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Abstract 
The paper describes an approach for integrating planning 
capabilities into production scheduling. We give an abstract 
view of production scheduling that motivates the integration 
and we compare the existing solving technologies in respect 
to their power for planning and scheduling integration. A 
new formal model of production scheduling is proposed and 
its realization in the Visopt ShopFloor system is described. 

Introduction 
Traditional planning deals with the problem of finding 
activities to satisfy a given goal. Traditional scheduling 
solves the problem of allocating known activities to limited 
resources and to limited time. In many real-life problems 
both tasks should be accomplished together so integrating 
planning and scheduling is a hot research topic especially 
in the planning community. This integration usually means 
adding time and resource restrictions to the planning 
problem. Because solving traditional planning problems is 
hard, adding time and resource constraints may make the 
problem even harder. Therefore, some researchers propose 
to keep planning and scheduling separated (Srivastava and 
Kambhampati 1999). In particular, the planning problem is 
solved first, which generates a set of activities, and the 
scheduling problem is solved next, which allocates the 
activities to resources and time. This is useful, if the 
planning space is large – if it is hard just to find a valid 
plan. However, in many real problems it is pretty easy to 
find a valid plan but it is more complicated to find a good 
plan in respect to available resources and time. Moreover, 
sometimes a planning decision – an introduction of an 
activity – is tightly coupled with a scheduling decision – an 
allocation of the activities to time and resources. For 
example, assume a set-up activity whose existence depends 
on the neighboring production activities. Introduction of 
such an activity depends directly on the allocation of the 
production activities. In such a case, the integration of 
planning and scheduling is inevitable. 
 In (Barták 1999b) we argued for a more tighten 
integration of planning and scheduling where the time and 
resource constraints play an important role in guiding the 
planner. The basic idea is to post the time and resource 
constraints as soon as the planner introduces some activity.  
These constraints then help the planner to decide among 

the alternative activities in a forward or backward chaining 
style of planning. 
 In this paper we describe a new formal model of a 
tightly integrated planning and scheduling problem. In 
particular, we deal with the production scheduling 
problems that require some planning capabilities. Briefly 
speaking, the problem requires the activities to be 
introduced during the scheduling process. We formulate 
the problem in a constraint satisfaction framework that, as 
we believe, is appropriate to solve such type of problems. 
We also give some details how to deal with the dynamic 
formulation of the problem in the constraint satisfaction 
framework. In particular, we describe how variables and 
constraints can be introduced dynamically during variable 
labeling. The proposed techniques have been implemented 
and tested in the Visopt ShopFloor scheduling system. 
 The paper is organized as follows. In the next section we 
will introduce an abstract production scheduling problem 
and we will explain why integration of planning into 
scheduling is necessary to solve such a problem. Then, we 
will overview available technologies for solving planning 
and scheduling problems and we will highlight their 
advantages and drawbacks. After that, we will propose a 
formal constraint model of the problem and we will 
present two possible ways how to solve this model. Before 
conclusion we will discuss some difficulties and 
challenges of the implementation of the proposed 
formalism. 

Motivation 
The goal of production scheduling is to generate a plan (a 
schedule) of production for a specified time period. This 
plan should satisfy the demands and it should be as 
profitable as possible. The demands describe items that 
should be produced (including their quantity) as well as 
time when the item must be ready. Some demands have 
hard deadlines so the demanded quantity must be ready at 
a given time. Other demands model a forecast of future 
demands so it is possible to postpone them if there is not 
enough resource capacity. The system decides which 
demands will be satisfied by using information about costs, 
penalties, and load of resources. 
 Items are produced on resources with a limited capacity 
– we call them main resources. The production in a 



resource is described as a sequence of non-overlapping 
activities. The sequencing of activities may be further 
restricted by a transition scheme that describes allowed 
transitions between the activities. The transitions also 
specify transition times between the activities and they 
may also specify positioning of some non-production 
activities like set-up or cleaning activities. Figure 1 shows 
a transition scheme restricting the sequencing of activities. 
 
 
 
 
 
 
 
 

Figure 1. Activities are connected in a transition scheme (left) 
that restricts the possible transitions as well as a minimal and 
maximal number of identical activities in a continuous 
subsequence. This scheme restricts the feasible sequences of 
activities (right). 

 
The activities produce and consume items. If an activity 
consumes some item then there must exist another activity 
that produces this item and vice versa. Note that it is 
possible to have several consumers and several producers 
of the item so there is a many-to-many relation between 
the activities (Figure 2). Note also that the demands can be 
seen as the final consumers of the items. We call the above 
producer-consumer relation a resource dependency 
because it describes the dependencies between the 
resources. The resource dependency specifies which 
activities can be connected and what is the transport time 
between the activities. In fact, it is a generalization of the 
precedence constraints used in the traditional scheduling. 
 
 
 
 
 

Figure 2. Items are flowing (arrows) between the activities 
(rectangles). This item flow defines the precedence constraints. 

 
So far, it might seem like a typical scheduling problem. 
However, notice the following significant difference from 
the traditional scheduling problems. When specifying the 
activities, the user does not describe the actual activities to 
be scheduled, that is the activities satisfying the current 
demands. The user specifies the activities that can be used 
in the schedule – this is called a domain model in planning. 
It is the responsibility of the scheduling system to select 
the appropriate activities which satisfy the demands, form 
valid resource schedules according to the transition 
scheme, and form valid item flows according to the 
resource dependencies. Thus the scheduling system must 

solve a type of integrated planning and scheduling 
problem. 
 For simplicity reasons we use here only the resources 
processing a single activity at time. However one may 
assume an extension of the problem where other types of 
resources appear. An example problem of the above type is 
described in (Barták 2003b). 

Available Technology 
One of the strongest trends in planning in the recent years 
is extending the traditional planning framework by 
scheduling constraints. This is reflected for example in the 
recent planning competition (Long and Fox 2002) where 
the tasks to be solved included several scheduling features. 
The main approach used in the planning community to 
model scheduling features is based on attaching some 
numerical attributes to activities. These numerical 
attributes can model activity duration as well as resource 
constraints. While time is modeled explicitly so the system 
“knows” about the meaning of time attributes, resources 
are still modeled ad-hoc. It means that the solving 
algorithm is not aware about the resource nature of the 
numerical attribute so some general solving approach 
should be applied. This is a big drawback as the solver 
cannot exploit fully the scheduling technology. Moreover, 
the current planners that are able to handle some 
scheduling constraints are still primarily planners with the 
capabilities to handle the planning task primarily. As we 
sketched in the previous section, in some problems the 
planning task is not very difficult. The problem is made 
difficult by the time restrictions and resource sharing. 
Thus, the scheduling technology should play a more 
important role there. 
 Surprisingly, the traditional scheduling research seems 
to be almost untouched by the recent trends in planning 
and artificial problems like job-shop or open-shop are still 
of major interest in the scheduling community. There exist 
generalizations of the academic scheduling problems like 
Resource Constrained Project Scheduling Problem which 
are more suitable for the real-life applications. However, 
these problems are still not going beyond the traditional 
scheduling task which is allocation of known activities to 
known resources. The dynamic features are introduced by 
on-line scheduling but note that this is different from the 
problem sketched in the previous section. In the on-line 
scheduling, the activities are coming from the external 
environment while our problem expects the activities to be 
planned by the solver. As far as we know, there is no 
formal scheduling model that covers planning capabilities 
and the majority of the research papers on such models are 
written by the practitioners which are exposed to real-life 
problems. Thus, the papers describe particular applications 
rather than general frameworks. 
 If we look into technologies used to solve both planning 
and scheduling problems we can find out that the common 
technology applied to both areas is constraint satisfaction. 
In the traditional formulation of the constraint satisfaction 
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problem (CSP), the variables, their domains, and the 
constraints must be specified before the problem is being 
solved. This fits perfectly the scheduling task so it is not 
surprising that constraint satisfaction is extensively used 
there (Baptiste, Le Pape and Nuijten 2001). However, the 
static formulation of constraint satisfaction complicates its 
usage in the planning problems which are dynamic in their 
nature. Thus constraints are used there typically in the plan 
extraction phase where the constraint satisfaction problem 
can be formulated statically (Do and Kambhampati 2000). 
We believe that constraint satisfaction is a good bridge 
technology especially for solving scheduling problems 
enhanced by some planning features. Nevertheless, if we 
choose constraint satisfaction as the integration technology 
then a more dynamic approach to CSP is necessary. 
 Constraint satisfaction is a technology that is already 
used to solve real-life problem so, not surprisingly, there 
exist extensions of its static formulation to cover dynamic 
problems. Dechter and Dechter (1998) proposed a concept 
of Dynamic CSP which is a sequence of traditional 
constraint satisfaction problems, where every problem is a 
result of changes in the preceding problem. This concept is 
appropriate to handle on-line scheduling problems where 
the problem modifications are coming from the external 
world but it does not bring many advantages for solving 
the planning problems. 
 The original formulation of Dynamic CSP by Mittal and 
Falkenhainer (1990) motivated by the configuration 
problems seems more appropriate for the planning 
problems. Their idea is to use an activation constraint that 
can activate some variables so these variables will 
participate in the solution. Variable activation can be seen 
as selecting some activity in the plan. Nevertheless, this 
approach is still static in the sense that all the variables are 
introduced in advance but some of them remain inactive. 
Thus, this approach is not fully appropriate for general 
planning problems where the number of such dummy 
variables can be huge. However, this approach could be 
useful when the number of dummy variables is low. For 
example, dummy activities are used in scheduling when 
there are some alternative schedules/plans that must be 
selected during the scheduling process (Pegman 1998). 
 Nareyek (1999) proposed a concept of Structural 
Constraint Satisfaction to solve the highly dynamic 
problems typical for planning. His approach is based on 
the idea of extending the abstract parts of the constraint 
network into less abstract parts containing new variables 
and constraints. This approach is similar to hierarchical 
task networks and hence it is very useful to solve planning 
problems. However, the Structural CSP should be 
implemented from scratch so it is very hard to extend the 
existing constraint solvers into Structural CSP. 
 Surprisingly relatively small attention is given to using 
constraint logic programming (CLP) for solving planning 
problems. The progress in constraint satisfaction push the 
users to apply CLP in the same way as CSP, that is define 
the constraint satisfaction problem first and then use search 
(labeling) for assigning values to the variables. However, 
recall that CLP was originally proposed as an extension of 

logic programming where the constraints substituted 
unification (Gallaire 1985). Constraints are used there to 
prune the search space but search is done within the logic 
programming framework not in a special labeling 
procedure. Thus, it is natural to have a different set of 
variables and constraints in different search branches. We 
believe that constraint logic programming is one of the 
most appropriate frameworks for modeling and solving 
integrated planning and scheduling problems. It allows a 
natural dynamic introduction of variables and constraints 
as search proceeds and there already exist off-shelf CLP 
systems so one can focus on the problem solving rather 
than on the implementation of the underlying technology.  

A Formal Model 
In this section we will give a more precise description of 
the addressed problem and we will show how it can be 
encoded using constraints. However, note that the actual 
implementation does not necessarily follow the constraints 
presented here. We present the constraints to show what 
restrictions must be satisfied rather than to introduce a 
particular implementation of the constraint model. 

Resources 
A resource is specified as a finite set of activities that can 
be processed by the resource. Let us denote by Activities(r) 
the set of activities that can be processed by the resource r. 
We expect that the sets of activities are disjoint for 
different resources, formally: 

r≠s ⇒ Activities(r)∩Activities(s)=∅. 

It may seem that the above feature forbids modeling of 
alternative resources per activity. Such activity is modeled 
as a set of “identical” activities in alternative resources and 
these activities are connected to other activities via 
alternative item flows (see next section). Actually, this is a 
standard way of modeling alternative resources per 
activity. 
 For each activity, the user specifies its duration as a 
positive integer number. Let us denote by Di the duration 
of the activity i. The activity occupies the resource from its 
start time till its completion time and no other activity can 
be processed at that time. Such resources are often called 
unary or disjunctive resources. 
 The transition scheme is described by a table of 
transition times between each pair of activities. Let us 
denote by Ti,j the transition time when going from the 
activity i to the activity j. The transition time is an interval 
starting with a non-negative integer, for example [3,sup] 
denotes a minimal transition time 3 and no maximal 
transition time. If the transition is not allowed then the 
transition time equals sup. Moreover, for each activity i a 
minimal Mini and maximal Maxi number of activities that 
can be processed in a continuous sequence are specified. If 
Maxi>1 then Ti,i specifies the transition time between the 
activities in a sequence of identical activities. The 



possibility to restrict the number of identical activities in a 
continuous sequence is useful for example for modeling 
setup, changeover, or transition activities that are 
processed exactly once between two production activities – 
Maxi=1. Notice also that these activities are handled like 
other activities. In particular, they may consume and 
produce items which is useful to model transition activities 
producing some low-quality items (for example items with 
a color that is between two pure colors) or to model 
changeover activities connected to activities in other 
resources (for example mould change in the injection 
machine requires a crane). Such feature is often omitted in 
the traditional approaches to scheduling where such 
activity is modeled as a transition time between two 
activities (this is possible in our framework as well). 
 As we already mentioned, the task is to generate a 
schedule for a fix time period. Assume that this period is 
described by an interval [0,MaxT]. A valid schedule for the 
resource r is a sequence of activities that can be processed 
by the resource with start times assigned to integers. 
Assume that the length of this sequence is n, act(i) denotes 
the i-th activity in the sequence, and start(i) denotes its 
start time. Then the following resource constraints must be 
satisfied by the valid schedule for the resource r: 
 
1. ∀i=1…n: act(i)∈Activities(r) 
2. ∀i=1…n: 0 ≤ start(i) ≤ MaxT 
3. MaxT ≤ start(n)+Dact(n)  or  

∃b∈Activities(r) MaxT ≤ start(n)+Dact(n)+max(Tact(n), b) 
4. ∀i=1…n-1: 

   start(i)+Dact(i) +min(Tact(i), act(i+1)) ≤ start(i+1) 
   start(i+1) ≤ start(i)+Dact(i)+max(T act(i), act(i+1)) 

5. If l is a maximal length of any continuous 
subsequence of activities i then: 
   l ≤ Maxi. 
If the subsequence of activities i is not the last one in 
the resource schedule then also: 
   Mini ≤ l. 

 
The first constraint ensures that only activities that can be 
processed by a given resource are included in the resource 
schedule. The second constraint ensures that the activities 
start within the scheduled period. It is not possible to 
schedule the activities before time zero (in past) and we are 
not interested in the activities starting behind the schedule 
horizon (after MaxT). The third constraint ensures that a 
complete schedule is produced. It means that either the last 
activity completes after the end of the scheduled period or 
there could be another activity after the last activity that 
can start after the end of the scheduled period. This ensures 
continuous production if the transition times have a tighten 
upper bound. The fourth and fifth constraints ensure that 
the sequence of activities satisfies the transition scheme. 

Dependencies 
As we already mentioned, the activities may consume and 
produce items. If an activity produces some item then there 

must be another activity that consumes the item and vice-
versa. Thus the item flow naturally models dependencies 
between the resources. We denote by InQItem,a a quantity of 
Item consumed by the activity a and by OutQItem,a a 
quantity of Item produced by the activity a. Quantity is a 
nonnegative integer. If quantity is zero then the item is not 
consumed or produced by the activity. 
 Assume that the activity a produces Item (OutQItem,a>0) 
and the activity b consumes the Item (InQItem,a>0). We 
specify the time necessary for moving the Item from a to b 
as DelayItem,a,b. More precisely, delay is a difference 
between the start time of the consuming activity (b) and 
the completion time of the producing activity (a). Delay 
can be an interval, an integer number, or a value sup 
indicating that the Item cannot be moved between the 
activities. Note that even if one activity produces the item 
and another activity consumes the same item, it is still 
possible to forbid the transport between the activities if 
there is no transport line between the resources. This is 
useful to model real connections in factories. 
 We denote by q(Item,r,i,s,j) the quantity of Item moved 
from the i-th activity of the resource r to the j-th activity of 
the resource s. We call the set of such moved quantities 
item flows in the schedule. In the following we assume that 
act(r,i) denotes the i-th activity of the resource r and 
start(r,i) denotes its start time. These are the same variables 
as introduced in the previous section; we just attached an 
identification of the resource to them. The item flows are 
valid if the following dependency constraints hold: 
 
1. q(Item,r,i,s,j)>0 ⇒ 

start(r,i)+Dact(r,i)+min(DelayItem,act(r,i), act(s,j)) ≤ start(s,j) 
 & 
start(s,j) ≤ start(r,i)+Dact(r,i)+max(DelayItem,act(r,i), act(s,j)) 

2. ∀s,j,Item: InQItem,act(s,j) = Σr,i q(Item,r,i,s,j) 
3. ∀r,i,Item: Σs,j q(Item,r,i,s,j) ≤ OutQItem,act(r,i) 

 if there is no activity b such that 
      MaxT ≤ start(r,i)+Dact(r,i)+max(DelayItem,act(r,i), b) 
then Σs,j q(Item,r,i,s,j) = OutQItem,act(r,i). 

 
The first constraint ensures that if there is a non-empty 
item flow between two scheduled activities than the time 
distance between these activities is correct according to the 
specified delay. This is actually a conditional temporal 
constraint between two activities. The second constraint 
ensures that the consumed quantity of some item is 
produced somewhere. The third constraint ensures the 
same condition on the produced quantity of the item, so 
this quantity should be consumed somewhere. However, 
because we generate a schedule for a fix time period, it is 
not necessary to find consumers of all produced items 
provided that the consumers may exist in future (after 
MaxT). The third constraint says that if all the consuming 
activities must be within the schedule period then the 
produced quantity of Item must be consumed completely. 
 Dependencies describe real item flows in the plant. 
Decision about a non-empty item flow between activities 
corresponds to the decision whether there is a temporal 



constraint between these activities. The actual temporal 
constraint is posted within the dependency constraint (1) 
while the dependency constraints (2) and (3) ensure that 
necessary temporal constraints are introduced. If the 
temporal part of the dependency constraint (1) is violated 
then the item flow is set to zero (constraint propagation). 
This realizes the idea of active decision postponement. 
 Note that temporal constraints that are not directly 
related to an item flow, like resource synchronization, can 
still be modeled. For example, assume that two activities 
must run in parallel on two different resources. This can be 
modeled by introducing a new artificial item produced by 
one of these activities and consumed by another activity. 
The delay for moving the item between the activities 
equals to the negative duration of the activities. 

Demands 
In the above model we specified only the activities as the 
objects producing and consuming items. However, the 
final consumers of the item are demands describing the 
orders from customers. So the demands can be seen as a 
special type of consuming-only activities. Let us denote by 
Demands the set of all demands. We expect that the set of 
demands is disjoint with the set of activities processed by 
the resources. Each demand i∈Demands is specified by its 
delivery time DTi when the demand should be satisfied and 
by a maximal allowed delay Delayi. The delivery time is an 
integer within the interval [0,MaxT] because otherwise the 
demand is out of scope of the scheduled period. The delay 
is a non-negative integer and it specifies how much the 
delivery can be postponed. The item in the demand is 
specified in an expected way – using InQItem,i for demand i. 
We denote by start(i) the time when the demand i is 
satisfied. This time must satisfy the following constraint: 

∀i∈Demands: DTi ≤ start(i) ≤ DTi + Delayi. 

The demands participate in the dependencies like other 
activities so they must satisfy the dependency constraint 
(1).  If the demand i is scheduled within the scheduled 
period – start(i) ≤ MaxT – then the dependency constraint 
(2) must be satisfied as well. It means that the requested 
quantity must be available for delivery. Notice that some 
demands can be postponed after the schedule end, namely 
the demands i such that MaxT<DTi +Delayi. For such 
demands, it is not necessary to produce the requested 
quantity because these demands can be satisfied in future. 

Features and Extensions 
The above formal description of resources, dependencies, 
and demands fully specifies the problem to be solved. The 
main difference of the proposed formalism from traditional 
scheduling problems is that the set of activities in the 
schedule is not known in advance. Notice that the user just 
specifies the possible activities and their interaction via a 
transition scheme and dependencies. The set of demands is 
known in advance and it initiates the production. However, 
neither the number of activities nor their actual 

composition is known in advance. The actual activities are 
decided during the scheduling process. Thus, we are 
solving a production scheduling problem integrated with 
planning. Note also that the introduction of the planning 
capabilities into the scheduling process makes the model 
significantly more general because the model covers 
features that the traditional scheduling cannot cover. In 
particular, the actual activities to satisfy a demand are 
selected during scheduling so it is possible to model 
alternative production sequences (via alternative item 
flows). The traditional scheduling requires the production 
sequence to be selected before the scheduling starts which 
could make the schedule less efficient. The proposed 
model also allows sharing of activities between several 
demands which influences the choice of the production 
sequence and makes the schedule more compact. 
Moreover, it is possible to introduce activities for 
processing of the by-products produced by some activities. 
The activities consuming by-products may satisfy the 
demands more effectively than producing the demanded 
item from scratch. Thus, recycling is covered by the 
proposed model while the traditional scheduling 
approaches cannot model recycling fully. Last but not 
least, it is possible to schedule activities which are not 
directly related to the existing demands. For example, it is 
possible to introduce changeover activities that consume or 
produce some items. Basically, the transition scheme is 
responsible for introduction of such activities. 
 The presented model is intentionally simplified to show 
primarily the main features of the proposed formalism for 
integrating planning into production scheduling without 
overwhelming the reader. For example, it is possible to 
attach time windows to the activities or to specify the first 
activity in the resource schedule describing the initial state 
of the resource. It is also possible to use more general 
counters in the transition scheme. These counters may 
force some specific activity, for example cleaning, after 
processing a given number of counted activities. Note that 
introduction of counters in the above model of resources is 
straightforward thanks to the transition scheme. However, 
the counters cannot be modeled in the traditional task-
centric view of the scheduling problems (Brusoni et al 
1996). Actually, we are not aware about any scheduling 
system that can handle the counters or at least the above 
transition scheme. For details on counters see (Barták, 
2002b). Also, for simplicity reasons we did not include any 
optimization in the above framework. For example, it is 
possible to attach a cost to each activity and a penalty for 
delaying satisfaction of the demand. Then the task is to 
find a schedule minimizing the total cost. Note that using 
the optimization criteria may force the system to produce 
items for demands even if the demands may be postponed. 
If there are no penalties for delaying the deliveries, the 
system may tend to postpone them because it simplifies the 
problem – fewer activities are necessary. For details on the 
cost model see (Barták, 2002a). 



Realization 
We proposed the above framework using a terminology of 
constraint satisfaction. It means that we define the decision 
variables, namely act(i),  start(i), and q(Item,r,i,s,j), and the 
constrains restricting the values of these variables. 
However, notice that the variables are not known in 
advance because the number of activities is unknown in 
advance. Thus the nature of the problem integrates 
planning – introduction of activities – with scheduling – 
allocation of activities to time and space. 

A Static Solver 
The difficulty of the unknown set of decision variables can 
be resolved by using a standard technique of dummy 
activities that is applied in a less extent for example by 
Pegman (1998). The idea is as follows. For each resource 
we can estimate the maximal number n of activities by 
dividing MaxT by the smallest activity duration (it is 
possible to compute a more precise estimate by assuming 
the transition scheme). This number (n) defines the length 
of the resource schedule. Because the resource schedule 
will not be probably fully filled by the activities we should 
introduce a dummy activity that fills the empty end of the 
resource schedule. The duration of the dummy activity 
equals to the duration of the shortest activity (it is possible 
to use any duration, for example one) and the dummy 
activity produces and consumes no items. The dummy 
activity can be processed at any time that is even after the 
schedule period (MaxT). Thus, there is no upper bound 
defined for the start time of the dummy activities – the 
resource constraint (2) is modified to relax the upper 
bound of the dummy activities in the following way: 

 ∀i=1…n: 
 0 ≤ start(i)  & 
 act(i)≠dummy ⇒ start(i) ≤ MaxT 

Moreover, a transition with a zero transition time is 
allowed from any activity to the dummy activity but there 
is no transition from the dummy activity to another activity 
– the dummy activity represents the dead end in the 
sequence of the activities. It is allowed to have an arbitrary 
number of dummy activities in a sequence (Maxdummy=sup) 
and the transition time between the dummy activities is 
zero (Tdummy,dummy=0). In a valid resource schedule, the 
dummy activities are collected at the end of the schedule 
and they do not bring any ambiguity into scheduling. We 
mean that the start times of the dummy activities are fully 
specified by the start time of the last “real” activity in the 
schedule. 
 The above method is very close to the timetabling 
approach where the slots are defined in advance and these 
slots are filled by activities during scheduling. We can use 
the metaphor of slots in our framework as well. The only 
difference is that the slots in our approach are not fixed in 
time so in addition to the activity variable there is a time 

variable for each slot. Nevertheless, the order of slots is 
fixed thanks to the resource constraint (4) that requires the 
slots to form a non-overlapping sequence in time. 
 For discussion on the timetabling approach to 
scheduling see (Barták 1999a). The advantage of the 
timetabling approach is that we get a standard constraint 
satisfaction problem where all the variables and constraints 
are known. Thus it is possible to use any constraint 
satisfaction technique to find a solution of the problem. On 
the other side, this approach is impractical for large 
problems because it requires a huge number of variables 
and constraints. In particular, a lot of variables are 
necessary to model the dependencies between the slots.  
We present this approach mainly to demonstrate the 
constraint satisfaction nature of the formal framework. 
 Note finally that instead of the dummy activities it is 
possible to deactivate the variables in the non-used slots at 
the end of the schedule similarly to the technique proposed 
by Mittal and Falkenhainer (1990). However, it does not 
solve the problem with memory consumption because all 
the slots (variables) must be introduced and the deactivated 
variables will not be assigned during variable labeling. 

A Dynamic Solver 
Because the static view discussed in the previous section is 
practically unusable, we have developed a dynamic solver 
as part of the Visopt ShopFloor system for solving the 
production scheduling problems (Barták, 2002a). The 
basic idea of the dynamic solver is quite simple – the 
variables and constraints are introduced on demand to 
minimize the memory consumption and unnecessary 
computation. We will discuss now what variables and 
constraints should be introduced and when they should be 
introduced. 
 If we summarize the input to the system then we know 
the set of demands and we know the description of the 
activities and their interactions (a transition scheme and 
dependencies). Thus, before we start solving the problem 
we can introduce the variables specifying the actual 
delivery time for the demands – the variables 
start(demands,i). Also, for each resource r we can 
introduce the first slot – the variables start(r,1) and 
act(r,1). We expect that the demands should be satisfied in 
the schedule so the variables q(Item,r,1,demands,j) are 
introduced together with the dependency constraint (1). 
For simplicity reasons, we call these variables q variables. 
The dependency constraint (2) is also introduced for the 
demands but note that we did not introduce yet the q 
variables going to slots other than the first slot. Thus the 
dependency constraint (2) is open in the sense that other q 
variables can be added to the constraint later. This is 
realized by the following mechanism. If the demand is not 
fully covered by the existing q variables (their sum is 
smaller than InQ for a given demand) then additional q 
variables connecting the demand to other slots are 
introduced. However, these slots are not present in the 
system so they should be added. In particular, if there is a 
variable q(Item,r,i,demands,j) then at least i slots of the 



resource r should be present in the system. If this is not 
true then the necessary slots are introduced to the system. 
 The mechanism of introducing q variables can be 
generalized to the slots as well. If a slot i of the resource r 
is filled by an activity, which corresponds to assigning a 
value to the variable act(r,i), then we know the consumed 
and produced items in the slot. Thus, we can introduce the 
variables q(Item,r,i,s,j) and q(Item,s,j,r,i) that are not yet 
present in the system. These variables connect the slot with 
slots in other resource which may force introduction of 
new slots and so on. This mechanism significantly 
decreases the number of q variables in the system because 
only the q variables for relevant items are introduced. 
Again, together with the q variables the corresponding 
dependency constraints are posted. 
 When deciding about the value of the variable act(r,i) 
the existing variables q(Item,r,i,s,j) and q(Item,s,j,r,i) are 
assumed. It means that we are trying to fill the slot by an 
activity which satisfies a request from demands or other 
activities. In particular, if there is a request to produce 
some item then the activity producing the item is preferred. 
Usually there are several such requests so one of them is 
selected (a choice point in the labeling procedure is 
introduced) and the other incompatible requests are made 
zero. When the variable q(Item,r,i,s,j) is made zero by 
filling the i-th slot of the resource r by some activity 
incompatible with the request then the variable 
q(Item,r,i+1,s,j) is introduced . This corresponds to 
shifting the request to the next free slot as Figure 3 shows. 
Note that the incompatible q variables are made zero using 
the dependency constraints (2) and (3) that are posted 
when the activity in a given slot is known. 
 
 
 
 
 
 
 
 
 
Figure 3. When the dependency is selected for the slot, then the 
incompatible dependencies are moved to next free slot. 

 
So far we described the mechanism of introducing new 
slots when there is some request represented by the q 
variables. However, the slot may be also introduced due to 
a tighten transition scheme which requires activities even if 
there are no requests to produce or consume an item. We 
use the following mechanism to introduce a new slot 
according to the transition scheme. Assume that currently 
the last slot in the resource r has an index i. If 
max(start(i)+Dact(i))<MaxT then we know that the activity 
in the slot i completes before the end of the schedule 
period so there is a space for at least one more activity. In 
such a case we introduce the (i+1)-th slot to the system 
together with the resource constraints (3), (4), and (5) 
connecting 

i-th and (i+1)-the slots. Note that the above process can be 
realized even if the activity in the i-th slot is not known 
yet. 
 In the above paragraphs we sketched the basic principles 
of dynamic introduction of new variables and constraints 
to the system. In practice, this could be realized using 
agents attached to the existing variables. These agents are 
evoked when the variable domain changes and they are 
checking some predefined condition on the domain, for 
example whether there is exactly one value in the domain. 
If the condition is satisfied then the agent introduces new 
variables and constraints (perhaps together with the new 
agents attached to the variables) and silently disappears. 
Note, that the variables and constraints introduced by the 
above mechanism are removed when the respective 
condition is revoked during backtracking. This is natural in 
the CLP framework where decisions are revoked 
automatically during backtracking. 
 We have already mentioned how to decide about the 
value of the variables act(r,i). Actually, this decision is a 
part of the labeling procedure which works like labeling in 
standard constraint satisfaction problems. The goal of 
labeling is to assign values to the variables and the only 
difference from the standard labeling is that the set of the 
variables to be labeled extends as the labeling proceeds. 
Adding new variables naturally influences the variable 
ordering in the labeling process so the schedule is being 
built in the order from demands to activities (introduction 
of dependencies) and from past to future (introduction of 
slots). This corresponds to the order of gradual 
introduction of variables. Note also that some variables 
may be left unassigned, in particular the variables 
describing the slots and demands that are postponed after 
the schedule end. 
 Notice finally that we do not distinguish between 
planning and scheduling in the above solving process so it 
is a total integration of planning into scheduling. In some 
sense, we can say that deciding the values of the activity 
and q variables corresponds to planning while deciding the 
values of the start time variables corresponds to 
scheduling. It is possible to interleave labeling of these 
variables or to decide the values of the activity and q 
variables first (planning and resource scheduling) and then 
to assign values to the start time variables (time 
scheduling). This depends on the selected scheduling 
strategy. Naturally all decisions are revocable via 
backtracking in case of reaching an infeasible state. 

Discussion on challenges 
Because the proposed framework is different both from 
existing planning and scheduling approaches, it brings 
many challenges. The main challenge is how to exploit the 
existing planning and scheduling technologies there. 
Because planning is relatively restricted in the proposed 
framework, we see the main challenge in the integration of 
existing global scheduling constraints like edge-finder 
(Baptiste and Le Pape 1996) to our framework. Note that 
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these constraints play a very important role in scheduling 
because they prune the search space significantly (Baptiste, 
Le Pape, Nuiten 2001). In our opinion, one of the biggest 
drawbacks of the current planning systems that integrate 
some scheduling features is impossibility to use these 
global scheduling constraints. Because in our framework 
we are working with the requests for activities rather than 
with the activities assigned to the resource, we cannot use 
the existing global constraints directly as well. 
Nevertheless, we believe that it is possible to reformulate 
either the global scheduling constraints to fit our 
framework or to extend our framework to exploit these 
constraints. Another difficulty is the dynamic introduction 
of the requests so the global constraints should be open in 
the sense of accepting new variables. We have studied 
such open global constraints in (Barták 2003a) and it 
seems that many global constraints can be opened in the 
above sense. The trade-off for some open global 
constraints is the decreased filtering power (less values are 
pruned). Thus, another challenge is to find out 
(automatically) when the constraint can be closed (no more 
variables will be coming) so the stronger domain filtering 
can be applied. 

Conclusions 
The main contribution of this paper is a new formal 
framework of production scheduling problems integrated 
with planning. We showed how such problems can be 
formulated by means of constraint technology and we 
presented both static and dynamic approach to solve the 
constraint model. We argued for the less memory 
demanding dynamic approach that dynamically extends the 
constraint model by adding new variables and constraints 
as the solving process progresses. This dynamic approach 
has been implemented in the scheduling engine of the 
Visopt ShopFloor system. 
  Despite the fact that we focused on the production 
scheduling, we believe that the proposed techniques are 
applicable to other integrated planning and scheduling 
problems. In particular, the problems where complex 
resources and activity dependencies play a significant role 
are highly relevant for the proposed framework. 
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