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ABSTRACT 
In this paper, we propose an extension of three incomplete depth-
first search techniques, namely depth-bounded backtrack search, 
credit search, and iterative broadening, towards producing 
incomplete solutions. We also propose a new cutoff strategy for 
incomplete depth-first search motivated by a human style of 
problem solving. This technique, called limited assignment 
number (LAN) search, is based on limiting the number of 
attempts tried to assign a value to the variable. A linear worst-
case time complexity of LAN Search leads to promising stable 
time behavior in all accomplished experiments. The techniques 
are studied in the context of constraint satisfaction problems. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – backtracking, graph and tree search 
strategies. 

General Terms 
Algorithms. Performance. Experimentation. 

Keywords 
Search. Constraint satisfaction. 

1. INTRODUCTION 
Search techniques are a popular problem solving approach in 
Artificial Intelligence and in particular in its sub-area called 
Constraint Satisfaction [5]. The goal of constraint satisfaction is 
finding an assignment of values to variables satisfying constraints 
between the variables. Sometimes, it is hard to find such a 
complete assignment (a Constraint Satisfaction Problem is NP-
hard in general) or it is even impossible (the problem is called 
over-constrained). To handle both hard-to-solve and over-

constrained problems, we proposed to consider partial 
assignments as an approximation of the solution in [2]. The idea 
was to instantiate the maximal number of variables at a limited 
time, for example to allocate the maximal number of lectures to 
available rooms [11]. Naturally, at least the constraints between 
the instantiated variables must be satisfied. We look for a 
maximal consistent assignment with the help of incomplete search 
techniques. They spread the search effort over the whole search 
space by skipping not promising parts of the search tree. Skipping 
is realized via a cutoff limit that stops complete exploration of 
some sub-space and forces the search algorithm to move to a 
different part. The variables that remain unassigned after the 
algorithm finishes can be seen as a hard part of the problem. Thus 
during the next run of the incomplete search algorithm (called 
restart), the algorithm can focus on assigning these hard variables 
primarily. 

In this paper, we will focus on general cutoff techniques for 
incomplete depth-first search algorithms applied to constraint 
satisfaction problems. In particular, we will discuss limited 
depth [7], credit [3], and breadth [6] and we will add a new 
technique of a limited number of assignments per variable. This 
new technique, called LAN Search, follows up the human style of 
problem solving – we are trying to assign a value to some variable 
and if we do not succeed soon, we leave this variable unassigned 
and focus the attention to another variable. The hope behind this 
technique is making the runtime more stable in comparison to 
existing cutoff techniques while still obtaining a good solution (a 
quality is measured by the number of instantiated variables). In 
this paper, we will focus on the cutoff techniques only and the 
restart strategies will be a part of our follow-up research. We also 
do not cover the discrepancy-based incomplete search techniques 
like Limited Discrepancy Search [8], which depend on specific 
high-quality heuristics that are not always available. 

To summarize, the main contribution of this paper is threefold. 
Firstly, an extension of three incomplete depth-first search 
algorithms towards producing incomplete assignments is 
proposed and all these algorithms are presented in the same 
uniform fashion. Secondly, a new cutoff strategy is introduced 
with the hope to improve the runtime stability of incomplete 
depth-first search. Thirdly, all the studied search techniques are 
compared on several benchmark domains, which, as far as we 
know, is the first such comparison in the literature. 
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2. PRELIMINARIES 
A constraint satisfaction problem (CSP) is a triple (V,D,C) where 
V is a finite set of variables, D is a set of possible values for 
variables (domain), and C is a finite set of constraints restricting 
the values of variables [5]. Assignment σ for a CSP (V,D,C) is a 
set of pairs vi/di such that vi∈V, di∈D and each vi appears at most 
once in σ. We call the assignment σ complete if each vi∈V 
appears exactly once in σ, otherwise the assignment is 
incomplete. We call the assignment τ an extension of the 
assignment σ if σ⊂τ. A solution to a CSP is a complete 
assignment of the variables that satisfies all the constraints. 

Depth-first search techniques typically extend a partial consistent 
assignment towards a complete consistent assignment, where by 
consistent assignment we understand the assignment satisfying at 
least the constraints over the instantiated variables (the variables 
from the assignment). There exist stronger consistency techniques 
that can check validity of constraints in advance by propagating 
information about the current assignment towards the non-
instantiated variables. In particular, the values incompatible with 
the current partial assignment are removed from the domains 
(domain filtering), because these values cannot participate in any 
assignment extending the current assignment and satisfying all the 
constraints. If any domain becomes empty then the partial 
assignment is inconsistent; otherwise the partial assignment is 
locally consistent. Note, that in addition to a consistency check 
the domain filtering also prunes the search space to be explored 
when extending the partial assignment. On the other hand, local 
consistency of the assignment σ usually does not guarantee 
existence of a solution extending σ (there exist global consistency 
techniques but their complexity is often too large). In this paper, 
we focus on the depth-first search techniques and we expect that 
they are accompanied by a local consistency technique, typically 
generalized arc consistency [5]. 

For many constraint satisfaction problems, it is hard or even 
impossible to find a solution in the above sense that is to find a 
complete consistent assignment. For example, there is no 
complete assignment satisfying all the constraints in over-
constrained problems. Therefore a generalized view of the 
solution based on the notion of a maximal consistent assignment 
was proposed in [2]. The basic idea is to assign as many variables 
as possible without getting (local) inconsistency. So, the maximal 
consistent assignment is defined as a consistent assignment of the 
largest cardinality. We can also define a weaker notion of locally 
maximal consistent assignment which is a consistent assignment 
that cannot be extended to a non-instantiated variable. 

Note that if there is a solution to a CSP then it is a maximal 
consistent assignment and, vice versa, if the cardinality of a 
maximal consistent assignment equals to the number of variables 
in the problem then this assignment is a solution. The maximal 
consistent assignment can also be seen as a solution to over-
constrained problems where no complete consistent assignment 
exists. Moreover looking for a maximal consistent assignment has 
the advantage that it is not necessary to know in advance whether 
the problem is over-constrained or not. 

The search technique that we propose explores the locally 
maximal consistent assignments and remembers the assignment 
with the largest number of assigned variables. If the search space 
is explored completely then the maximal consistent assignment is 

obtained. For incomplete search techniques, we will get an 
approximation of the solution. The larger assignments we get the 
better is the approximation. Thus, we can now compare 
incomplete search techniques by the number of instantiated 
variables in the best locally maximal consistent assignment found. 
Note also that our approach is applicable to hard-to-solve 
problems where approximate solutions can be obtained with 
limited resources. 

3. INCOMPLETE DEPTH-FIRST SEARCH 
In this chapter, we will survey non-discrepancy based incomplete 
depth-first search algorithms, namely depth-bounded backtrack 
search [7], credit search [3], and iterative broadening [6]. 
Actually, the only missing algorithm from this category that we 
are aware of is bounded backtrack search [7] that limits the 
number of backtracks. We decided to omit this algorithm because 
it can be seen as an instance of the above algorithms by including 
a time limit (that is actually used in our experiments). Moreover 
bounded backtrack search does not follow the idea of spreading 
the search effort over the search space because all the explored 
branches are cumulated in the same area. 

We will present the algorithms in a new uniform recursive code 
sharing the same structure and common procedures. The reason 
for this uniformity is an attempt to abstract from the particular 
implementation which helps us to compare better the core features 
of the algorithms. In particular, we will focus on the comparison 
of the cutoff schemes rather than on the restart strategies that will 
be studied next. 

Another difference from the traditional formulation of these 
algorithms is using a specific, possibly non-binary, branching 
scheme called enumeration that selects a value for the variable in 
each step. Thus all the algorithms share the procedures for 
variable selection (select_free_variable/1) that determine the 
shape of the search tree and value selection (select_first_value/1, 
select_next_value/2) that determine the order in which the 
branches are explored. All the presented algorithms can use also 
the step branching scheme (X=value ∨ X≠value) but it leads to a 
complete depth-first search for iterative broadening (with the limit 
two or more). Finally, LAN search is currently designed for 
assignment-based search only (for example the bisection 
branching scheme with X=<value ∨ X>value is not studied). 
Thus, the enumeration branching scheme seems the best for the 
comparison of all the algorithms. 

Note also, that constraint propagation is integrated into the search 
algorithms in a MAC-like scheme [5]. It means that each time the 
algorithm attempts to assign a value to the variable (assign/2), 
constraint propagation is evoked and domains of non-instantiated 
variables are filtered. If any domain becomes empty then the 
assignment fails and a next value is tried. This so called shallow 
backtracking is not counted as a valid assignment in our 
algorithms. Otherwise search proceeds to the next variable. Upon 
backtracking, the current variable assignment must be revoked 
together with the changes in the variables’ domains that have 
been done during constraint propagation (unassign/1). 

Finally, we extended the algorithms to memorize the largest 
assignment found during search. For simplicity reasons, we 
evaluate the assignments before any backtrack (update_best/1). 
Recall that constraint propagation is integrated into the search 



procedure so the actual number of instantiated variables can be 
higher than the actual depth where the partial assignment is being 
saved. If the algorithm succeeds (the value true is returned) then a 
complete consistent assignment has been found and all the 
variables have their own values. Otherwise (the value fail is 
returned) the largest assignment can be recovered from the saved 
assignment. This technique is going in the direction towards the 
locally maximal consistent assignment but it does not always give 
the locally maximal consistent assignment (when a value 
selection for a given variable failed it might be still possible to 
assign a value to another non-instantiated variable). 

3.1 Depth-Bounded Backtrack Search 
Depth-Bounded Backtrack Search (DBS) is based on the idea of 
limiting the depth of complete tree search where all alternatives 
are explored [7]. To be able to compute a complete solution, a 
single alternative still can be tried if the depth limit is exceeded 
(shallow backtracking ignored). In general, it is possible to use 
another incomplete tree search technique there. Note that DBS 
with the depth limit equal to the number of variables corresponds 
to standard chronological backtracking. Figure 1 shows an 
abstract code of Depth-Bounded Backtrack Search. 

procedure DBS(Variables,DepthLimit) 
 if all_instantiated(Variables) then 
  return true 
 Var ← select_free_variable(Variables) 
 Tried ← false   // ignore shallow BT 
 Value ← select_first_value(Var) 
 repeat 
  if assign(Var,Value) then 
   Tried ← true 
   if DBS(Variables,DepthLimit-1) then 
    return true 
   unassign(Var) 
  Value ← select_next_value(Var,Value) 
 until Value=nil or (Tried & DepthLimit<1) 
 update_best(Variables) 
 return fail 
end DBS 

Figure 1. An abstract code of Depth-Bounded Backtrack 
Search (DBS). The bold italics parts are specific for DBS. 

Let d be the size of the domains of the variables, and h be the 
depth limit. The worst case time complexity of DBS is O(dh), 
which corresponds to the number of explored branches. Recall 
that some values are filtered from the domains due to constraint 
propagation and thus fewer branches are explored. In particular, 
some branches and sub-trees are eliminated using constraint 
propagation and some branches may be terminated earlier due to 
inconsistency detected during variable assignment. Actually, once 
a leaf is reached then the algorithm stops with success. 

3.2 Credit Search 
Credit Search (CS) uses a similar idea like DBS – they both 
restrict the number of alternatives tried in each node. In particular, 
fewer alternatives are explored in the bottom parts of the search 
tree [3]. However, CS uses a finer control over branching via a so 
called credit. Credit is a natural number describing the maximal 
number of alternative branches to be explored. The credit c is split 
to k child nodes (alternatives). Each child node is allocated a base 
credit (c div k) that is increased by one for the first (c mod k) child 

nodes (the ordering of nodes is given by the value selection 
heuristic). In particular, credit one implies that only one 
alternative is tried (shallow backtracking ignored). Figure 2 shows 
an abstract code of the Credit Search. 

procedure CS(Variables,Credit) 
 if all_instantiated(Variables) then 
  return true 
 Var ← select_free_variable(Variables) 
 BaseCredit ← Credit div size(dom(Var)) 
 RestCredit ← Credit mod size(dom(Var)) 
 Value ← select_first_value(Var) 
 repeat 
  if assign(Var,Value) then 
   if RestCredit>0 then 
    ValueCredit ← BaseCredit+1 
    RestCredit ← RestCredit-1 
   else 
    ValueCredit ← BaseCredit 
   end if 
   Credit ← Credit-ValueCredit 
   if CS(Variables,ValueCredit) then 
    return true 
   unassign(Var) 
  Value←select_next_value(Var,Value) 
 until Value=nil or Credit=0 
 update_best(Variables) 
 return fail 
end CS 

Figure 2. An abstract code of Credit Search (CS). The bold 
italics parts are specific for CS. 

Let c be the credit then the worst case time complexity of CS is 
O(c). Like in DBS, some branches may be terminated earlier due 
to inconsistency of the partial assignment. 

3.3 Iterative Broadening 
Iterative Broadening (IB) restricts the number of alternatives tried 
in each node by a breadth limit [6]. Opposite to DBS and CS, 
Iterative Broadening may explore a restricted number of 
alternatives in each node which leads to an exponential time 
complexity. Figure 3 shows an abstract code of IB. Again, 
shallow backtracking is ignored and alternatives that fail 
immediately are not counted in the breadth limit. 

procedure IB(Variables,BreadthLimit) 
 if all_instantiated(Variables) then 
  return true 
 Var ← select_free_variable(Variables) 
 AvailableBreadth ← BreadthLimit 
 Value ← select_first_value(Var) 
 repeat 
  if assign(Var,Value) then 
   AvailableBreadth ← AvailableBreadth-1 
   if IB(Variables,BreadthLimit) then 
    return true 
   unassign(Var) 
  Value ← select_next_value(Var,Value) 
 until Value=nil or AvailableBreadth=0 
 update_best(Variables) 
 return fail 
end IB 

Figure 3. An abstract code of Iterative Broadening (IB). The 
bold italics parts are specific for IB. 



Let b be the breadth limit and n be the number of variables. Then 
the worst case time complexity of IB is O(bn). Thus, for any b>1 
the algorithm has an exponential time complexity which makes it 
different from the above described incomplete search techniques. 

3.4 Limited Assignment Number Search 
Iterative Broadening allows to explore values of all variables 
equally while Depth-Bounded Backtrack Search and Credit 
Search prefer the variables selected earlier (more values are tried 
for these variables). We propose to modify the main idea of 
Iterative Broadening in such a way that the total number of 
attempts to assign a value to the variable is restricted. We 
introduce a so called LAN (Limited Assignment Number) limit 
indicating how many times a variable can be assigned a value. For 
simplicity reasons, we use an identical LAN limit for all the 
variables. A possible future extension could be to use different 
LAN limits for different variables, for example to derive the LAN 
limit from the domain size. When the number of assignments to 
the variable reaches the LAN limit, we say that the variable 
expired. The search procedure does not try to assign a value to the 
expired variables (shallow backtracking ignored). These variables 
are removed from the list of variables before a variable is selected 
for assignment (filter_expired/1). We call the resulting algorithm 
Limited Assignment Number (LAN) Search and Figure 4 shows 
its abstract code. Note finally, that a value can still be assigned to 
the expired variable via constraint propagation. 

procedure LAN(Variables, LANlimit) 
// counters were initialized to zero 
// before overall search started 
 FreeVariables ← filter_expired(Variables) 
 if all_instantiated(FreeVariables) then 
  return true 
 Var ← select_free_variable(FreeVariables) 
 Value ← select_first_value(Var) 
 repeat 
  if assign(Var,Value) then 
   counter(Var) ← counter(Var)+1 
   if LAN(Variables, LANlimit) then 
    return true 
   unassign(Var) 
  Value ← select_next_value(Var,Value) 
 until Value=nil or counter(Var)=LANlimit 
 update_best(Variables) 
 return fail 
end LAN 

Figure 4. An abstract code of Limited Assignment Number 
Search (LAN). The bold italics parts are specific for LAN. 

Let l be the LAN limit and n be the number of variables. The 
number of assignments to the variable is accumulated during 
search so at most l times a value is tried for each variable. Thus, 
the worst case time complexity of LAN Search is O(ln). 

4. EXPERIMENTS 
We compared the algorithms using random, structured, and real-
life problems. In particular, we used Random Constraint 
Satisfaction Problems, Quasigroups with Holes, and Random 
Placement Problems. Random Constraint Satisfaction Problem 
(RCSP) is characterized by a tuple 〈n,m,p1,p2〉, where n is a 
number of variables, m is a uniform domain size, p1 is a measure 
of the density of the constraint graph, and p2 is a measure of the 

tightness of the binary constraints [9]. We use a so called model B 
of RCSP. Quasigroups With Holes (QWH) are characterized by 
the order (size) of a Latin square and by the number of holes [1]. 
The task is to fill the holes in the partial Latin square to complete 
it. Random Placement Problem (RPP) is characterized by the size 
of a rectangular area and by the number of rectangles that should 
be placed in this area without any overlap [10]. There are 
additional attributes of RPP that allow simulation of timetabling 
problems. We used the attributes derived from the Purdue 
timetabling problem [11] to obtain problems close to real world. 
We selected the problems from the phase-transition area where 
the hard problems settle (we obtained similar results for the area 
of over-constrained problems). We generated a hundred instances 
of each problem and we run the algorithms with the fail-first 
variable selection [5], the smallest value selection, and with the 
different cutoff limits (from 1 to 10 for DBS, IB, and LAN, and 
from 10 to 100 for CS) for each instance. The algorithms were 
implemented in the clpfd library of SICStus Prolog 3.11.2 [4] 
and the experiments run on 1.8 GHz Pentium under Windows XP. 

Figures 5-7 show the relation between the runtime and the number 
of instantiated variables in the obtained solution for each studied 
algorithm. Each curve shows the results for a particular algorithm 
with an increasing cutoff limit. We use this type of comparison 
because it is independent of the cutoff limit. So it characterizes 
better the particular algorithm. A curve closer to bottom or to 
right borders indicates a better algorithm (either a better time for 
the same quality or a better quality for the same time).  
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Figure 5. Relation between runtime and quality of solution for 
RCSP 〈50,12, 250/1225,0.35〉, -CS, -DBS, ∆-IB, -LAN. 

0

2000

4000

6000

8000

10000

12000

750 770 790 810 830 850 870 890 910

quality (number of instantiated variables)

tim
e 

(m
s)

 
Figure 6. Relation between runtime and quality of solution for 
QWH, order 30 and 40% holes, -CS, -DBS, ∆-IB, -LAN. 
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Figure 7. Relation between runtime and quality of solution for 
RPP, size 16 and 40 rectangles, -CS, -DBS, ∆-IB, -LAN. 

In the experiments, LAN Search achieved the best runtime for a 
given solution quality so it has the best quality/performance ratio. 
However, the quality of the best obtained solution for LAN 
Search in the artificial benchmarks (RCSP and QWH) is not as 
good as the best quality obtained by the other algorithms. But 
LAN Search is a hands-down winner for RPP derived from the 
real-life problem both in terms of solution quality and runtime 
(notice the logarithmic scale for the runtime in Figure 7). 

5. CONCLUSIONS 
In this paper, we presented a new uniform view of existing cutoff 
strategies for incomplete depth-first search and we described their 
extension towards producing incomplete solutions. This extension 
is useful for solving over-constrained problems as well as hard-to-
solve problems where complete assignments do not exist or it is 
hard to find them. We also introduced a new cutoff strategy, a so 
called LAN Search, based on a limited number of assignments per 
variable. The accomplished experiments confirmed the runtime 
stability of this new strategy that achieved the best 
quality/performance ratio. The experiments also showed that for 
structured problems (QWH and RPP) LAN Search produces good 
solutions even for small cutoff limits. Therefore, it is possible to 
use a small cutoff limit (2-5) for the structured problems and to 
achieve a good runtime. Both these features make LAN Search 
different from the other incomplete depth-first search techniques 
where finding a suitable cutoff limit is an open research question. 
Nevertheless, a further study of why LAN search works well, 
especially why it has so exceptional performance in solving a 
RPP, is an interesting direction for future research. 

The paper focused on a single iteration of each algorithm. Once 
the iteration is finished, the incomplete algorithms usually restart 
with modified attributes to improve further the solution. The 
results in [11] showed that restarts can significantly improve 
solution quality for timetabling problems. So we believe that 
adding a restart strategy is a promising addition to the proposed 
cutoff strategy. Recall also, that a single iteration of LAN Search 
already achieved the far best results for this type of problem in 
comparison to other incomplete depth-first search techniques. 
Still, the quality of a single iteration for other types of problems 
could be improved, for example by using variable locking [2] that 
ensures finding locally maximal consistent assignments. 

The other interesting area for further studies is a generalization of 
the proposed cutoff scheme. While DBS, CS, and IB are tree 
oriented search algorithms that can be applied to any branching 
scheme, LAN Search is oriented primarily to variable 
assignments. It is not clear whether and how it can be extended to 
a general tree search. Such extension would be valuable because 
the current results of LAN Search are quite promising and in 
some areas, like scheduling, different branching schemes are 
preferred over the variable assignments. 
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