!

Theorem: CSP is PC if and only if all paths of length 2 are PC. **Proof:**

- 1) PC \Rightarrow paths of length 2 are PC
- 2) All paths of length 2 are PC $\Rightarrow \forall N$ paths of length N are PC \Rightarrow PC

induction using the path length

a) N=2 trivially true

b) N+1 (assuming that the theorem holds for N)

i) take any N+2 nodes V_0, V_1, \dots, V_{n+1}

- ii) take any two consistent values $x_0 \in D_0$ a $x_{n+1} \in D_{n+1}$
- iii) using a) find the value $x_n \in D_n$ st. $P_{0,n}$ and $P_{n,n+1}$ holds

iv) using induction find the other values $V_0, V_1, ..., V_n$

Does PC cover AC (if CSP PC, then is it also AC)?

- arc (i, j) is consistent (AC), if the path (i,j,i) is consistent (PC)
- PC implies AC

Is PC stronger than AC (is there any CSP whish is AC but not PC)?

Example: X in $\{1,2\}$, Y in $\{1,2\}$, Z in $\{1,2\}$, X \neq Z, X \neq Y, Y \neq Z

• It is AC, but not PC (X=1, Z=2 is not consistent over X,Y,Z)

AC removes inconsistent values from the domains.

What is done by PC algorithms?

- PC removes pairs of inconsistent values
- PC makes all relations explicit (A<B,B<C \Rightarrow A+1<C)
- unary constraint = domain of the variable

PC algorithms will remove pairs of values

♥ we need to represent the constraints explicitly

Binary constraints = {0,1}-matrix

0 – pair of values is inconsistent

1 – pair of values is consistent

Example (5-queens problem)

constraint between queens *i* and *j*: $r(i) \neq r(j) \& |i-j| \neq |r(i)-r(j)|$

```
      Matrix representation for constraint A(1) - B(2)
      A B C D E

      00111
      2

      00011
      3

      10001
      4

      11000
      5
```

Matrix representation for constraint A(1) - C(3)

Operations over constraints

Constraint intersection R _{ii} & R'ii	Constraint join $R_{ik} * R_{kj} \rightarrow R_{ij}$						
bitwise AND	Binary matrix multiplication						
$A < B \& A \ge B - 1 \rightarrow B - 1 \le A < B$	$A < B * B < C \rightarrow A < C-1$						
011 110 010	<mark>011</mark> 01 <mark>1</mark> 001						
001 & 111 = 001	001 * 00 <mark>1</mark> = 000						
000 111 000	000 00 <mark>0</mark> 000						

Induced constraint is intersected with the original constraint

 $\mathsf{R}_{ij} \And (\mathsf{R}_{ik} \ast \mathsf{R}_{kj}) \rightarrow \mathsf{R}_{ij}$

R_{25}	&	(R ₂₁ * R ₁₅)	\rightarrow	R ₂₅		Α	В	С	D	Ε
01101		00111 01110		01101	1	X	X			Ŵ
10110		00011 10111		10110	2	X				
11011	&	10001 * 11011	=	01010	3	X	Ŵ			X
01101		11000 11101		01101	4	X	X			
10110		11100 01110		10110	5	X				

Notes:

 $R_{ij} = R^{T}_{ji}$, R_{ii} is a diagonal matrix representing the domain of variable REVISE((i,j)) from the AC algorithms is $R_{ii} \leftarrow R_{ii} \& (R_{ij} * R_{jj} * R_{ji})$

Composing constraints

How to make the path (i,k,j) consistent?

 $\mathsf{R}_{ij} \leftarrow \mathsf{R}_{ij} \And (\mathsf{R}_{ik} * \mathsf{R}_{kk} * \mathsf{R}_{kj})$

How to make a CSP path consistent?

Repeated revisions of paths (of length 2) while any domain changes.

How to improve PC-1?

Is there any inefficiency in PC-1?

- just a few "bits"
 - it is not necessary to keep all copies of Y^k
 one copy and a bit indicating the change is enough
 - some operations produce no modification $(Y_{kk}^{k} = Y_{k-1}^{k-1})$
 - half of the operations can be removed $(Y_{ji} = Y_{ij}^T)$
- the grand problem
 - after domain change all the paths are re-revised but it is enough to revise just the influenced paths

Algorithm of path revision

Influenced paths

Because $Y_{ji} = Y_{ij}^{T}$ it is enough to revise only the paths (i,k,j) where i $\leq j$. Let the domain of the constraint (i,j) be changed when revising (i,k,j):

Situation a: i<j

all the paths containing (i,j) or (j,i) must be re-revised but the paths (i,j,j), (i,i,j) are not revised again (no change) $S_a = \{(i,j,m) \mid i \le m \le n \& m \ne j\}$ $\cup \{(m,i,j) \mid 1 \le m \le j \& m \ne i\}$ $\cup \{(j,i,m) \mid j < m \le n\}$ $\cup \{(m,j,i) \mid 1 \le m < i\}$ $\mid S_a \mid = 2n-2$

Situation b: i=j

all the paths containing i in the middle of the path are re-revised but the paths (i,i,i) and (k,i,k) are not revised again $S_b = \{(p,i,m) \mid 1 \le m \le n \ \& \ 1 \le p \le m\} - \{(i,i,i),(k,i,k)\} \mid S_b \mid = n^*(n-1)/2 - 2$

Algorithm PC-2

Paths in one direction only (attention, this is not DPC!)

After every revision, the affected paths are re-revised

Algorithm PC-2

procedure RELATED_PATHS((i,k,j))
 if i<j then return S_a else return S_b
end RELATED_PATHS

- PC-3 (Mohr, Henderson 1986)
 - based on computing supports for a value (like AC-4)
 - If pair (*a*,*b*) at arc (*i*,*j*) is not supported by another variable, then *a* is removed from D_i and *b* is removed from D_j.
 - this algorithm is not sound!
- PC-4 (Han, Lee 1988)
 - correction of the PC-3 algorithm
 - based on computing supports of pairs (b,c) at arc (i,j)
- PC-5 (Singh 1995)
 - uses the ideas behind AC-6
 - only one support is kept and a new support is looked for when the current support is lost

Similarly to AC we can decrease complexity of PC by assuming paths in one direction only.

Definition:

CSP is **directional path consistent** for a given order of variables if and only if all paths (i,k,j) st. $i \le k$ and $j \le k$ are path consistent.

Notes:

- Notice that requirements i ≤ k and j ≤ k are different from i ≤ j that is used to break symmetries of paths!
- We can also use the requirement $i \le j$ in DPC algorithms.

Similarly to DAC-1 we can explore each path exactly once (by going in the reverse order).

We can remove some constraint checks via symmetry (i \leq j).

Algorithm DPC-1

```
procedure DPC-1(Vars,Constraints)
     n \leftarrow |Vars|, E \leftarrow \{ (i,j) | i < j \& C_{i,j} \in Constraints \}
     for k = n to 1 by -1 do
          for i = 1 to k do
                for j = i to k do
                     if (i,k) \in E \& (j,k) \in E then
                          C_{ii} \leftarrow C_{ii} \& (C_{ik} * C_{kk} * C_{kj})
                          E \leftarrow E \cup \{(i,j)\}
                end for
          end for
     end for
end DPC-1
```

Relation between DPC, PC, and AC

Clearly PC implies DPC.

What about the other direction (does DPC imply PC)?

Drawbacks of PC

memory consumption

 because PC eliminates pairs of values, we need to keep all the compatible pairs extensionally, e.g. using {0,1}-matrix

bad ratio strength/efficiency

PC removes more (or same) inconsistencies than AC, but the strength/efficiency ratio is much worse than for AC

modifies the constraint network

- PC adds redundant arcs (constraints) and thus it changes connectivity of the constraint network
- this complicates using heuristics derived from the structure of the constraint network (like density, graph width etc.)

• PC is still not a complete technique

A,B,C,D in {1,2,3}
A≠B, A≠C, A≠D, B≠C, B≠D, C≠D is PC but has no solution

Half way between AC and PC

Can we make an algorithm:

- that is stronger than AC,
- without the drawbacks of PC (memory consumption, changing the constraint network)?

We can do the PC consistency check only when there is a chance for filtering some value out!

Example:

PC is checked only when filtering out a value pair means filtering some of the values out of the domain.

How do we recognize such a situation?

– If a given value pair is the only support for one of the values.

Definition:

Node *i* is **restricted path consistent** if any only if:

- each arc going from *i* is arc consistent
- for each a ∈ D_i it holds that
 if b is the only support for a in the node j then for each node k
 (connected to both i and j) we can find a value c such that the
 pairs (a,c) and (b,c) are consistent with respective constraints (PC).

Algorithm RPC - initialisation

Based on AC-4: a support counter + a queue for PC

```
procedure INITIALIZE(G)
      Q_{AC} \leftarrow \{\}, Q_{PC} \leftarrow \{\}, S \leftarrow \{\}
                                                                   % preparing data structures
      for each (i,j) \in arcs(G) do
             for each a \in D_i do
                    total \leftarrow 0
                    for each b \in D_i do
                           if (a,b) is consistent according to the constraint C<sub>i,i</sub> then
                                        total \leftarrow total + 1, S_{i,b} \leftarrow S_{i,b} \cup \{\langle i,a \rangle\}
                    end for
                   counter[(i,j),a] \leftarrow total
                    if counter[(i,j),a] = 0 then
                           Q_{AC} \leftarrow Q_{AC} \cup \{\langle i, a \rangle \}, delete a from D_i
                    else if counter[(i,j),a] = 1 then
                                   for each k such that (i,k) \in arcs(G) \& (k,j) \in arcs(G) do
                                        Q_{PC} \leftarrow Q_{PC} \cup \{(\langle i,a \rangle, j,k)\}
                    end if
             end for
      end for
      return (Q<sub>AC</sub>, Q<sub>PC</sub>)
end INITIALIZE
```

Algorithm RPC – AC check

First, make the problem AC and then test PC for selected paths and restore AC if necessary.

```
procedure RPC(G)
      (Q_{AC}, Q_{PC}) \leftarrow INITIALIZE(G)
      Q_{PC} \leftarrow PRUNE(Q_{AC}, Q_{PC})
                                                                         % first run of AC
      while Q<sub>PC</sub> non empty do
             select and delete any triple (\langle i,a \rangle, j,k) from Q_{PC}
             if a \in D_i then
                   \{\langle j,b \rangle\} \leftarrow \{\langle j,x \rangle \in S_{ia} \mid x \in D_i\} % the only support for a
                    if \{\langle k,c \rangle \in S_{ia} \cap S_{ib} \mid c \in D_k \} = \emptyset then
                        counter[(i,j),a] \leftarrow 0
                        delete "a" from D<sub>i</sub>
                        Q_{PC} \leftarrow PRUNE(\{\langle i,a \rangle\}, Q_{PC}) % repeat AC
                   end if
             end if
      end while
end RPC
```


© 2013 Roman Barták Department of Theoretical Computer Science and Mathematical Logic bartak@ktiml.mff.cuni.cz