Planning & Scheduling

Roman Bartak

Department of Theoretical Computer Science and Mathematical Logic

Plan Space Planning

Planning is based on search.

e State space planning
— search nodes correspond to world states
— we can search either forward or backward

Problems:

* large branching factor

— lifting helps to decrease the branching factor by delaying instantiation
of variables

* alternative action orders not leading to a goal

— We do not need to force the order of action until we really need it due
to causal relations

— least-commitment strategy
* “what can be done tomorrow should be done tomorrow”

* The principle of plan space planning is similar to
backward planning:

— start from an ,,empty” plan containing just the
description of initial state and goal

— add other actions to satisfy not yet covered (open)
goals

— if necessary add other relations between actions in
the plan

* Planning is realised as repairing flaws in a
partial plan

— go from one partial plan to another partial plan until
a complete plan is found

e Assume a partial plan with the following two actions:
— take(k1,c1,p1,11) —o J—
— load(k1,c1,r1,I1) Y, M — H

* Possible modifications of the plan:
— adding a new action Goror
* to apply action load, robot r1 must be at location 11
* action move(rl,l,I1) moves robot rl to location |11 from some location |
— binding the variables
* action move is used for the right robot and the right location
— ordering some actions
* the robot must move to the location before the action load can be used
* the order with respect to action take is not relevant
— adding a causal relation

* new action is added to move the robot to a given location that is a
precondition of another action

* the causal relation between move and load ensures that no other action
between them moves the robot to another location

* The initial state and the goal are encoded using two
special actions in the initial partial plan:
— Action a, represents the initial state in such a way that
atoms from the initial state define effects of the action and

there are no preconditions. This action will be before all
other actions in the partial plan.

— Action a_ represents the goal in a similar way —atoms
from the goal define the precondition of that action and
there is no effect. This action will be after all other actions.

* Planning is realised by repairing flaws in the partial
plan.

The search nodes correspond to partial plans.

A partial plan IT is a tuple (A,<,B,L), where
— A is a set of partially instantiated planning
operators {a,,...,a,}
— < is a partial order on A (a;<3;)
— B is set of constraints in the form x=y, x=y or x&D,
— L is a set of causal relations (a,—Pa;)
* 3,3, are ordered actions a<a,

* pisa literal that is effect of a; and precondition of g

* B contains relations that bind the corresponding
variablesin p

Q

causal
relations
O

o

I
|
1
|
1
|
!
|

in(cl,p1) "
at(r1,13)
AN

(e}

Q
action
effect

action
precondition
@)

i——*at(r‘l,u)

empty (k1) unloaded(rl)

-=—1in(cl,pl) p~~L--=holding(kl,c1) °
i
|

|
I
|
take(kl,cl,p1,11) | load(kl,cl,r1,11)
|
holding(kl,cl)-—--! Toaded (ri,cl)
—in(cl,pl) empty (k1)
adjacent(1,11), in(c1,p2)
- at(rl,1)

—occupied(11)

move(rl,l,11)

at(r1,11)-————=————~ 4
—at(rl,1)
—occupied(11)
occupied(l)

* Open goal is an example of a flaw.

* This is a precondition p of some operator b in the
partial plan such that no action was decided to satisfy
this precondition (there is no causal relation a,—Pb).

* The open goal p of action b can be resolved by:

— finding an operator a (either present in the partial plan or a
new one) that can give p (p is among the effects of aand a

can be before b)

— binding the variables from p

— adding a causal relation a—Fb

* Threat is another example of flaw.

* This is action that can influence existing causal relation.

— Let a,—Pa, be a causal relation and action b has among its
effects a literal unifiable with the negation of p and action b
can be between actions a; and a,. Then b is threat for that
causal relation.

* We can remove the threat by one of the ways:

H e at (r1,11),
— ordering b before a, e (e I v
i empty (k1) ! unloaded(r1)
]
take(kl,c1,p1,11) : Toad(k1,cl,rl,11}

]
holding(kl,cl) —---4 (loaded(rl,cl)

— ordering b after a;

— binding variables in b = J| e et ()
in such a way that p e st 1 B
P T el at(r1, I
i i —occupied(11)
does not bind with a1 —
the negatlon of o ig"cl(’rlll,)l_) 5&
—occupied(11)
occupied(l) %

* Partial plan IT = (A,<,B,L) is a solution plan for the
problem P = (%,s,,g) if:
— partial ordering < and constraints B are globally consistent

* there are no cycles in the partial ordering
* we can assign variables in such a way that constraints from B hold

— Any linearly ordered sequence of fully instantiated actions
from A satisfying < and B goes from s, to a state satisfying g.

* Hmm, but this definition does not say how to verify that
a partial plan is a solution plan!

How to efficiently verify that a partial planis a
solution plan?

Claim:
Partial plan IT = (A,<,B,L) is a solution plan if:
— there are no flaws (no open goals and no threats)
— partial ordering < and constraints B are globally consistent

Proof by induction using the plan length
— {ay,a,,a,.} is a solution plan

— for more actions take one of the possible first actions and
join it with action a,

* PSP = Plan-Space Planning

PSP(x)
flaws «+— OpenGoals(w) U Threats(w)
if flows = 0 then return(r)
select any flaw & € flaws
resolvers «— Resolve(d, 7)
if resolvers = 0 then return(failure)
nondeterministically choose a resolver p ¢ resolvers
7’ «— Refine(p, 7)
return(PSP(="))
end

Notes:
* The selection of flaw is deterministic (all flaws must be resolved).

* The resolvent is selected non-deterministically (search in case of
failure).

* Open goals can be maintained in an agenda of action
preconditions without causal relations. Adding a
causal relation for p removes p from the agenda.

 All threats can be found in time O(n3) by verifying
triples of actions or threats can be maintained
incrementally: after adding a new action, check
causal relations influenced (O(n?)), after adding a
causal relation find its threats (O(n)).

* Open goals and threats are resolved only by
consistent refinements of the partial plan.

— consistent ordering can be detected by finding cycles or by
maintaining a transitive closure of <

— consistency of constraints in B
* If there is no negation then we can use arc consistency.

* In case of negation, the problem of checking global consistency is
NP-complete.

Algorithm PSP is complete and sound.

— soundness

* If the algorithm finishes, it returns a consistent plan with no flaws
so it is a solution plan.

— completeness

* If there is a solution plan then the algorithm has the option to
select the right actions to the partial plan.

* Be careful about the deterministic implementation!
— The search space is not finite!

— A complete deterministic procedure must guarantee that
it eventually finds a solution plan of any length — iterative
deepening can be applied.

PoP is a popular instance of algorithm PSP.

PoP(m, agenda) ;; where m = (A, <, B, L)
if agenda = @ then return(m)
select any pair (a;, p) in and remove it from agenda
relevant < Providers(p, 7)
if relevant = @ then return{failure)
nondeterministically choose an action a; € relevant
L« LU{(ai 2> a)}
update B with the binding constraints of this causal link
if a; is a new action in A then do:
update A with 4;
update < with (a; <), (a0 < a; < dco)
update agenda with all preconditions of a;
for each threat on (a; N a;} or due to a; do:
resolvers < set of resolvers for this threat
if resolvers = @ then return(failure)
nondeterministically choose a resolver in resolvers
add that resolver to < orto B
return(PoP(rr, agenda))
end

Initial state:

— Agenda is a set of pairs
(a,p), where pis an
open precondition of
action a.

— First find an action a, to
cover some p from the
agenda.

— At the second stage
resolve all threats that
appeared by adding
action a, or from a
causal relation with a..

— At(Home), Sells(OBI,Drill), Sells(Tesco,Milk), Sells(Tesco,Banana)

— so action Start is defined as:
Precond: none

Effects: At(Home), Sells(OBI,Drill), Sells(Tesco,Milk), Sells(Tesco,Banana)

Goal:

— Have(Drill), Have(Milk), Have(Banana), At(Home)

— so action Finish is defined as:

Precond: Have(Drill), Have(Milk), Have(Banana), At(Home)

Effects: none

The following two operators are available:

— Go(l,m) ;; go from location /to m

Precond: At(/)
Effects: At(m), =At(/)

— Buy(p,s) ;; buy p at location s
Precond: At(s), Sells(s,p)
Effects: Have(p)

The initial (empty) plan
Go(/,m)
Precond: At(/)
Effects: At(m), -At(/)

Buy(p,s)
Precond: At(s), Sells(s,p)

Effects: Have(p)

action effects
below the
action

0 Start
O

At(Home), Sells(OBI,Drill), Sells(Tesco,Milk), Sells(Tesco,Bananas)

Have(Drill), Have(Milk), v Have(Bananas), At(Home)
Q

@)

Finish

action
preconditions
above the action

« There is only one way to satisfy the

open goals Have, and this is via coum |)
actions Buy (no threats added). Effects: At(m), ~At()
Buy(p,s)

Precond: At(s), Sells(s,p)
Effects: Have(p)

Start

ST N

At(s,), Sells(s,,Drill) At(s,), Sells(s,,Milk) At(s;), Sells(s;,Bananas)

Buy(Drill, s,) Buy(Milk, s,) Buy(Bananas, s;)

AN Y

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

« There is again a single way to satisfy
preconditions Sells and this is
substituting the right constants.

|

At(OBI), Sells(OBI,Drill)

Buy(Drill,OBI)

N

Start

At(Tesco), Sells(Tesco,Milk)

Go(/,m)
Precond: At(/)
Effects: At(m),

Buy(p,s)

At(/)

Precond: At(s), Sells(s,p)

Effects: Have(p)

N

At(Tesco), Sells(Tesco,Bananas)

Buy(Milk, Tesco)

y

Buy(Bananas, Tesco)

P

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

« The only way to satisfy open goals
is by adding actions Go.
— There are new threats!

At(l;)

l -
-
’

Go(l,,0Bl) [~ = -se—=s2I17]

Buy(Drill,OBI)

AN

Start

Go(/,m)
Precond: At(/)
Effects: At(m),

Buy(p,s)

At(/)

Precond: At(s), Sells(s,p)

Effects: Have(p)

At(l,)

—

~ =~

N ‘\\
\ ~
\ ' \
v v

/Y Go(/,, Tesco)

At(OBlI), Sells(OBI,Drill) At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk, Tesco)

Buy(Bananas,Tesco)

F

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

* One threat can be solved by

ordering Buy(Drill) before Go(Tesco)

— This solves all the threats!

At(/)
Go(/,,0BI)

At(OBI), Sells(OBI,Drill)

Buy(Drill,OBI)

AN

Start

Go(/,m)
Precond: At(/)
Effects: At(m),

Buy(p,s)

At(/)

Precond: At(s), Sells(s,p)

Effects: Have(p)

At(l)

71

Go(/,, Tesco)

A\

At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk, Tesco)

Buy(Bananas, Tesco)

/

P

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

- Open goal At(/,) can be satisfied

by assignment /,=Home taken

from the action Start.

At(Home)

Go(Home,OBI)

\

At(OBI), Sells(OBI,Drill)

Buy(Drill,OBI)

AN

Start

Go(/,m)
Precond: At(/)
Effects: At(m),

Buy(p,s)

At(/)

Precond: At(s), Sells(s,p)

Effects: Have(p)

At(l)

71

/V Go(l,, Tesco)

At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk, Tesco)

Buy(Bananas, Tesco)

/

~

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

« Open goal At(/,) can be satisfied

by assignment ,,=0BI from action
Go(Home, OBI)

Start

Go(/,m)
Precond: At(/)
Effects: At(m),

Buy(p,s)

At(/)

Precond: At(s), Sells(s,p)

Effects: Have(p)

At(Home)

Go(Home,OBI)

\

At(OBI), Sells(OBI,Drill)

Buy(Drill,OBI)

AN

At(OBI)

1

Go(OBl, Tesco)

At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas)

Buy(Milk, Tesco)

Buy(Bananas, Tesco)

/

-

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

« Open goal At(Home) from Finish is
satisfied by action Go
— new threats appear

Start

Go(/,m)
Precond: At(/)
Effects: At(m),

Buy(p,s)

At(/)

Precond: At(s), Sells(s,p)

Effects: Have(p)

s———

At(Home)
Go(Home,OBI)

At(OBI), Sells(OBI,Drill)

Buy(Drill,OBI)

AN

=== Em -
-

At(OBI)

[T~

o(OBl, Tesco)

At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco, Bananas)‘ At(l;)

Buy(Milk, Tesco)

Buy(Bananas, Tesco)

Go(l;, Home)

/

Finish

~ 7

Have(Drill), Have(Milk), Have(Bananas), At(Home)

« Threats for At(Tesco) are removed

by ordering Go(Home) after both

actions Buy

Start

Go(/,m)
Precond: At(/)
Effects: At(m),

Buy(p,s)
Precond: At(s), Sells(s,p)

Effects: Have(p)

At(/)

At(OBI)

At(Home)

Go(Home,OBI)

\

At(OBI), Sells(OBI,Drill)
Buy(Drill,0BI)

AN

Go(OBl, Tesco)

1

At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas) At(l;)

Buy(Milk, Tesco)

Buy(Bananas, Tesco)

Go(l;, Home)

/

N— <

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

- Open goal At(;) is satisfied by

asignment /;=Tesco from action
Go(OBI, Tesco).
Start
At(Home)

Go(/,m)
Precond: At(/)
Effects: At(m),

Buy(p,s)
Precond: At(s), Sells(s,p)
Effects: Have(p)

At(/)

— At(OBI)

Go(Home,OBI)

\

At(OBI), Sells(OBI,Drill)
Buy(Drill,0BI)

AN

Go(OBl, Tesco)

71

A\

\

At(Tesco), Sells(Tesco,Milk) At(Tesco), Sells(Tesco,Bananas) At(Tesco)

/

Have(Drill), Have(Milk), Have(Bananas), At(Home)

Finish

Buy(Milk, Tesco) | | Buy(Bananas,Tesco) ﬁgg:)sco
N— A

State space planning Plan space planning

search space finite infinite
search nodes simple complex
(world states) (partial plans)
world states explicit not used
partial plan action selection and action selection and

ordering done together | ordering separated

plan structure linear causal relations

» State space planning is much faster today thanks to heuristics
based on state evaluation.

* However, plan space planning:
— makes more flexible plans thanks to partial order
— supports further extensions such as adding explicit time and resources

© 2014 Roman Bartak
Department of Theoretical Computer Science and Mathematical Logic
bartak@ktiml.mff.cuni.cz

