
Filtering Algorithms for Batch Processing with Sequence Dependent Setup Times

Petr Vilı́m and Roman Barták
Charles University

Faculty of Mathematics and Physics
Malostranské náměstı́ 2/25, Praha 1, Czech Republic

vilim@kti.mff.cuni.cz,
bartak@kti.mff.cuni.cz

Abstract

Domain filtering is a powerful technique for reduction
of the search space during solving combinatorial prob-
lems like scheduling. In this paper we present several
filtering algorithms designed specifically for schedul-
ing in batch processing environments with sequence
dependent setup times. We extend two known algo-
rithms, namely edge finding and not-first/not-last tech-
nique, and we present a new filtering algorithm called
not-before/not-after. Each of these algorithms removes
some inconsistencies that are not detected by the other
two algorithms. Thus, all the algorithms are assumed to
run together to achieve better pruning.

Introduction
Constraint programming (CP) is becoming a popular tool
for solving large combinatorial problems. It provides nat-
ural modeling capabilities to describe many real-life prob-
lems via domain variables and constraints among these vari-
ables. There exist generic techniques for constraint satis-
faction usually based on integration of search (enumera-
tion, labeling) with constraint propagation (domain filter-
ing). Moreover, the CP framework allows integration of
problem-dependent filtering algorithms into the constraint
solver. These filtering algorithms typically encapsulate a set
of elementary constraints; then we are speaking about global
constraints. By using semantic information the global con-
straint typically removes more inconsistencies than generic
constraint propagation through the elementary constraints.
Still the global constraints keep reasonable (polynomial)
time and space complexity.

Many global constraints/filtering algorithms have been
designed for various classes of scheduling problems. One
of the most important filtering techniques for solving the
disjunctive scheduling problems is the edge-finding algo-
rithm (for definitions of disjunctive and cumulative schedul-
ing see (Baptiste & Le Pape 1996)). This algorithm was
originally proposed in (Carlier & Pinson 1989) and there are
also other versions of this algorithm like (Martin & Shmoys
1996). Edge-finding can also be adapted for cumulative
scheduling (Baptiste & Le Pape 1996). Not-first/not-last

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

is another filtering algorithm for disjunctive scheduling de-
scribed in (Baptiste & Le Pape 1996). This technique can be
combined with edge-finding to achieve even better pruning.
Caseau and Laburthe (1994) proposed the scheduling tech-
nique called tasks intervals for both disjunctive and cumula-
tive scheduling. However, the combination of edge-finding
with not-first/not-last outperforms the tasks intervals. There
are also special techniques designed for cumulative schedul-
ing like elastic relaxations (Baptiste, Le Pape, & Nuijten
1998) or energetic reasoning.

In this paper, we concentrate on filtering algorithms
for batch processing with sequence dependent setup times.
Such environment is quite often in real-life scheduling prob-
lems where batches describe a collection of activities pro-
cessed together, e.g. in the pool, and set-up times describe
the time necessary to prepare the resource for the next batch,
e.g. to clean up a pool. Batch processing and setup times
impose additional constraints to the problem and these con-
straints can be used to prune the search space. We propose
to encapsulate these additional constraints into a global fil-
tering algorithm that achieves better pruning than existing
global constraints for scheduling. In particular this algo-
rithm exploits information about overlapping of activities –
in batch processing, either the activities do not overlap or
if two activities are overlapping then they start and com-
plete at the same times. Thus, in some sense batch pro-
cessing can be seen a mixture of cumulative scheduling with
disjunctive scheduling. The filtering algorithms for cumu-
lative scheduling are weak when applied to batch process-
ing because they do not use information about batches. The
stronger filtering algorithms for disjunctive scheduling can-
not be applied directly to batch scheduling because of paral-
lel activities in the batch. So we extended the existing algo-
rithms for disjunctive scheduling, namely edge finding and
not-first/not-last, to work with batches. Moreover our al-
gorithms exploit information about the setup times between
the consecutive batches, which further improves domain fil-
tering. We have also designed a new filtering algorithm
called not-before/not-after. Because the above filtering al-
gorithms can remove different inconsistencies, we propose
to integrate them into a single algorithm where the filtering
is repeated until any domain is changed. Note that the un-
derlying solving system calls this global filtering algorithm
whenever a lower bound or an upper bound of the domain



of any involved variable is changed by another constraint.
It means that our filtering algorithm can be naturally inte-
grated into a constraint-based scheduler. In particular, it is
possible to impose additional constraints over the problem
variables (e.g. direct relations between the activities) or to
model more resources using several instances of the same
filtering algorithm.

The paper is organized as follows. We first introduce the
basic notions and define the functions that are pre-computed
once at start and then used in our filtering algorithms. The
main part of the paper describes the three filtering algo-
rithms. We conclude with some experimental results.

Batch Processing – Basic Notions
Our definition of batch processing is close to p-batching in
traditional scheduling (Brucker 2001), i.e. if there are two
overlapping activities in the resource then these activities
must start at the same time and they must complete at the
same time. The activities processed together form a batch.

We can restrict the number of activities processed together
in a single batch using capacity and compatibility constraints
(Figure 1). Let T be a set of all activities that can be pro-
cessed by the resource. Each activity i ∈ T has assigned
two attributes: ci indicating the capacity consumed by the
activity and fi indicating the type of the activity (family).
The compatibility constraint requires that only the activities
of the same family are processed in a single batch. The ca-
pacity constraint says that the sum of the capacities of the
activities in a single batch must not exceed the capacity C
of the resource (renewable resources are assumed only, i.e.
the capacity is consumed only when the activity runs). For
simplicity reasons, we assume that the capacity C of the re-
source is a constant number.

i

j
C

ci

cj

Figure 1: Two tasks i and j of the same family (fi = fj) can
be processed simultaneously.

Because all the activities processed in a single batch start
and complete at the same time, they have the same duration.
Thus we can assign the duration attribute to the family rather
than to a particular activity. Formally, let F denotes the set
of all the families in the resource, i.e., F = {fi, i ∈ T}.
Then pf denotes the duration (processing time) of every ac-
tivity of family f .

When we have a pair of consecutive batches processed
by the resource, a special setup time have to be inserted be-
tween these batches. If this time depends on both batches
then we are speaking about a sequence dependent setup
time. If the setup time depends on one batch only then this
time can be included in the processing time of this batch.
Formally, we denote sfg a setup time between the batches

of family f and family g. No setup time is assumed between
the batches of the same family, i.e.:

∀f ∈ F : sff = 0 (1)

or this setup time can be included in pf . Like (Brucker &
Thiele 1996) we assume that the setup time satisfies a trian-
gle inequality:

∀f, g, h ∈ F : sfh ≤ sfg + sgh (2)

We are aware about the resources without this property, then
a weaker version of our filtering algorithms must be used.
Note finally that the notations of processing times for fami-
lies can be extended to activities as well:

pi = pfi

The scheduling task is to find out when the activity is pro-
cessed by the resource, i.e. to determine its start time and its
completion time respecting the above constraints. Initially, a
release time ri (the earliest start time) and a due time di (the
latest completion time) is assigned to each activity i ∈ T .
The release and due times defines a time window when the
activity can be processed. The goal of the filtering algorithm
is to shrink the time window by removing as much as pos-
sible infeasible times. More precisely, the release time is
increased and the due time is decreased during filtering.

Let n denotes the number of activities, i.e., n = |T | and
k be the number of families, k = |F |. We assume that k is
much smaller than n. Our filtering algorithms are polyno-
mial in k and n, as we show later their time complexity is
O(kn2). But the filtering algorithms require some prepro-
cessing when a collated information is computed (see next
section). Time complexity of preprocessing is O(k22k) that
is OK, if k is not a large number. We can assume that k is
not large as it denotes the number of activity families.

Consolidated Setup Time
In the previous section, the attributes of the activity families
have been introduced. We can now extend these notions into
the sets of families. Opposite to (Brucker & Thiele 1996)
we propose to compute these consolidated attributes once
before the scheduling starts. We can identify a set of families
using a standard bitmap, i.e. each set can be represented as
a number. Thus the values of the consolidated attributes can
be saved in an array with the access time O(1).

We have defined a setup time between a pair of activity
families. It is useful to know what is the minimal setup time
when a set of activities is processed. In particular, let φ ⊆ F
be a set of activity families, then s(φ) denotes the minimal
setup time used when the activities of types in φ are pro-
cessed. Similarly, s(f, φ) denotes the minimal setup time
when processing starts with some activity of the type f ∈ φ
and s(φ, f) is a minimal setup time when processing com-
pletes with an activity of the type f ∈ φ. If we assume
that the number of activity families is not very large, we can
compute the values s(φ), s(f, φ), and s(φ, f) for every set
φ of families and every family f in advance. As we show
now, the time complexity of such algorithm is O(k22k).

Visibly:

∀φ ⊆ F : s(φ) = min{s(f, φ), f ∈ φ} (3)



Thus, it is enough to compute the functions s(f, φ) and
s(φ, f); the function s(φ) can then be computed using the
formula (3) in time O(k2k). We show now how to compute
the function s(f, φ) inductively by the size of the set φ. The
function s(φ, f) can be computed in a similar way.

For the sets φ with just one family, there are no setups
used according to (1):

∀f ∈ F : s(f, {f}) = 0

We can compute the value s(f, {f} ∪ φ) from the value
s(g, φ) using the following formula (note, that the triangle
inequality (2) is required here):

∀φ ⊂ F, ∀f ∈ (F \ φ) :

s(f, {f} ∪ φ) = min{sfg + s(g, φ), g ∈ φ}

The time complexity of this computation is O(k22k).

Consolidated Processing Time
Similarly to the minimal setup time when processing the set
of activities, we can define the minimal processing time for
a given set of activities. Now the capacity of the activities
and the capacity of the resource are assumed.

Let Ω ⊆ T be a set of activities, then c(Ω, f) denotes the
total capacity of the activities from Ω that have the family f :

c(Ω, f) =
∑

i∈Ω
fi=f

ci

Let u(Ω, f) denotes the minimal time to process all the ac-
tivities of family f from Ω. This value is computed as a
multiplication of the minimal number of batches and the pro-
cessing time of the family f :

u(Ω, f) =
⌈c(Ω, f)

C

⌉

pf

Let FΩ be the set of all the activity families in the set Ω,
i.e. FΩ = {fi, i ∈ Ω}. Now we can define the total
pure processing time u(Ω) for the set of activities Ω when
no setups are involved:

u(Ω) =
∑

f∈FΩ

u(Ω, f)

Finally, we define the consolidated processing time p(Ω) for
the set of activities Ω which consists of the pure processing
time and the setup time for Ω.

p(Ω) = s(FΩ) + u(Ω)

Like the setup times, consolidated processing time can be
specified when processing starts or completes with an activ-
ity of a particular family:

p(j, Ω) = s(fj , FΩ) + u(Ω)

p(Ω, j) = s(FΩ, fj) + u(Ω)

Let dΩ be the maximal due time among the activities in the
set Ω and rΩ be the minimal release time of the activities in
the set Ω:

dΩ = max{di, i ∈ Ω}

rΩ = min{ri, i ∈ Ω}

Filtering Rules
In this section we show a modification of the edge-finding
rules from (Martin & Shmoys 1996) to work with batch pro-
cessing and sequence dependent setup times. We also pro-
pose the rules not-before/not-after that further increase the
filtering power of edge-finding. The rules not-first/not-last
will be described in a separate section.

Integrity Rule

The feasible schedule exists only if all the activities in ev-
ery set Ω ⊆ T can be processed within the time interval
〈rΩ, dΩ〉. The following rule deduces that a feasible sched-
ule does not exist because there is not enough time to process
the activities from Ω:

∀Ω ⊆ T : dΩ − rΩ < p(Ω) ⇒ fail (4)

Not-Before/Not-After Rules

Consider an arbitrary set Ω ⊂ T and an activity i /∈ Ω.
If we schedule the activity i before the activities Ω, then
processing of the set Ω can start at first in the time ri +
pi. Then processing of activities in Ω needs time u(Ω) +
s(fi, FΩ∪{fi}) because the resource is already adjusted for
processing of fi (this is the family of the activity i that is
processed before Ω). If such a schedule is not possible (i.e.
processing of Ω ends after dΩ) then the activity i cannot be
scheduled before Ω:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) :

ri + pi + u(Ω) + s(fi, FΩ ∪ {fi}) > dΩ ⇒ i 6� Ω (5)

i k l

ri dΩ di

sfkfl

pi pk pl

fi fk fl

Figure 2: Example of not-before condition for the task i and
set Ω = {k, l}, when fi = fk.

When the activity i cannot be processed before the activ-
ities in Ω then processing of the activity i can start at first
together with the first activity from Ω. Thus we get the fol-
lowing not-before rule for modification of the earliest start
time of the activity i:

i 6� Ω ⇒ ri ≥ rΩ (6)

A symmetric rule not-after is defined in the following way:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) :

di − pi − u(Ω) − s(FΩ ∪ {fi}, fi) < rΩ ⇒ Ω 6� i (7)

Ω 6� i ⇒ di ≤ dΩ (8)



Edge-Finding Rules

Like the not-before/not after rules, the edge finding rule is
trying to find a relative position of the activity i in respect
to the set of activities Ω. Now we are asking whether the
activity i can be processed together with the activities in Ω.
If the answer is no then i must be processed either before or
after all the activities in Ω. Consider again an arbitrary set
Ω ⊂ T and an activity i /∈ Ω. If there is not enough time for
processing activities Ω∪{i} in the interval 〈rΩ, dΩ〉, then the
activity i has to be scheduled before or after all the activities
from Ω:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) :

dΩ − rΩ < p(Ω ∪ {i}) ⇒ (Ω � i or i � Ω) (9)

Now we need to decide if the activity i has to be scheduled
before Ω or after it. For that decision we can use the not-
before and not-after rules. If one of these rules ((5) or (7))
holds then we can deduce the relative position of i in respect
to Ω and we can change ri or di accordingly:

Ω � i ⇒ (10)

ri ≥ max{rΩ′ + u(Ω′) + s(FΩ′ ∪ {fi}, fi), Ω′ ⊆ Ω}

i � Ω ⇒ (11)

di ≤ min{dΩ′ − u(Ω′) − s(fi, FΩ′ ∪ {fi}), Ω′ ⊆ Ω}

How to choose Ω efficiently?

The above rules can be applied to all the sets Ω ⊆ T to
achieve the strongest domain filtering. This leads to a filter-
ing algorithm exponential in the number of activities. For-
tunately, we can apply the rules to a polynomial number of
selected sets Ω ⊆ T while keeping the same filtering power.
We show now how these sets can be designed.

Consider an arbitrary set Ω and a set Ψ defined in the
following way:

Ψ = {k, k ∈ T & rk ≥ rΩ & dk ≤ dΩ}

Caseau & Laburthe call such a set a tasks interval (1994,
1995, 1996). The set Ψ has the following properties:

rΨ = rΩ

dΨ = dΩ

Ψ ⊇ Ω

u(Ψ) ≥ u(Ω)

FΨ ⊇ FΩ

Therefore if we use Ψ instead of Ω in the above rules then
we get the same or even better results. Thus we can apply
the rules only to the tasks intervals in the form:

Ψ = [m, n] = {k, k ∈ T & rk ≥ rm & dk ≤ dn}

where m, n are such activities that rm ≤ rn and dm ≤ dn.
Note that the number of tasks intervals is quadratic in the
number of activities.

An Algorithm for the Integrity Rule
Now we present an algorithm that checks the integrity rule
for every tasks interval. Time complexity of this algorithm
is O(n2). The algorithm assumes that all the activities are
sorted in the decreasing order of ri what could be done in
time O(n ∗ log(n)). For each activity j the algorithm con-
structs incrementally all valid tasks intervals [i, j] and for
each such interval it checks the integrity rule (4):

for j ∈ T do begin
Ω:=∅ ;
for i ∈ T in the decreasing order of ri do begin

if di > dj then
// [i, j] is not a tasks interval
continue;

// expand Ω to a tasks interval [i, j]
Ω:=Ω ∪ {i} ;
if dj − ri < p(Ω) then fail ;

end;
end;

An Algorithm Not-Before/Not-After
The algorithms for the rules not-before and not-after are
symmetrical so we describe the algorithm only for the rule
not-before. Again, the algorithm explores all valid tasks in-
tervals [j, k]. Nevertheless, we do not need to check the con-
dition of the not-before rule (5) for each tasks interval sepa-
rately. The following theorem gives a hint how to do it more
efficiently.

Theorem 1 Let i be an activity of the family g and j be
another arbitrary activity. The rules not-before (i.e. (5) and
(6)) propose change of the value ri using ri ≥ rj if and only
if:

ri > min{dΩ − s(g, FΩ ∪ {g})− u(Ω) − pg,

Ω = [j, k], k ∈ T} (12)

Proof: The inequality (12) holds if and only if there exists
a tasks interval [j, k] such that (5) holds. As we have shown
above, we can work with the tasks intervals only. In partic-
ular, if the condition in (5) is true for some set Ω then we
can find a tasks interval [j, k] such that the condition holds
as well. �

Notice that the right side of the inequality (12) is indepen-
dent of a particular activity i. It depends on the family g of
the activity i only so we can compute the value of the right
side just once and then use the result for all the activities of
the family g. The following algorithm does exactly this:

for g ∈ F do begin
for j ∈ T do begin

m:=∞;
Ω:=∅ ;
for k ∈ T in the increasing order of dk do begin

if rk < rj then
// [j, k] is not a tasks interval
continue;

Ω:=Ω ∪ {k} ;
m:=min{dΩ − s(g, FΩ ∪ {g})− u(Ω) − pg, m};

end;



for i ∈ T, fi = g do
if ri > m then

ri :=max(ri , rj );
end;

end;

Time complexity of this algorithm is O(kn2).

An Algorithm Edge-Finding
In this section we present an algorithm only for the case
Ω � i of the edge-finding rule. The algorithm for i � Ω
can be designed in a symmetrical way.

First, let us analyze which pairs of the activity and the
tasks interval should be checked to change the earliest start
time for the the activity. Let us choose an activity j and a
family g. We now deduce all the changes for the activities
with the family g resulting from the application of the edge-
finding rule to all the tasks intervals [i, j].

Let Ω0 ( Ω1 ( · · · ( Ωx be a sequence of all the tasks
intervals [i, j] such that dΩ0

= dΩ1
= · · · = dΩx

= dj . Let
t0, t1, . . . ty denotes the activities of the family g sorted in
the increasing order of required capacity ci. Now consider
an application of the edge-finding rule to the pair Ωx, ty.
One of the four cases must happen:

1. dty
≤ dΩx

. In this case we will show that if the con-
ditions of the edge-finding rules (5) and (9) hold then the
symmetrical algorithm edge-finding for i � Ω together
with the integrity rule deduces fail. Therefore we can ig-
nore this case.
Similarly the symmetrical algorithm for i � Ω ignores
the case when rty

≥ rΩx
. So the pair Ωx and ty is totally

ignored by the whole edge-finding algorithm when dty
≤

dΩx
and rty

≥ rΩx
meaning that in this case we cannot

apply the edge-finding rules at all because ty ∈ Ωx.
Let us now assume that for ty and Ωx the inequalities in
the conditions of both rules (5) and (9) hold. dty

≤ dΩx

and (9) implies:

dty
− rΩx

≤ dΩx
− rΩx

< p(Ωx ∪ {ty})

It is obvious that:

p(Ωx ∪ {ty}) ≤ u(Ωx) + pg + s(FΩx
∪ {g}, g)

Therefore for ty and Ωx the condition of the rule (7) holds
and together with (9) we get i � Ω. So we can change
dty

accordingly (11):

dty
≤ dΩx

− u(Ωx) − s(g, FΩx
∪ {g})

The inequality in the condition of the rule (5) for ty and
Ωx still holds and thus:

rty
> dΩx

− pg − u(Ωx) − s(g, FΩx
∪ {g})

Now consider the set Ψ = {ty}:

dΨ − rΨ =dty
− rty

≤

≤[dΩx
− u(Ωx) − s(g, FΩx

∪ {g})] − rty
<

<[dΩx
− u(Ωx) − s(g, FΩx

∪ {g})]−

[dΩx
− pg − u(Ωx) − s(g, FΩx

∪ {g})] =

=pg = pΨ

Hence dΨ − rΨ < pΨ and the integrity rule (4) deduces
fail.

We have shown that in the case dty
≤ dΩx

the rules (5)
and (9) can be ignored because if the conditions of these
rules hold then the integrity rule deduces fail. And be-
cause dΩ0

= dΩ1
= · · · = dΩx

these rules can be ignored
also for the activity ty and any set Ω0, Ω1, . . . , Ωx. Hence
we can remove ty from the sequence t0, t1, . . . , ty.

In the following three cases we expect that dty
> dΩx

and
so ty /∈ Ωx.

2. The set Ωx and the activity ty do not satisfy the con-
dition in (9) and so the activity ty can be processed to-
gether with Ωx. Then any activity t0, t1, . . . , ty−1 can be
processed together with Ωx as well because it requires the
same or less capacity than the activity ty. Hence we can
remove the set Ωx from the sequence Ω0, Ω1, . . . , Ωx.

3. The set Ωx and the activity ty do not satisfy the con-
dition (5) and so the activity ty can be processed before
the Ωx. Then the activity ty can be processed before any
set Ω0, Ω1, . . . , Ωx−1. Hence we can remove the activity
ty from the sequence t0, t1, . . . ty.

4. The set Ωx and the activity ty satisfy both conditions
(5) and (9). Then we can change value rty

using the
rule (10). This new value cannot be further increased us-
ing any set Ω0, Ω1, . . . , Ωx−1 because of the form of the
rule (10). Hence we can remove ty from the sequence
t0, t1, . . . , ty.

The above analysis explains what pairs of activity and
tasks interval needs to be checked. We have shown that only
the case 4 above contributes to change of the value rty

using
the rule (10). When we want to change the value rty

accord-
ing to the rule (10) then we need to know the following value
zx:

zx = max{rΩ′ + u(Ω′) + s(FΩ′ ∪ {g}, g), Ω′ ⊆ Ωx}

Now we show how to compute the value zx efficiently.
Consider an arbitrary set Ω′ ⊆ Ωx and a set Φ = {k, k ∈

Ωx & rk ≥ rΩ′}. It is obvious that:

rΩ′ +u(Ω′)+s(FΩ′ ∪{g}, g) ≤ rΦ+u(Φ)+s(FΦ∪{g}, g)

So we can choose only the sets Ω′ in the form of a tasks
interval [i, j] such that dj = dΩ. These tasks intervals are
exactly the sets Ω0, Ω1, . . . , Ωx. Hence:

zx = max{rΩ′ + u(Ω′) + s(FΩ′ ∪ {g}, g),

Ω′ ∈ {Ω0, Ω1, . . . , Ωx}}

Therefore we can compute zx inductively using the formula:

zx = max{zx−1, rΩx
+ u(Ωx) + s(FΩx

∪ {g}, g)}

Using the above analysis we can now design an algorithm
implementing the combination of the edge-finding and not-
before rules. Time complexity of this algorithm is O(kn2).
As usual, the algorithm combining the rules edge-finding
and not-after can be designed in a symmetrical way.



The following algorithm assumes that the activities are
sorted decreasingly by values of ri and also by values of
ci, i.e. two sorted lists of activities are prepared in advance.
The algorithm generates first a sequence of the tasks inter-
vals [i, j]. Then it compares these tasks intervals with all
the activities of a given family g using the above four cases
analysis until either the list of tasks intervals or the list of
activities is finished.

for g ∈ F do begin
for j ∈ T do begin

Ω−1 :=∅ ;
z−1 :=−∞ ;
x:=0;
for i ∈ T in the decreasing order of ri do begin

if di > dj then
// [i, j] is not a tasks interval
continue;

Ωx:=Ωx ∪ {i} ;
zx:=max(zx−1, ri + u(Ωx) + s(FΩx

∪ {g}));
x:=x+1;

end;
y:=an activity with the family g with the greatest cy ;
while ( y ≥ 0 and x ≥ 0) do begin

if dy ≤ dj then
// case 1
y:=next activity in the sequence or -1;
continue;

end;
if dj − rΩx

≥ p(Ωx ∪ {y}) then
// case 2
x:=x−1;
continue;

end;
if dj − ry ≥ s(g, FΩx

∪ {g}) + u(Ωx) + pg then
// case 3
y:=next activity in the sequence or -1;
continue;

end;
// case 4
ry :=max(ry, zx);
y:=next activity in the sequence or -1;

end;
end;

end;

Not-First/Not-Last
In this section we present an extension of another filter-
ing technique called not-first/not-last that was proposed
by (Baptiste & Le Pape 1996). Note that this extension is
different from what we call not-before/not-after as explained
below.

The Rules

Unlike not-before/not-after we now consider an activity i
and a set Ω ⊂ T such that i cannot start neither before Ω
nor together with the first activity in Ω. We denote such

property i 6≺ Ω, similarly Ω 6≺ i:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) :

dΩ − ri < p(i, Ω ∪ {i}) ⇒ i 6≺ Ω (13)

∀Ω ⊂ T, ∀i ∈ (T \ Ω) :

di − rΩ < p(Ω ∪ {i}, i) ⇒ Ω 6≺ i (14)

k

i l

rΩ ri dΩ

sfifl

pi = pk

pl

fi = fk fl

Figure 3: Example of not-first condition for the task i and
set Ω = {k, l}, when fi = fk.

If i 6≺ Ω then i can start at first when the first activity of
Ω finishes, i.e., in the second batch of Ω, and similarly for
Ω 6≺ i:

i 6≺ Ω ⇒ ri ≥ min{rj + pj + sfjfi
, j ∈ Ω} (15)

Ω 6≺ i ⇒ di ≤ max{dj − pj − sfifj
, j ∈ Ω} (16)

Unfortunately, we were not able to make up an algorithm
for the rules (13) and (14) with reasonable time complexity.
Therefore we propose a weaker version of these rules which
allow us to design an algorithm with the time complexity
O(kn2).

Let f ∈ F be a family then cf is a minimal capacity
among the activities from the family f , t(f, Ω) is a mini-
mal value of p(i, Ω ∪ {i}) among all the activities i of the
family f , and symmetrically t(Ω, f). Formally cf , t(f, Ω),
and t(Ω, f) denote:

cf =min{ci, i ∈ T & fi = f}

t(f, Ω) =s(f, FΩ ∪ {f}) + u(Ω)−
⌈c(Ω, f)

C

⌉

pf +
⌈c(Ω, f) + cf

C

⌉

pf

t(Ω, f) =s(FΩ ∪ {f}, f) + u(Ω)−
⌈c(Ω, f)

C

⌉

pf +
⌈c(Ω, f) + cf

C

⌉

pf

Then the weaker replacement of the rules (13) and (14) is:

∀Ω ⊂ T, ∀i ∈ (T \ Ω) :

dΩ − ri < t(fi, Ω) ⇒ i 6≺ Ω (17)

∀Ω ⊂ T, ∀i ∈ (T \ Ω) :

di − rΩ < t(Ω, fi) ⇒ Ω 6≺ i (18)

An Algorithm
We describe an algorithm only for the rules not-first i.e. (13),
(15) and (17), the algorithm for the rules not-last is symmet-
rical.

Hereafter we assume that the activities are ordered in-
creasingly by the values di, i.e. i ≤ j ⇔ di ≤ dj . Let
us choose three arbitrary activities i, j, k such that:

j ≤ k (19)

rj + pj + sfjfi
≤ rk + pk + sfkfi

(20)



i.e., if i 6≺ {j, k} then j proposes an earlier start time for i.
Let Ω(fjk) and Ω(ijk) denote the sets:

Ω(fjk) ={m, m ∈ T & m ≤ k &

rm + pfm
+ sfmf ≥ rj + pfj

+ sfjf}

Ω(ijk) =Ω(fijk) \ {i}

The set Ω(ijk) contains all the activities that do not finish
after the activity k (m ≤ k, i.e., dm ≤ dk) and that do
not propose an earlier start time for activities of the family f
than the activity j. When j and k do not satisfy the condition
(19) or (20) then let Ω(fjk) = ∅ and dΩ(fjk) = ∞.

We can now show that the sets Ω(ijk) play the same role
for the not-first rule like the tasks intervals play for the edge-
finding rule. It means that we can use only the sets Ω(ijk)
in the rules (13), (15) and (17) instead of arbitrary sets Ω.
The following theorem justifies this claim.

Theorem 2 If the rules (13 or 17) and (15) for the activity
i and the set Ω change the value ri to rj + pj + sfjfi

then
there exists an activity k ∈ T such that k 6= i, k ≥ j and the
same rules for the activity i and the set Ω(ijk) also change
the value ri to rj + pj + sfjfi

.

Proof: Let k = max{m, m ∈ Ω}. It is obvious that j ≤ k
because j ∈ Ω. The choice of k implies Ω ⊆ Ω(ijk) and
dΩ = dΩ(ijk). Because (13 or 17) holds for Ω the same
rule holds even for Ω(ijk) and so the rule (15) deduces ri ≥
rj + pj + sfjfi

. �

We will not use the sets Ω(ijk) directly in the filtering al-
gorithm but via the following theorem. First, let us establish
a new notation:

γj,k(f) =min{dΩ(fjl) − s(f, FΩ(fjl)) − u(Ω(fjl)),

l ∈ {k, k + 1, . . . , n}}

δj,k(f) =min{dΩ(fjl) − t(f, Ω(fjl)), l ∈ {1, 2, . . . , k}}

Briefly speaking, γj,k(f) is a minimal value of dΩ(fjk) −
p(f, Ω(fjk)) which can be used in the condition of the rule
(13) for activities of the family f . Similarly, δj,k(f) can be
used to check the condition in (17). Note also that for a given
activity j and a family f we can compute the values γj,k(f)
and δj,k(f) in the time O(n).

Theorem 3 If arbitrary activities i, j satisfy at least one of
the two conditions:

1. ri + pi < rj + pj + sfjfi
and δj,n(fi) < ri.

2. ri + pi ≥ rj + pj + sfjfi
and (δj,i−1(fi) < ri or

γj,i(fi) < ri).

then the rules (13) and (15) allow us to change the value ri

using ri ≥ rj + pj + sfjfi
.

If i and j do not satisfy neither 1. nor 2. then the change
ri ≥ rj +pj +sfjfi

can’t be achieved using the weaker rule
(17).

Proof: We distinguish between two cases:

1. ri +pi < rj +pj +sfjfi
. Then for an arbitrary activity

k we get i /∈ Ω(fijk) and so Ω(ijk) = Ω(fijk). Accord-
ing to the theorem 2 the rule (17) allows us to change ri

using ri ≥ rj + pj + sfjfi
if and only if there exists such

an activity l that:

dΩ(fijl) − t(f, Ω(fijl)) < ri

And this activity exists iff:

min{dΩ(fijl) − t(f, Ω(fijl)), l ∈ T} < ri

Which holds iff δj,n(fi) < ri.
2. ri + pi ≥ rj + pj + sfjfi

. We distinguish between
other two cases:
• i /∈ Ω(fijl) that is equivalent to i > l. Then Ω(ijl) =

Ω(fijl) and according to the theorem 2 rule (17) can
deduce ri ≥ rj + pj + sfjfi

if and only if there exists
such an activity l that:

dΩ(ijl) − t(fi, Ω(ijl)) < ri

Such l exists iff:

min{dΩ(fijl)− t(f, Ω(fijl)), l ∈ {1, . . . , i−1}} < ri

That is exactly:

δj,i−1(fi) < ri

• i ∈ Ω(fijl) so l > i (in fact l ≥ i but according to
theorem 2 l 6= i and thus l > i). This time we use the
stronger rule (13). According theorem 2 the rule (13)
can deduce the change of ri iff there exists such activity
l that:

dΩ(ijl) − p(i, Ω(ijl) ∪ {i}) < ri

Because i ∈ Ω(fijl) thus Ω(ijl) = Ω(fijl). And so
such activity l exists if and only if:

min{dΩ(fijl) − p(i, Ω(fijl)), l ∈ {i, . . . , n}} < ri

And this holds iff γj,i(fi) < ri. �

The above theorem provides instructions how to realize
the not-first rule. First, we compute the values γj,k(f) and
δj,k(f) and then we use the conditions from the Theorem 2
to find out when the earliest start time of some activity i can
be moved forward. The time complexity of such algorithm
is O(kn2).

for f ∈ F do begin
for j ∈ T do begin

compute γj,1(f), γj,2(f), . . . γj,n(f) ;
compute δj,1(f), δj,2(f), . . . δj,n(f) ;
for i ∈ T, fi = f do

if ri + pi < rj + pj + sfjf then begin
if δj,n(fi) < ri then

ri :=max(ri, rj + pj + sfjf );
end else begin

if δj,i−1(fi) < ri or γj,i(fi) < ri then
ri :=max(ri, rj + pj + sfjf );

end;
end;

end;



Experimental Results
As far as we know there is no standard set of benchmark
tests for the problem of batch processing with sequence de-
pendent setup times. Therefore we designed own benchmark
set to test and compare our filtering techniques. The test data
has been generated in the following way: a feasible schedule
for a given number of activities has been generated and then
the time windows for the activities has been randomly ex-
tended. In particular, if the processing of the activity i starts
at time ti in the schedule then we set values ri and di in the
following way:

ri = ti − rand(m)

di = ti + rand(m) + pi

The function rand(m) generates random integer numbers in
the range 0 . . . (m − 1). We use only small m to keep the
problem tighten. Generated problems can be found at (Vilı́m
& Barták 2002a).

The individual filtering techniques have been combined
into a single filtering algorithm. In this algorithm, the
strongest technique – edge-finding is used in the inner loop
to call them more frequently while not-first/not-last is in
the outer loop to be called less frequently. The idea is
to call these filtering techniques until any domain changes:

repeat
repeat

repeat
consistency check
edge-finding

until no more changes found
not-before/not-after

until no more changes found
not-first/not-last

until no more changes found

The above structure of the filtering algorithm has been de-
duced primarily from the experimental results. We discuss
this structure in more details in Conclusions. The tables 1
and 2 show the computational results measured on Intel Pen-
tium Celeron 375MHz.

Conclusions
Filtering techniques play a significant role in pruning the
search space. In scheduling, some problems were not
schedulable (in a reasonable time) without using a filtering
technique like edge-finding or not-first/not-last. In this paper
we propose an extension of these algorithms to batch pro-
cessing with sequence dependent setup times. We also add a
new technique not-before/not-after that further improves the
filtering.

The above techniques filter different inconsistencies so
it is natural to combine them into a single filtering algo-
rithm. In this algorithm, these techniques are repeatedly ap-
plied until any domain changes. The experimental results
showed that edge-finding and not-first/not-last techniques
deduce the largest number of changes among the presented
filtering techniques and thus in our joined algorithm these
techniques are repeated more frequently then the technique

not-before/not-after. Such structure of the global filtering al-
gorithm does not change the filtering power, i.e. the same in-
consistencies are removed independently on the ordering of
calls to a particular technique. However, this structure im-
proves significantly the runtime because the idle calls that
deduce no change are suppressed.

The experimental results approved the significance of
edge-finding technique. If the not-before/not-after tech-
niques do not reduce the search space (table 2) then us-
ing them slows down the search for 20% on average due
to overhead. However when not-before/not-after proposes
some domain reduction then the search time can be signif-
icantly shorter. We expect that in real-life problems with
more constraints, not-before/not-after rules pay off and re-
ductions proposed by them make the search even faster.

Together with the filtering techniques described in this
paper, we have developed one more filtering algorithm
for batch processing with sequence dependent setup times
called sequence composition. However, the experimental re-
sults show that the contribution of this algorithm to filtering
is not as significant as in the case of above algorithms. Due
to space restrictions we omit the description of this filtering
technique here, it can be found in (Vilı́m & Barták 2002b).

Acknowledgements
The research is supported by the Grant Agency of the Czech
Republic under the contract no. 201/01/0942.



without not-before/not-after
problem n k solutions backtracks time backtracks time

a 30 3 88 12 2.22s 13 1.94s
b 25 5 56251 5061 25m 30s 104880 44m 38s
e 20 2 28 0 0.20s 16 0.25s
g 30 3 1690 77 37.08s 92 32.71s
h 75 5 12 2 2.90s 8 3.26s
i 50 5 48 44 7.59s 220 18.17s
j 50 5 10 4 1.34s 21 1.84s
k 50 7 9 0 1.33s 24 2.93s
l 50 5 4 0 0.51s 3 0.51s
n 30 5 39 13 1.78s 37 1.87s
p 30 3 270 24 6.05s 222 7.32s
r 50 7 324 0 44.94s 804 1m 28s
z 50 4 24 7 2.14s 9 1.92s

Table 1: Cases when not-before/not-after reduces number of backtracks.

without not-before/not-after
problem n k solutions backtracks time backtracks time

c 25 5 72 0 1.78s 0 1.45s
d 40 6 12 1 1.02s 1 0.81s
f 50 6 6 2 0.70s 2 0.59s
m 50 3 3 3 0.35s 3 0.29s
o 50 5 32 8 3.60s 8 2.65s
q 50 7 228 0 28.03s 0 24.08s
s 100 7 50 0 26.48s 0 22.20s
t 200 7 8 0 18.00s 0 14.96s
v 100 7 240 0 2m 6s 0 1m 46s
w 50 2 24 4 1.36s 4 1.14s
x 50 2 1368 384 1m 8s 384 58.25s

Table 2: Cases when not-before/not-after does not help.

References

Baptiste, P., and Le Pape, C. 1996. Edge-finding con-
straint propagation algorithms for disjunctive and cumula-
tive scheduling. In Proceedings of the Fifteenth Workshop
of the U.K. Planning Special Interest Group.

Baptiste, P.; Le Pape, C.; and Nuijten, W. 1998. Satis-
fiability tests and time-bound adjustments for cumulative
scheduling problems. In Technical Report 98/97. Universit
de Technologie de Compigne.

Brucker, P., and Thiele, O. 1996. A branch and bound
method for the general shop problem with sequence de-
pendent setup-times. In OR Spectrum, 145–161. Springer-
Verlag.

Brucker, P. 2001. Scheduling Algorithms. Springer-Verlag,
3rd edition.

Carlier, J., and Pinson, E. 1989. An algorithm for solving
the job-shop problem. Management Science 35(2):164–
176.

Caseau, Y., and Laburthe, F. 1994. Improved CLP Schedul-
ing with Task Intervals. In van Hentenryck, P., ed., Pro-

ceedings of the 11th International Conference on Logic
Programming, ICLP’94. The MIT press.
Caseau, Y., and Laburthe, F. 1995. Disjunctive scheduling
with task intervals. In Technical report, LIENS Technical
Report 95-25. Ecole Normale Suprieure Paris, Franc.
Caseau, Y., and Laburthe, F. 1996. Cumulative scheduling
with task intervals. In Joint International Conference and
Symposium on Logic Programming, 363–377.
Martin, P., and Shmoys, D. B. 1996. A New Approach to
Computing Optimal Schedules for the Job-Shop Schedul-
ing Problem. In Cunningham, W. H.; McCormick, S. T.;
and Queyranne, M., eds., Proceedings of the 5th Interna-
tional Conference on Integer Programming and Combina-
torial Optimization, IPCO’96, 389–403.
Vilı́m, P., and Barták, R. 2002a. A benchmark set for
batch processing with sequence dependent setup times.
http://kti.mff.cuni.cz/˜vilim/batch.
Vilı́m, P., and Barták, R. 2002b. A filtering algorithm
sequence composition for batch processing with sequence
dependent setup times. Technical Report 2002/1, Charles
University, Faculty of Mathematics and Physics.


