Constraint Programming

So far we used constraints in a passive way (as a test).
in the best case we analysed the reason of the conflict.

Can we use the constraints in a more active way?

Example:
Ain 3..7,Bin 1..5 the variables’ domains
A<B the constraint

— many inconsistent values can be removed
—weget Ain3.4,Bin4.5

Note: it does not mean that all the remaining combinations of the values are consistent (for
example A=4, B=4 is not consistent)

* How to remove the inconsistent values from the variables’
domains in the constraint network?

Unary constraints are converted into variables’
domains.

Definition:
— The vertex representing variable X is node consistent iff every value in the

variable’s domain D, satisfies all the unary constraints imposed on the
variable X.

— CSP is node consistent iff all the vertices are node consistent.

Algorithm NC

procedure NC(G)
for each variable X in nodes(G)
for each value V in the domain Dy
if unary constraint on X is inconsistent with VV then
delete V from Dy
end for

end for
end NC @)

Since now we will assume binary CSPs only

i.e. a constraint corresponds to an arc (edge) in the
constraint network.

Definition:

— The arc (V,V)) is arc consistent iff for each value x from the domain D; there
exists a value y in the domain D; such that the assignment V;=xa V;=y
satisfies all the binary constraints on V, V..

Note: The concept of arc consistency is directional, i.e., arc consistency of
(V,V;) does not guarantee consistency of (V,V)).

— CSP is arc consistent iff every arc (V, V) is arc consistent (in both directions).

Example:

A<B A<B A<B

Al3-7Ezz701.5 g Al3-4 E——]1.5 | Al 3-4 4.5 | 5

no arc is consistent (A,B) is consistent (A,B) and (B,A) are consistent

How to make (V;,V;) arc consistent?

* Delete all the values x from the domain D, that are
inconsistent with all the values in D, (there is no value y in D,
such that the valuation V;=x, V; = y satisfies all the binary

constrainson V;a V).
Algorithm of arc revision

procedure REVISE((i,)))
DELETED <« false

for each X in D, do
if there is no such Y in D; such that (X,Y) is consistent, i.e.,
(X,Y) satisfies all the constraints on V;, V; then

delete X from D,

end?fELETED < e O O The procedure also
df reports the deletio
end tor of some value.

return DELETED
end REVISE

How to make a CSP arc consistent?
* Do revision of every arc.

Beware, this is not enough! Pruning the domain may make
some already revised arcs inconsistent again.

A<B, B<C: (3.7,1..5,1..5) (3..4,1.5,1..5) (3..4,4.5,1..5) (3..4,4.1..5) (3.4.4.5) (3,4,5)

* Thus the arc revisions will be repeated until any domain is

changed.
Algorithm AC-1

procedure AC-1(G)
repeat
CHANGED <« false
for each arc (i,j) in G do
CHANGED « REVISE((i,j)) or CHANGED
end for
until not(CHANGED)
end AC-1

* If asingle domain is pruned then revisions of all the
arcs are repeated even if the pruned domain does
not influence most of these arcs.

Which arcs should be reconsidered for revisions?

* The arcs whose consistency is affected by the domain

pruning, i.e., the arcs pointing to the changed
variable.

We can omit one more arc!
Omit the arc running out of
the variable whose domain ‘
has been changed L
(this arc is not affected by the
domain change).

Variable with
pruned domai

The arc whose
revision caused
the domain reduction

A generalised version of the Waltz’s labelling algorithm.

* |n every step, the arcs going back from a given vertex are
processed (i.e. a sub-graph of visited nodes is AC)

Algorithm AC-2

procedure AC-2(G)
fori< 1tondo % n is a number of variables
Q <« {(i,j) | (i,j)earcs(G), j<i} % arcs for the base revision
Q <« {(j,i) | (i,j)earcs(G), j<i} % arcs for re-revision
while Q non empty do
while Q non empty do
select and delete (k,m) from Q
if REVISE((k,m)) then s

Q « Q U {(pk) | (p.k)earcs(G), p<i, p=m))

end while
Q«Q
Q' < empty
end while
end for
end AC-2

Re-revisions can be done more elegantly than in AC-2.
1. one queue of arcs for (re-)revisions is enough

2. only the arcs affected by domain reduction are added
to the queue (like AC-2)

Algorithm AC-3

procedure AC-3(G)

Q <« {(i,j) | (i,j)earcs(G), i#j} % queue of arcs for revision
while Q non empty do
select and delete (k,m) from Q -
if REVISE((k,m)) then \' —
Q < Q U {(i,k) | (i,k)earcs(G), izk, izm}
end if
end while

end AC-3

AC-3 is the most widely used consistency algorithm but it is still not
optimal.

Observation (AC-3):

— Many pairs of values are tested for consistency in every
arc revision.

— These tests are repeated every time the arc is revised.

1. When the arc V,,V, is revised, the
value a is removed from domain of V,.

2. Now the domain of V3, should be
explored to find out if any value
3 a,b,c,d loses the supportin V,.

Observation:
The values a,b,c need not be checked again because they still
have supports in V, different from a.

The support set for acD; is the set {<j,b> | beD;, (a,b)eC;;}

Can we compute the support sets once and then use them during
re-revisions?

* A set of values supported by a given value (if the value disappears then these
values lost one support), and a number of own supporters are kept.

Computing and counting supporters

procedure INITIALIZE(G)
Q«{},S«{ % emptying the data structures
for each arc (V,)V)) in arcs(G) do
for each ain D, do
total < O
for each b in D, do
if (a,b) is consistent according to the constraint C;; then
total « total + 1
Sip < Sjp U {<i,a>}
end if
end for
counter](i,j),a] « total
if counter](i,j),a] = 0 then

delete a from D, S; - a set of pairs <i,a> such that
Q « Q u {<i,a>} <j,b> supports them
end if
end for counter](i,j),a] - number of supports
end for for the value a from D;
return Q in the variable V;

end INITIALIZE

Situation:
we have just processed the arc (i,j) in INITIALIAZE

Counter(i,j),_ i > _i Sj,_
2 al b1 | <i,a1>,<i,a2>
2 a2 ————— | b2 |<ia1>
1 a3 b3 | <i,a2>,<i,a3>

Using the support sets:

1.
2.

3.

Let b3 is deleted from the domain of j (for some reason).

Look at S; p; to find out the values that were supported by b3

(i.e. <i,a2>,<i,a3>).

Decrease the counter for these values (i.e. tell them that they lost one
support).

If any counter becomes zero (a3) then delete the value and repeat the
procedure with the respective value (i.e., go to 1).

Counter(i,j),_ i > _i Sj,_
2 a1l b1 | <i,a1>,<i,a2>
1 22— | p2 |<iat>
0| 3, 5, |

The algorithm AC-4 has the optimal worst-case time

complexity!

Algorithm AC-4

procedure AC-4(G)
Q < INITIALIZE(G)
while Q non empty do
select and delete any pair <j,b> from Q
for each <i,a> from S;, do
counter|(i,j),a] < counter][(i,j),a] - 1
if counter|(i,j),a] = 0 & "a" is still in D, then
delete "a" from D,
Q « Qu {<i,a>}
end if
end for
end while
end AC-4

Unfortunately the average efficiency is not so good
... plus there is a big memory consumption!

* AC-5 (Hentenryck, Deville, Teng 1s2)
— a generic arc-consistency algorithm
— can be reduced both to AC-3 and AC-4
— exploits semantic of the constraint
— functional, anti-functional, and monotonic constraints

* AC-6 (Bessiere 199)

— improves memory complexity and average time complexity of
AC-4

— keeps one support only, the next support is looked for when
the current support is lost

* AC-7 (Bessiere, Freuder, Regin 1s9)
— based on computing supports (like AC-4 and AC-6)
— exploits symmetry of the constraint

— AC-3is not (theoretically) optimal
— AC-4 is (theoretically) optimal but (practically) slow
— AC-6/7 are (practically) faster than AC-4, but quite complicated

What is inefficient in AC-3?

— Looking for supports in REVISE starts from scratch!

Some observations: é 5

if ,,there is no such Y in D; such that (X,Y) is consistent™ then

procedure EXIST((i,x),))
AC-3.1 y < last((i,x),j)
— but for each value, it remembers Wh',le y<—next§)_/,Dj) & y=nil do
the last support in the constraint if (x,y)eC(i,)) then
and the next time, it starts last((i,x),j) <y
looking for a support at this value return true
end while
return false @,‘
end EXIST N

Version of AC-3 with the queue of variables (AC-8)

procedure AC-2001(G)
Q «{i | ienodes(G)} % a gueue of nodes for revision
while Q non empty do
select and delete j from Q
for each ienodes(G) such that (i,j)earcs(G) do

if REVISE2001(i,j) then -
if D.=2 then return falil procedure REVISE2001(i,j)
DELETED « false

end for SR for each x in D, do
end while if last((i,x),j)«D; then
return true if JyeD; y>last((i,x),j)
end AC-2001 & (x,y)eC(i,j) then
last((i,x),j) <y
Note: else
— The algorithm works with delete x from D,

DELETED « true

difference sets — for each :
end if

variable we know a set of end for
values deleted return DELETED o
since the last revision. end REVISE2001 et

Observation 1:
AC has a directional character but a CSP is not directional.

Observation 2:
AC has to repeat arc revisions and the number of revisions
depends on the number of arcs and on the domain size (the
while loop).

Can we weaken AC somehow so each arc is revised
exactly once?

Definition:
CSP is directional arc consistent for a given order of

variables if and only if each arc (i,j), such that i<j, is
consistent.

Again, each arc is checked once, but only in a one direction.

1. Arc consistency is required in one direction only
2. Variables are ordered

% no directed cycle!
6 4

If arcs are revised in the right order then no revision needs to be repeated!

Algorithm DAC-1

procedure DAC-1(G)
for j = |[nodes(G)| to 1 by -1 do
for each arc (i,j) in G such that i<j do
REVISE((i,j)) ’
if D,=¢ then stop with falil
end for
end for
end DAC-1

Obviously AC covers DAC (if CSP is AC, then it is DAC).

Is DAC anyhow useful?
— DAC-1 is clearly more efficient than AC-x
— Moreover, there are problems where DAC is enough.

Example: If the constraint network is a tree then we can use DAC to solve
the problem in a backtrack-free way.

 How to order the nodes for DAC?
 How to order the nodes for labelling (search)?

1. Apply DAC in the order of nodes
/ from the root.
/ \ / .\ 2. Label (assign) the nodes
® starting at root.
/ \ N T DAC ensures that for each child
® © ®

0 ® node there is a value compatible
with the parent node.

Observation:

A CSP is arc consistent if for some ordering of variables the problem is
directional arc consistent in both directions (according to that ordering).

Can we make the problem AC by applying DAC in both directions?
In general NO, but...

Example:
Xin{1,2},Yin{l1}, Zin{1,2}, X#ZY<Z

for ordering X,Y,Z there for ordering Z,Y,X the domain
iS no change in domains of Z is pruned, but the
{1,2} problem is not AC {2

X#Z >/ 2Y<Z X£Z Y<Z
{1,2} {1} ®{1}

{1,2}
If we first try the ordering Z,Y,X, then we get AC!

If we apply DAC to a tree-structured CSP first for the ordering from the
root and then in the reverse direction from leafs then we obtain AC.

Proof:

Q)

after the first run of DAC we e
ensure that each value in a ;

parent node has a support (a :
compatible value) in all child 2 ‘;’/Ic'f/’ \

nodes

if some value is deleted during
the second run of DAC (in the
reverse order) then this value is 3 - 4

a

\

not a support for any value in the c U X
parent node (so the values in the) ,N
parent do not lose supports) X6 2

C

together: each value has a support in all child nodes (the first DAC run)
and in the parent node too (the second DAC run) so the value is AC

By applying AC we remove many inconsistent values.
— Did we solve the problem?
— Do we know that a solution exists?
NO and NO!

Example:

{1,2}
X=Z CSP is arc consistent
but there is no solution!

XY

{1,2} Y=Z {1,2}

What is advantage of using AC?
— Sometimes AC directly provides a solution.
« any domain is empty — no solution exists
 all domains are singleton — this is a solution
— In general, AC decreases the search space.

© 2013 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

