
Modelling Planning and Scheduling Problems with Time and Resources*

ROMAN BARTÁK
Department of Theoretical Computer Science and Mathematical Logic

Charles University in Prague
Malostranské námestí 2/25, 118 00, Praha 1

CZECH REPUBLIC
bartak@kti.mff.cuni.cz http://kti.mff.cuni.cz/~bartak/

Abstract: Planning and scheduling are close areas but on the other hand, they use very different solving technologies.
Recently, there is a strong demand from industry to integrate both approaches into a single system. In the paper we
propose a basic framework for modelling planning and scheduling problems that involve reasoning about time and
resources. In this framework we go beyond the traditional definitions of planning and scheduling and, from the
beginning, we expect integration of both these areas.

Key-Words: planning, scheduling, time, resources, modelling

1 Introduction *

Traditional AI planning tackles the problem of
sequencing operators to achieve some goal. In STRIPS-
like planning, the operator is defined by pre-conditions
and effects, i.e., the pre-conditions must be satisfied to
use the operator, and the effects hold after using the
operator. The task is to find a sequence of operators
starting from a given set of pre-conditions and achieving
a given set of effects.

There is no explicit usage of time and resources in
traditional planning. In fact, there are no numeric values
used so planning methods are based mostly on symbolic
manipulation. That is the reason why planning is
assumed to be an AI problem rather than a number
crunching task. Nevertheless, we can find time and
resources behind the traditional planning notions. At
least relative time must be assumed if speaking about
operator sequencing, i.e., the pre-conditions hold just
before we execute the operator and the operator's effect
will be true since we execute the operator (until another
operator annihilates the effect). Still, traditional planning
uses instantaneous operators, i.e., no duration of the
operator is assumed. This is OK if we are just
sequencing the operators, but, it may cause problems
when overlaps of operators are allowed. Moreover, in
reality executing the operator takes some time so the
planning system should assume this time when looking
for a valid sequence of operators. The above
observations are reflected in so called durative actions
that are included in the recent version of PDDL [9], a
modelling language for planning problems, and that are
studied in [6].

* Research supported by the Grant Agency of the Czech Republic under the

contract no. 201/01/0942. An extended version of this paper has been
submitted to AIPS 2002 Workshop on Knowledge Engineering Tools and
Techniques for AI Planning.

While time is hidden in semantics of operators, the
resources can be encoded in formulas defining pre-
conditions and effects. Even one the earliest planning
problems - a block world problem - involved a resource,
the robot's hand that moves the blocks over the table.
Encoding resource in pre-conditions and effects is a
standard way of modelling resources in traditional
planning. However, this technique covers only a limited
number of resources, we can call them state resources.
Pre-conditions describe a required state of the resource
to execute the operator, e.g., an empty hand, and effects
describe a state of the resource after executing the
operator, e.g. holding a block.

In reality, the interaction between resources and
operators and the integration of time and resources is
more complex, e.g. a single resource may execute
several operations in parallel. This brings planning to a
new level where the quality and feasibility of the plan
depends on time and resources too. Planning community
is aware of such real-life demand and handling of time
and resources is a hot topic in AI planning.

Time and resources play a key role in the areas of
scheduling and timetabling too. The scheduling task is to
allocate a known set of activities to available resources
over time respecting precedence, capacity and other
constraints. Timetabling can be seen as a special case of
scheduling [20] with different view of space-time (slots)
and different objectives. Thus, we will not speak about
timetabling separately.

The main difference of scheduling (and timetabling)
from planning is that in scheduling we know the
structure of activities while planning has to construct this
structure. Therefore, when solving real-life problems
planning and scheduling modules can be kept separated:
first, we plan which activities (operators) are necessary
to satisfy the demands and, second, we schedule the

activities to available resources. This could be useful in
some problems due to efficiency issues [17] but in other
areas, integration of scheduling and planning seems
necessary [1, 16]. Note that this integration is not easy
because of rather different techniques used to solve
problems in planning and scheduling. While planning is
based mainly on symbolic manipulation, scheduling uses
number crunching techniques from operations research.
Recently, constraint satisfaction seems to provide a
bridge between these two different technologies so
discussions about integration of planning and scheduling
are becoming more realistic now. Constraint
programming is a widespread technology in scheduling
[19]; application of constraint satisfaction techniques to
planning problems is described in [3,13,14,18] among
others.

When speaking about integration of planning and
scheduling, a formal modelling framework to describe
such problems is one of the first issues. There exists a de
facto standard modelling language PDDL for description
of planning problems [10] and this language is being
extended to model time [9]. Other approaches in
planning attempts to model resources [4,12]. Still, all
these approaches have their limitations when describing
real-life resources and time.

Surprisingly, there is no system independent
language for scheduling problems; at least we are not
aware of any such language. There exists a well-known
classification of scheduling problems using the triple
(machine environment | job characteristics | optimality
criterion) by Graham et al. [5]. However, this is an
academic classification, not a modelling language to
describe a particular problem. Some modelling
languages, like STTL [11], exist for timetabling
problems but these languages can hardly be extended to
general scheduling problems or to planning problems.

In this paper, we describe a framework for
integrated description of both planning and scheduling
problems. This framework is based on our previous
works on modelling scheduling problems enhanced by
planning capabilities [1,2] so time and resources play an
important role there. We have abstracted from a
particular scheduling problem to cover a wider class of
problems including pure planning and pure scheduling
problems. We concentrate on a basic structure of the
framework rather than on particular attributes (even if
we mention some attributes to illustrate how the objects
are used). This gives us a freedom of designing a generic
framework that can be filled by attributes and that way
adapted to a particular problem area. This paper is not
about solving algorithms, it is merely about the structure
of modelling framework covering both planning and
scheduling problems.

2 Domain modelling
When describing a problem, we can start with the
description of the problem area - a domain. This makes
the model more general, because it simplifies changes of
the model.

What is it a domain? Let us start with a real-life
example of industrial scheduling. When scheduling
processes in the factory, the problem description consists
of the description of the factory, i.e. machines and
processes, and the description of demands (orders). In
this case, the domain corresponds to the description of
the factory and the particular problem consists of the
domain and a set of demands. We can say that the
domain is a static part of the whole problem that is not
changing or the changes are less frequent.

We propose the model for a domain to consist of
three basic elements: activities, resources, and recipes.
Activity is a basic scheduled/planned object that usually
occupies some time and space. Resources define space
for processing the activities and recipes describe direct
relations between the activities.

2.1 Resources
Resource is an object that defines space for processing
the activity. We will speak about connection between
resource and activity later, so let us now concentrate on
resource-only features.

Life of the resource, i.e., evolution of the resource
in time can be described using a sequence of states. For
example, the resource oven uses four states load - heat -
unload - clean and these states are repeating in a cycle.
Some resources, e.g. classroom in timetabling, have only
one state. We expect that resource is an object (machine,
room etc.) so consumable resources like fuel are
modelled using a tank etc. The resource appears in a
single state at a given time so the schedule for the
resource consists of the sequence of non-overlapping
states.

Basically, the model of resource consists of the set
of states and transitions among the states (see Figure 1).
The transition describes how the resource can change a
state. Typically, information about timing is included so
we can define minimal and maximal duration of the
state, working time for the states, and transition time.

Fig. 1 A state transition diagram for the resource.

loading

heating unloading

cleaning

cooling

Because the resource defines a space for activities, we
should describe how much space is available in each
state - a state capacity. The state capacity restricts the
number of activities that can be processed together. We
can also restrict the alignment of activities in the state.
Basically, we distinguish between parallel processing,
where there is no restriction about the alignment of
activities, and batch processing, where the overlapping
activities must start and complete at identical times (see
Figure 2).

Fig. 2 Parallel (left) vs. batch (right) processing.

To summarise the above discussion, the model of
resource consists of the states with some attributes and
the transitions between the states (see Figure 3).

Fig. 3 A basic structure of the resource model.

2.2 Activities
Activity is a basic scheduled/planned object so when
modelling the problem we should specify which
activities can be used in the solution. The basic attribute
of the activity is its duration, i.e., time occupied by the
activity. We can also use time windows to restrict when
the activity can be processed.

In many cases, the activity requires some resources
for processing. For example, a lecture in timetabling
requires a classroom and a teacher, a heating activity in
industrial scheduling requires an oven, and a moving
activity in transport planning requires fuel. So for each
activity we can assign a set of resource requirements. In
the resource requirement we describe the way of using
the resource. Some resources are consumed or produced,
we call them consumable resources, and some resources
are just used, we call them renewable resources (see
Figure 4).

Fig. 4 Renewable (top) and consumable (bottom) resources. Dashed
lines indicate start and end of the activity.

Naturally, we should also describe what capacity of the
resource is consumed/used/produced. We can also
describe what state of the resource the activity requires.
Note that the states with batch processing are meaningful
for renewable usage of the resource only while parallel
processing can be used both for renewable and for
consumable usage of the resource.

When specifying the resource requirement, we
usually have alternative resources that can satisfy the
requirement. Thus we attach a list of resources to each
requirement (see Figure 5).

Fig. 5 A basic structure of the activity model.

2.3 Recipes
The model of activities and resources can describe an
indirect relation between the activities only. In
particular, the only modelled relation between the
activities is via a shared resource, e.g., two activities
cannot run in parallel if they share a resource with
capacity 1. Such modelling is usually enough for (most)
timetabling problems. However, in planning and
scheduling we need to model direct relations between
the activities (and between the resources), for example a
supplier-consumer dependency or a precedence.

Traditional planning uses STRIPS-like rules [8] to
model relations between the activities: each activity has
some pre-conditions and it generates some effects that
may become pre-conditions of another activity. If we
add some attributes to the pre-conditions and effects
(typically logical terms are used to describe both pre-
conditions and effects) we have a general mechanism for
information passing between the activities. In HTN
(Hierarchical Task Network) Planning [7] the activities
are connected into a task graph so more constraints can
be expressed over the activities. Moreover, the tasks can
be part of another task graph so planning is done via task
decomposition and conflict resolution.

To simplify description of relations between the
activities we introduce a notion of event. Each activity
requires some events to precede it, we say that the
activity consumes the events, and each activity generates
some other events, we say that the activity produces the
events. We call a triple (activity, consumed events,
produced events) an activity environment. Note that we
may have several environments for a single activity, e.g.,
there exists various combinations of input items
consumed by the activity that produces another item (see

activity

resource requiremenent

resources

time

fr
ee

 c
ap

ac
ity

time

fr
ee

 c
ap

ac
ity

time

fr
ee

 c
ap

ac
ity

resource

states

transitions

time

re
so

ur
ce

time

re
so

ur
ce

Figure 6). Moreover, we can put constrains between the
event and the activity, for example to describe the
allowed delay between the event and the activity.

Fig. 6 Two activity environments for a single activity; consumed
events are on the left side and produced events are on the right side.
Notice also the timing constraint between the activity and the
produced event.

To provide richer modelling capabilities we propose to
combine activity environments into a recipe. Basically, a
recipe is a DAG (directed acyclic graph) where nodes
are marked by activities and events. The edge goes either
from an activity to an event produced by the activity or
the edge goes from an event to the activity that
consumes the event. In particular there are no direct
edges between the activities and no direct edges between
the events. The activity must be connected to all its
produced and consumed events (for a given activity
environment). So an activity environment forms a sub-
graph in the recipe. If there are more environments for
the activity then the activity may appear more times in
the recipe (each appearance corresponds to one activity
environment). However, there are no duplicate events in
the recipe. There is one exception when the event may
appear two times in the recipe. If the event is produced
by one activity and consumed by another activity and
connecting both activities to the same event node forms
a cycle in the graph. To break the cycle (we require the
recipe to be a DAG) we divide the event into two events,
one is used as a consumed event only and the other one
is used as a produced event only. Let us call such event a
broken event. Such situation may appear if we want to
model recycling or similar features of the real problem
(see Figure 7)

Fig. 7 A primitive recipe Heating; the edges goes from left to right.
There is also a broken event "prepared".

In the recipe, there exist three types of events: events
that are both produced and consumed (by different
activities), events that are produced only, and events that
are consumed only. In case of recycling described above,
the broken event is part of both consumed-only and
produced-only sets of events. Together, the recipe
behaves like a meta-activity and thus we can use the
recipe within another recipe like an activity environment
(see Figure 8).

During planning we are decomposing the required
recipes to individual activities but we can also connect
different recipes via common events (one recipe
produces the event and another recipe consumes the
event). Still there could be some events that are
consumed only (there is no action that consumes such
event); these events may correspond to purchases of raw
material etc. Similarly, there could be produced only
events, e.g. describing appearance of the final product.
We call such produced-only and consumed-only events
one-way events.

Fig. 8 A recipe using another recipe (dashed).

If we expect that all the events have unique names then
we can represent the recipe as a set of activity
environments and recipes (see Figure 9). In such a
representation it is clear how the activities and recipes
are connected via common events.

Fig. 9 A basic structure of the recipe.

3 Problem modelling
A domain model describes the problem area i.e. which
resources are available, what activity types can be used,
and what are the relations between the activities. To
specify a particular problem we need to describe the
actual activities. This could be done explicitly, like in
traditional scheduling and timetabling, where the set of
activities is given as the input and the task is to allocate
the activities to resources respecting the resource and
recipe (precedence) constraints. In traditional planning,
the input consists of some events and the task is to
generate the activities in such a way that the events are
connected via activities i.e. the activities in the plan are

heat •• heatedprepared ••
≤≤ 5 hours

heat •• preparedprepared ••
> 5 hours

heat •• heated
≤≤ 5 hours

heat •• prepared

prepared ••
> 5 hours

•• processed

•• purchased

•• prepared

•• heated

•• final

process&test

process

test

prepare

Heating

recipe

activity environments

recipes

described implicitly via the events. In our framework,
we propose to combine both these ways of input
specification, i.e., depending on the input we will solve
either a pure scheduling (timetabling) problem or a pure
planning problem or a mixture of both.

3.1 Initial data
If we are using resources in the problem, it is a good
manner to describe the initial situation/state of each
resource. In timetabling this is useless because there are
no states. In pure scheduling this is done via
specification of the activity with pre-allocation of the
activity to the resource and to initial time.

In our framework we allow description of the initial
state(s) of each resource as well as specification of
activities that are known before we start scheduling.
These activities may be pre-allocated, i.e., some of the
parameters of the activity are known (like time and used
resources) or the parameters are unknown and the task is
to find their value (allocate the activity to resources and
time). Using such initial data allows us to model pure
scheduling and timetabling problems or to use the
system to complete partially known schedules. In the
second case, new activities are introduced during
scheduling to fill gaps in recipes.

3.2 Goals
To further extend the planning features of the
framework, we allow specification of known events in
the description of the problem. Remind that the event
make a connection node between the activities. If there
appears an event in the system then this event must be
produced by some activity and consumed by another
activity. Only the one-way events may have either the
consumer or the producer. To start planning, we can put
some initial events to the system and the system will try
to cover them, i.e., to find an action that produces the
event and/or the action that consumes the event.
Introduction of the action may cause introduction of new
events and the task is to cover all the events. As we said
above it means that there must be an action producing
the event and an action consuming the event. A missing
action (producer or consumer) in a one-way event is
substituted by including the event among the initial
events. Note that this process is similar to STRIPS
planning where we have to find activities generating the
final effects using the initial pre-conditions.

It is possible that some one-way events are
introduced during the process of planning and these
events are not included among the initial events. For
example we can introduce an event describing a
purchase of raw material. To allow such situation we can
mark some one-way events as free events. Then, we can

introduce a free event during planning if some activity
requires it even if the event is not among the initial
events.

To summarise the above paragraphs, the problem is
described by specifying the domain (a problem area) and
by describing some objects in the final schedule, namely
some activities and initial events. The task is to fill the
gaps in the schedule following the recipes and respecting
the resource constraints (see Figure 10). It means that the
resulting plan consists of the activities allocated to
resources and connected with other activities via events.

Fig. 10 Gantt charts - from the problem description (top) to the
solution (bottom).

4 Conclusion
This paper describes the basic concepts behind
integrated modelling for planning and scheduling
problems. At this stage, we concentrate on the structure
of the model rather than on the formal specification of a
modelling language that will be the next step. One of the
basic requirements in the framework is transparent
modelling of time and resources while keeping planning
capabilities. We believe that our proposal gives such a
transparent modelling framework.

There are several new ideas behind the proposal.
First, it is the general relation between the activity and
resources which simplifies modelling of alternatives
independently on what resource type is used. Second,
there is a new concept of events and recipes to describe
direct relations between the activities. We took our
former models for industrial scheduling problems and
we abstracted the item flow into a DAG with events and
activities. The idea behind using events is to make the

•

• • •

re
so

ur
ce

s

time

• °

• • •

re
so

ur
ce

s

time

• initial events
c initial activity

° a new free event
g new activities
→ used recipes

recipe closer to STRIPS and HTN notions so it is
possible to use standard planning techniques for
problems described using our framework. Finally, it is
the integration issue – we can model pure planning and
scheduling problems there as well as we can model
problems where planning meets scheduling [1].

References:
[1] Barták R.: On the Boundary of Planning and

Scheduling: A Study. In Proceedings of the 18th

Workshop of the UK Planning and Scheduling SIG,
Manchester, pp. 28-39, 1999.

[2] Barták R. and Rudová H.: Integrated Modelling for
Planning, Scheduling, and Timetabling Problems.
In Proceedings of of PLANSIG 2001, pp. 19-31,
Edinburgh, UK, 2001.

[3] Binh Do M. and Kambhampati S.: Solving
planning-graph by compiling it into CSP. In
Proceedings of AIPS 2000, pp. 89-91, 2000.

[4] Brenner M.: A Formal Model for Planning with
Time and Resources in Concurrent Domains. In
Proceedings of IJCAI-01 Workshop Planning with
Resources, Seattle, 2001.

[5] Brucker P.: Scheduling Algorithms. Springer
Verlag, 2001.

[6] Coddington A., Fox M., Long D.: Handling
Durative Actions in Classical Planning
Frameworks. In Proceedings of PLANSIG 2001,
pp. 44-58, Edinburgh, UK, 2001.

[7] Erol K., Hendler J., and Nau D.: UMCP: A Sound
and Complete Procedure for Hierarchical Task-
Network Planning. In Proceedings of 2nd

International Conference on AI Planning Systems,
pp. 249-254, 1994.

[8] Fikes R. and Nilsson N.J.: STRIPS: A new
approach to the application of theorem proving to
problem solving. Artificial Intelligence 2, pp. 189-
208, 1971.

[9] Fox M. and Long L.: PDDL 2.1: An extension to
PDDL for expressing temporal planning domains.
Technical Report, Department of Computer
Science, University of Durham, UK, 2001.

[10] Ghallab M., Howe A., Knoblock C., McDermott
D., Ram A., Veloso M., Weld D., Wilkins D.:
PDDL - The Planning Domain Definition
Language, Tech Report CVC TR-98-003/DCS TR-
1165, Yale Center for Computational Vision and
Control, 1998.

[11] Kingston J.H.: Modelling Timetabling Problems
with STTL. In Proceedings of The Practice and
Theory of Automated Timetabling, LNCS 2079,
Springer Verlag, pp. 309-321, 2001.

[12] Koehler J.: Planning under Resource Constraints. In
Proceedings of 13th European Conference on
Artificial Intelligence, Brighton, pp. 489-493, 1998.

[13] Laborie P.: Algorithms for Propagating Resource
Constraints in AI Planning and Scheduling:
Existing Approaches and New Results. In
Proceedings of 6th European Conference on
Planning, Toledo, 2001.

[14] Nareyek A.: AI Planning in a Constraint
Programming Framework. In Proceedings of 3rd

International Workshop on Communication-Based
Systems, 2000.

[15] Porteous J. and Sebastia L.: Extracting and
Ordering Landmarks for Planning. In Proceedings
of PLANSIG 2000, pp. 161-174, Milton Keynes,
UK, 2000.

[16] Smith D.E, Frank J., and Jónsson A.K.: Bridging
the Gap Between Planning and Scheduling. In
Knowledge Engineering Review, 15(1), pp. 61-94,
2000.

[17] Srivastava B. and Kambhampati S.: Scaling up
Planning by teasing out Resource Scheduling.
Technical Report ASU CSE TR 99-005, Arizona
State University, 1999.

[18] Van Beek P. and Chen, X.: CPlan: A Constraint
Programming Approach to Planning. In
Proceedings of AAAI-99, pp. 585-590, 1999.

[19] Wallace, M.: Applying Constraints for Scheduling,
in: Constraint Programming, Mayoh B. and Penjaak
J. (Eds.), NATO ASI Series, Springer Verlag, 1994.

[20] Wren A.: Scheduling, Timetabling and Rostering -
A Special Relationship. In Proceedings of The
Practice and Theory of Automated Timetabling,
LNCS 1153, Springer Verlag, pp. 46-76, 1996.

