Planning & Scheduling

* Scheduling problem is static so it can be directly
encoded as a CSP.

* Constraint technology is used for full scheduling.

CSP model:

— variables
* position of activity A in time and space
* time allocation: start(A), [p(A), end(A)]
* resource allocation: resource(A)

— Domain
* release times and deadlines for the time variables
* alternative resources for the resource variables

— constraints
* sequencing and resource capacities

* time relations

— start(A)+p(A)=end(A) —
— sequencing A

* B<<A

% end(B)sstart(A) B

U resource capacity constraints
— unary resource (activities cannot overlap)
* A<<B v B<<A
L end(A)sstart(B) v end(B)=start(A)

Resources are used in slightly different meanings
in planning and scheduling!
e scheduling

— resource
= a machine (space) for processing the activity

e planning

— resource
= consumed/produced material by the activity

— resource in the scheduling sense is often handled via
logical precondition (e.g. hand is free)

* Unary resource
— at most one activity can be processed at any time

e Cumulative resource

— several activities can be processed in parallel
if resource capacity is not exceeded.

* Producible/consumable resource

— activity consumes/produces some quantity of the
resource

— minimal capacity is requested (consumption) and
maximal capacity cannot be exceeded (production)

Activities cannot overlap in time!

— at any time at most one activity can be processed,
hence these resources are called unary

We assume that activities are not interruptible (non-
preemptible).
— non-interruptible (non-preemptible) activity occupies the
resource from its start till its completion

A simple mode is based on disjunctive resources:

—A«BVvB«A
end(A) < start(B) v end(B) < start(A)

— hence these resources ale also called disjunctive

What happens if activity A is not processed first?

14
i4 ; Al2)
6 I16
B (4) |
7 15
| C (5)
7
Not enough time for A, B, and C and thus A must be first!
4 7
H A2 H
! 6
}6 : B (4)
15
C (5) |
7

Inference rules:
— p(R2 U {A}) > Ict(€2 U {A}) - est(Q2) = A«Q
— p(R2 U {A}) > Ict(Q) - est(Q U {A}) = Q«A
— A«Q = end(A) = min{ Ict(Q') - p(RQ') | R'CQ}
— Q«A => start(A) = max{ est(Q') + p(Q') | QR'CQ}

In practice:
— we need to explore n.2" pairs (A,€2) (that is too many!)

— instead of all 2 we can use task intervals [X,Y]
{C | est(X) = est(C) A Ict(C) = Ict(Y)}
U time complexity is O(n3); this is frequently used incremental approach

U there are also algorithms with time complexity O(n2) and
O(n.log n)

What happens if activity A is processed first?

6 A (2) | 16{
7 | 15
— ®®
4 16
| ; C)

Not enough time for B and C and thus A cannot be first!

A (2)

7 15

|__ B (5) —

Not-first inference rules:
min(start(A)) + p(L2) + p(4) > max(end(2)) = - 4<<Q
= A<<Q = start(4) = min{ end(B) | BEQ }

Not-last (symmetrical) inference rules:
min(start(Q)) + p(€2) + p(4) > max(end(4)) = - Q<<4
= Q<<4 = end(A) < max{ start(B) | BEQ }

In practice:

— it is possible to use selected sets Q2 only
— time complexity O(n?)

Each activity uses some capacity of the resource
—cap(A).

Activities can be processed in parallel if a
resource capacity is not exceeded.

Resource capacity may vary in time

— modeled via fix capacity over time and fixed activities
consuming the resource until the requested capacity level

is reached
Py
s
S
S — | o | o L fix capacity
o
o
n
3 time

Where is enough capacity for processing the activity?

4 I resource capacity

used capacity

time

How the aggregated demand is constructed?

| I_I
! I—|_| resource capacity

activity must be timer
processed here |

| used capacity

 How to ensure that capacity is not exceed at
any time point?*
Vit Ecap(Al.) < MaxCapacity
start(A;)=t=end(4;)
Timetable for the activity A is a set of Boolean
variables X(A,t) indicating whether A is
processed in time t.

Vi Z X(4;,t) cap(A,) = MaxCapacity

Vt,i start(4)<t=<end(4) < X(4,1)

initial situation

o | {0,1} | 0 |

some times are forbidden due to exceeded capacity
o |

[o [<013 [o] {0,1} | 0

new situation

— —
0 [{01y RN <013 | 0

How to implement domain filtering?
Vi start(4) <t <end(4;) < X(4,,1)

Problem:
t is both an index and variable

start(A) = min{t : ub(X(A,t))=1}
end(A) = 1+max{t : ub(X(A,t))=1}
X(A,t)=0 A t<ect(A) => start(A)>t
X(A,t)=0 A Ist(A)st = end(A)=t
(Ist(A)st A t<ect(A) = X(A,t)=1)

 How to model alternative resources for a given
activity?
* Use a duplicate activity for each resource.

— duplicate activity participates in a respective resource
constraint but does not restrict other activities there

« failure“ means removing the resource from the domain of
variable res(A)

* deleting the resource from the domain of variable res(A) means
»deleting” the respective duplicate activity

— original activity participates in precedence constraints (e.g.
within a job)

— restricted times of duplicate activities are propagated to
the original activity and vice versa.

Let A, be a duplicate of activity A allocated to
resource u € res(A).

uEres(A) = start(A) < start(A,)

ucres(A) = end(A,) = end(A)

start(A) = min{start(A) : uEres(A)}
end(A) < max{end(A,) : uE res(A)}
empty time windows for A, = res(A)\{u}

In practice, this inference is identical to constructive
disjunction between the alternative resources.

When time is relative (ordering of activities)
then edge-finding and aggregated demand deduce nothing

We can still use information about ordering of activities
and resource production/consumption!

Example:
Reservoir: activities consume and supply items

" 5 i
A B

* +1 ”’,
A /4

Activity A ,produces” prod(A) quantity:
— positive number means production
— negative number means consumption

* Optimistic resource profile (orp)
— maximal possible level of the resource when A is processed

— activities known to be before A are assumed together with the production
activities that can be before A

orp(A) = InitLevel + prod(A) + Yy prod(B) + Sg::4 & proas)>0 Prod(B)

* Pessimistic resource profile (prp)
— minimal possible level of the resource when A is processed

— activities known to be before A are assumed together with the consumption
activities that can be before A

prp(A) = InitLevel + prod(A) + Yy prod(B) + Sg;:4 & proasy<o Prod(B)

*B??A means that order of A and B is unknown yet

orp(A) < MinLevel = fail

— “despite the fact that all production is planned before A, the
minimal required level in the resource is not reached”

orp(A) — prod(B) — Y c & 224 & proacy»0 Prod(C) < MinLevel
= B<<A,

for any B such that B??A and prod(B)>0
— “if production in B is planned after A and the minimal

required level in the resource is not reached then B must be
before A”

prp(A) > MaxLevel = fail
— “despite the fact that all consumption is planned before A, the

maximal required level (resource capacity) in the resource is
exceeded”

prp(A) — prod(B) — Yp ¢ & c22a & proacy<o Prod(C) > MaxLevel
= B<<A,

for any B such that B??A and prod(B)<0

— “if consumption in B is planned after A and the maximal
required level in the resource is exceeded then B must be
before A”

What happens if A is processed before B?

6 15

l

| 5@
16

A (5) i

Restricted time windows can be used to infer inevitable
precedence relations.

est(A)+p(A)+p(B)>Ict(B) = B«A

We can “energy” of activities processed before A to infer a
more precise value of est(A)

start(A) = max{ est(Q’) + [e(RQ’)/cap] | Q'C{C: C«A}}
For unary resources:

start(A) = max{ est(Q2’) + p(R2’) | L'T{C : C«A}}
it is enough to explore sets Q(X,A) ={Y | Y « A A est(X) < est(Y)}
start(A) = max{ est(Q2(X,A)) + p(2(X,A)) | X« A}
dur < 0
end < est(A)

for each YE{ X | X « A } in the non-increasing order of est(Y) do
dur < dur + p(Y)

end <— max(end, est(Y) + dur)
end for

est(A) < end g

The objective function in a CSP is usually encoded using
an equality constraint and a new variable:
v = obj(Xs)
Example: makespan = max{end(A,)}

— We can infer better bounds for variable v using the current
domains of variables Xs:
makespan, ;.. = max{ect(A,)}

— We can infer better bounds for variables Xs using the
current bounds for variable v:

end(A,) = makespan,_,

— For more complex objective functions we can use problem
relaxation to compute the bounds.

Branching = resolving disjunctions
Traditional scheduling approaches:
* take critical decisions first

— resolve bottlenecks ...

— defines the shape of the search tree
— recall the first-fail principle

* prefer an alternative leaving more flexibility
— defines order of branches to be explored
— recall the succeed-first principle

How to describe criticality and flexibility formally?

Slack is a formal description of flexibility

* Slack for a given order of two activities
,free time for shifting the activities”

L~ 1] !

slack for A<<B

I L s 1]

slack(A<<B) = max(end(B))-min(start(A))-p({A,B})

» Slack for two activities
slack({A,B}) = max{slack(A<<B),slack(B<<A)}

* Slack for a group of activities
slack(€2) = max(end(€2)) - min(start(€2)) - p(€2)

A<<B v -A<<B

* Which activities should be ordered first?
— the most critical pair (first-fail)
— the pair with the minimal slack({A,B})

 What order should be selected?

— the most flexible order (succeed-first)
— the order with the maximal slack(A??B)

* O(n?) choice points

(A<<Q v = A<<Q) or (Q2<<A v = Q<<A)

* Should we look for first or last activity?
— select a smaller set among possible first or possible
last activities (first-fail)
* What activity should be selected?

— If first activity is being selected then the activity with
the smallest min(start(A)) is preferred.

— If last activity is being selected then the activity with
the largest max(end(A)) is preferred.

e O(n) choice points

Resource slack is defined as a slack of the set of
activities processed by the resource.

How to use a resource slack?
— choosing a resource on which the activities will be
ordered first
* resource with a minimal slack (bottleneck) preferred

— choosing a resource on which the activity will be
allocated
* resource with a maximal slack (flexibility) preferred

