
Limited Assignments: A New Cutoff Strategy for
Incomplete Depth-First Search

 Roman Barták Hana Rudová
Charles University, Faculty of Mathematics and Physics Masaryk University, Faculty of Informatics
 Malostranské náměstí 2/25, Prague Botanická 68a, Brno
 Czech Republic Czech Republic
 phone: +420 221 914 242 phone: +420 549 496 345

 roman.bartak@mff.cuni.cz hanka@fi.muni.cz

ABSTRACT
In this paper, we propose an extension of three incomplete depth-
first search techniques, namely depth-bounded backtrack search,
credit search, and iterative broadening, towards producing
incomplete solutions. We also propose a new cutoff strategy for
incomplete depth-first search motivated by a human style of
problem solving. This technique, called limited assignment
number (LAN) search, is based on limiting the number of
attempts tried to assign a value to the variable. A linear worst-
case time complexity of LAN Search leads to promising stable
time behavior in all accomplished experiments. The techniques
are studied in the context of constraint satisfaction problems.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – backtracking, graph and tree search
strategies.

General Terms
Algorithms. Performance. Experimentation.

Keywords
Search. Constraint satisfaction.

1. INTRODUCTION
Search techniques are a popular problem solving approach in
Artificial Intelligence and in particular in its sub-area called
Constraint Satisfaction [5]. The goal of constraint satisfaction is
finding an assignment of values to variables satisfying constraints
between the variables. Sometimes, it is hard to find such a
complete assignment (a Constraint Satisfaction Problem is NP-
hard in general) or it is even impossible (the problem is called
over-constrained). To handle both hard-to-solve and over-

constrained problems, we proposed to consider partial
assignments as an approximation of the solution in [2]. The idea
was to instantiate the maximal number of variables at a limited
time, for example to allocate the maximal number of lectures to
available rooms [11]. Naturally, at least the constraints between
the instantiated variables must be satisfied. We look for a
maximal consistent assignment with the help of incomplete search
techniques. They spread the search effort over the whole search
space by skipping not promising parts of the search tree. Skipping
is realized via a cutoff limit that stops complete exploration of
some sub-space and forces the search algorithm to move to a
different part. The variables that remain unassigned after the
algorithm finishes can be seen as a hard part of the problem. Thus
during the next run of the incomplete search algorithm (called
restart), the algorithm can focus on assigning these hard variables
primarily.

In this paper, we will focus on general cutoff techniques for
incomplete depth-first search algorithms applied to constraint
satisfaction problems. In particular, we will discuss limited
depth [7], credit [3], and breadth [6] and we will add a new
technique of a limited number of assignments per variable. This
new technique, called LAN Search, follows up the human style of
problem solving – we are trying to assign a value to some variable
and if we do not succeed soon, we leave this variable unassigned
and focus the attention to another variable. The hope behind this
technique is making the runtime more stable in comparison to
existing cutoff techniques while still obtaining a good solution (a
quality is measured by the number of instantiated variables). In
this paper, we will focus on the cutoff techniques only and the
restart strategies will be a part of our follow-up research. We also
do not cover the discrepancy-based incomplete search techniques
like Limited Discrepancy Search [8], which depend on specific
high-quality heuristics that are not always available.

To summarize, the main contribution of this paper is threefold.
Firstly, an extension of three incomplete depth-first search
algorithms towards producing incomplete assignments is
proposed and all these algorithms are presented in the same
uniform fashion. Secondly, a new cutoff strategy is introduced
with the hope to improve the runtime stability of incomplete
depth-first search. Thirdly, all the studied search techniques are
compared on several benchmark domains, which, as far as we
know, is the first such comparison in the literature.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003…$5.00.

2. PRELIMINARIES
A constraint satisfaction problem (CSP) is a triple (V,D,C) where
V is a finite set of variables, D is a set of possible values for
variables (domain), and C is a finite set of constraints restricting
the values of variables [5]. Assignment σ for a CSP (V,D,C) is a
set of pairs vi/di such that vi∈V, di∈D and each vi appears at most
once in σ. We call the assignment σ complete if each vi∈V
appears exactly once in σ, otherwise the assignment is
incomplete. We call the assignment τ an extension of the
assignment σ if σ⊂τ. A solution to a CSP is a complete
assignment of the variables that satisfies all the constraints.

Depth-first search techniques typically extend a partial consistent
assignment towards a complete consistent assignment, where by
consistent assignment we understand the assignment satisfying at
least the constraints over the instantiated variables (the variables
from the assignment). There exist stronger consistency techniques
that can check validity of constraints in advance by propagating
information about the current assignment towards the non-
instantiated variables. In particular, the values incompatible with
the current partial assignment are removed from the domains
(domain filtering), because these values cannot participate in any
assignment extending the current assignment and satisfying all the
constraints. If any domain becomes empty then the partial
assignment is inconsistent; otherwise the partial assignment is
locally consistent. Note, that in addition to a consistency check
the domain filtering also prunes the search space to be explored
when extending the partial assignment. On the other hand, local
consistency of the assignment σ usually does not guarantee
existence of a solution extending σ (there exist global consistency
techniques but their complexity is often too large). In this paper,
we focus on the depth-first search techniques and we expect that
they are accompanied by a local consistency technique, typically
generalized arc consistency [5].

For many constraint satisfaction problems, it is hard or even
impossible to find a solution in the above sense that is to find a
complete consistent assignment. For example, there is no
complete assignment satisfying all the constraints in over-
constrained problems. Therefore a generalized view of the
solution based on the notion of a maximal consistent assignment
was proposed in [2]. The basic idea is to assign as many variables
as possible without getting (local) inconsistency. So, the maximal
consistent assignment is defined as a consistent assignment of the
largest cardinality. We can also define a weaker notion of locally
maximal consistent assignment which is a consistent assignment
that cannot be extended to a non-instantiated variable.

Note that if there is a solution to a CSP then it is a maximal
consistent assignment and, vice versa, if the cardinality of a
maximal consistent assignment equals to the number of variables
in the problem then this assignment is a solution. The maximal
consistent assignment can also be seen as a solution to over-
constrained problems where no complete consistent assignment
exists. Moreover looking for a maximal consistent assignment has
the advantage that it is not necessary to know in advance whether
the problem is over-constrained or not.

The search technique that we propose explores the locally
maximal consistent assignments and remembers the assignment
with the largest number of assigned variables. If the search space
is explored completely then the maximal consistent assignment is

obtained. For incomplete search techniques, we will get an
approximation of the solution. The larger assignments we get the
better is the approximation. Thus, we can now compare
incomplete search techniques by the number of instantiated
variables in the best locally maximal consistent assignment found.
Note also that our approach is applicable to hard-to-solve
problems where approximate solutions can be obtained with
limited resources.

3. INCOMPLETE DEPTH-FIRST SEARCH
In this chapter, we will survey non-discrepancy based incomplete
depth-first search algorithms, namely depth-bounded backtrack
search [7], credit search [3], and iterative broadening [6].
Actually, the only missing algorithm from this category that we
are aware of is bounded backtrack search [7] that limits the
number of backtracks. We decided to omit this algorithm because
it can be seen as an instance of the above algorithms by including
a time limit (that is actually used in our experiments). Moreover
bounded backtrack search does not follow the idea of spreading
the search effort over the search space because all the explored
branches are cumulated in the same area.

We will present the algorithms in a new uniform recursive code
sharing the same structure and common procedures. The reason
for this uniformity is an attempt to abstract from the particular
implementation which helps us to compare better the core features
of the algorithms. In particular, we will focus on the comparison
of the cutoff schemes rather than on the restart strategies that will
be studied next.

Another difference from the traditional formulation of these
algorithms is using a specific, possibly non-binary, branching
scheme called enumeration that selects a value for the variable in
each step. Thus all the algorithms share the procedures for
variable selection (select_free_variable/1) that determine the
shape of the search tree and value selection (select_first_value/1,
select_next_value/2) that determine the order in which the
branches are explored. All the presented algorithms can use also
the step branching scheme (X=value ∨ X≠value) but it leads to a
complete depth-first search for iterative broadening (with the limit
two or more). Finally, LAN search is currently designed for
assignment-based search only (for example the bisection
branching scheme with X=<value ∨ X>value is not studied).
Thus, the enumeration branching scheme seems the best for the
comparison of all the algorithms.

Note also, that constraint propagation is integrated into the search
algorithms in a MAC-like scheme [5]. It means that each time the
algorithm attempts to assign a value to the variable (assign/2),
constraint propagation is evoked and domains of non-instantiated
variables are filtered. If any domain becomes empty then the
assignment fails and a next value is tried. This so called shallow
backtracking is not counted as a valid assignment in our
algorithms. Otherwise search proceeds to the next variable. Upon
backtracking, the current variable assignment must be revoked
together with the changes in the variables’ domains that have
been done during constraint propagation (unassign/1).

Finally, we extended the algorithms to memorize the largest
assignment found during search. For simplicity reasons, we
evaluate the assignments before any backtrack (update_best/1).
Recall that constraint propagation is integrated into the search

procedure so the actual number of instantiated variables can be
higher than the actual depth where the partial assignment is being
saved. If the algorithm succeeds (the value true is returned) then a
complete consistent assignment has been found and all the
variables have their own values. Otherwise (the value fail is
returned) the largest assignment can be recovered from the saved
assignment. This technique is going in the direction towards the
locally maximal consistent assignment but it does not always give
the locally maximal consistent assignment (when a value
selection for a given variable failed it might be still possible to
assign a value to another non-instantiated variable).

3.1 Depth-Bounded Backtrack Search
Depth-Bounded Backtrack Search (DBS) is based on the idea of
limiting the depth of complete tree search where all alternatives
are explored [7]. To be able to compute a complete solution, a
single alternative still can be tried if the depth limit is exceeded
(shallow backtracking ignored). In general, it is possible to use
another incomplete tree search technique there. Note that DBS
with the depth limit equal to the number of variables corresponds
to standard chronological backtracking. Figure 1 shows an
abstract code of Depth-Bounded Backtrack Search.

procedure DBS(Variables,DepthLimit)
 if all_instantiated(Variables) then
 return true
 Var ← select_free_variable(Variables)
 Tried ← false // ignore shallow BT
 Value ← select_first_value(Var)
 repeat
 if assign(Var,Value) then
 Tried ← true
 if DBS(Variables,DepthLimit-1) then
 return true
 unassign(Var)
 Value ← select_next_value(Var,Value)
 until Value=nil or (Tried & DepthLimit<1)
 update_best(Variables)
 return fail
end DBS

Figure 1. An abstract code of Depth-Bounded Backtrack
Search (DBS). The bold italics parts are specific for DBS.

Let d be the size of the domains of the variables, and h be the
depth limit. The worst case time complexity of DBS is O(dh),
which corresponds to the number of explored branches. Recall
that some values are filtered from the domains due to constraint
propagation and thus fewer branches are explored. In particular,
some branches and sub-trees are eliminated using constraint
propagation and some branches may be terminated earlier due to
inconsistency detected during variable assignment. Actually, once
a leaf is reached then the algorithm stops with success.

3.2 Credit Search
Credit Search (CS) uses a similar idea like DBS – they both
restrict the number of alternatives tried in each node. In particular,
fewer alternatives are explored in the bottom parts of the search
tree [3]. However, CS uses a finer control over branching via a so
called credit. Credit is a natural number describing the maximal
number of alternative branches to be explored. The credit c is split
to k child nodes (alternatives). Each child node is allocated a base
credit (c div k) that is increased by one for the first (c mod k) child

nodes (the ordering of nodes is given by the value selection
heuristic). In particular, credit one implies that only one
alternative is tried (shallow backtracking ignored). Figure 2 shows
an abstract code of the Credit Search.

procedure CS(Variables,Credit)
 if all_instantiated(Variables) then
 return true
 Var ← select_free_variable(Variables)
 BaseCredit ← Credit div size(dom(Var))
 RestCredit ← Credit mod size(dom(Var))
 Value ← select_first_value(Var)
 repeat
 if assign(Var,Value) then
 if RestCredit>0 then
 ValueCredit ← BaseCredit+1
 RestCredit ← RestCredit-1
 else
 ValueCredit ← BaseCredit
 end if
 Credit ← Credit-ValueCredit
 if CS(Variables,ValueCredit) then
 return true
 unassign(Var)
 Value←select_next_value(Var,Value)
 until Value=nil or Credit=0
 update_best(Variables)
 return fail
end CS

Figure 2. An abstract code of Credit Search (CS). The bold
italics parts are specific for CS.

Let c be the credit then the worst case time complexity of CS is
O(c). Like in DBS, some branches may be terminated earlier due
to inconsistency of the partial assignment.

3.3 Iterative Broadening
Iterative Broadening (IB) restricts the number of alternatives tried
in each node by a breadth limit [6]. Opposite to DBS and CS,
Iterative Broadening may explore a restricted number of
alternatives in each node which leads to an exponential time
complexity. Figure 3 shows an abstract code of IB. Again,
shallow backtracking is ignored and alternatives that fail
immediately are not counted in the breadth limit.

procedure IB(Variables,BreadthLimit)
 if all_instantiated(Variables) then
 return true
 Var ← select_free_variable(Variables)
 AvailableBreadth ← BreadthLimit
 Value ← select_first_value(Var)
 repeat
 if assign(Var,Value) then
 AvailableBreadth ← AvailableBreadth-1
 if IB(Variables,BreadthLimit) then
 return true
 unassign(Var)
 Value ← select_next_value(Var,Value)
 until Value=nil or AvailableBreadth=0
 update_best(Variables)
 return fail
end IB

Figure 3. An abstract code of Iterative Broadening (IB). The
bold italics parts are specific for IB.

Let b be the breadth limit and n be the number of variables. Then
the worst case time complexity of IB is O(bn). Thus, for any b>1
the algorithm has an exponential time complexity which makes it
different from the above described incomplete search techniques.

3.4 Limited Assignment Number Search
Iterative Broadening allows to explore values of all variables
equally while Depth-Bounded Backtrack Search and Credit
Search prefer the variables selected earlier (more values are tried
for these variables). We propose to modify the main idea of
Iterative Broadening in such a way that the total number of
attempts to assign a value to the variable is restricted. We
introduce a so called LAN (Limited Assignment Number) limit
indicating how many times a variable can be assigned a value. For
simplicity reasons, we use an identical LAN limit for all the
variables. A possible future extension could be to use different
LAN limits for different variables, for example to derive the LAN
limit from the domain size. When the number of assignments to
the variable reaches the LAN limit, we say that the variable
expired. The search procedure does not try to assign a value to the
expired variables (shallow backtracking ignored). These variables
are removed from the list of variables before a variable is selected
for assignment (filter_expired/1). We call the resulting algorithm
Limited Assignment Number (LAN) Search and Figure 4 shows
its abstract code. Note finally, that a value can still be assigned to
the expired variable via constraint propagation.

procedure LAN(Variables, LANlimit)
// counters were initialized to zero
// before overall search started
 FreeVariables ← filter_expired(Variables)
 if all_instantiated(FreeVariables) then
 return true
 Var ← select_free_variable(FreeVariables)
 Value ← select_first_value(Var)
 repeat
 if assign(Var,Value) then
 counter(Var) ← counter(Var)+1
 if LAN(Variables, LANlimit) then
 return true
 unassign(Var)
 Value ← select_next_value(Var,Value)
 until Value=nil or counter(Var)=LANlimit
 update_best(Variables)
 return fail
end LAN

Figure 4. An abstract code of Limited Assignment Number
Search (LAN). The bold italics parts are specific for LAN.

Let l be the LAN limit and n be the number of variables. The
number of assignments to the variable is accumulated during
search so at most l times a value is tried for each variable. Thus,
the worst case time complexity of LAN Search is O(ln).

4. EXPERIMENTS
We compared the algorithms using random, structured, and real-
life problems. In particular, we used Random Constraint
Satisfaction Problems, Quasigroups with Holes, and Random
Placement Problems. Random Constraint Satisfaction Problem
(RCSP) is characterized by a tuple 〈n,m,p1,p2〉, where n is a
number of variables, m is a uniform domain size, p1 is a measure
of the density of the constraint graph, and p2 is a measure of the

tightness of the binary constraints [9]. We use a so called model B
of RCSP. Quasigroups With Holes (QWH) are characterized by
the order (size) of a Latin square and by the number of holes [1].
The task is to fill the holes in the partial Latin square to complete
it. Random Placement Problem (RPP) is characterized by the size
of a rectangular area and by the number of rectangles that should
be placed in this area without any overlap [10]. There are
additional attributes of RPP that allow simulation of timetabling
problems. We used the attributes derived from the Purdue
timetabling problem [11] to obtain problems close to real world.
We selected the problems from the phase-transition area where
the hard problems settle (we obtained similar results for the area
of over-constrained problems). We generated a hundred instances
of each problem and we run the algorithms with the fail-first
variable selection [5], the smallest value selection, and with the
different cutoff limits (from 1 to 10 for DBS, IB, and LAN, and
from 10 to 100 for CS) for each instance. The algorithms were
implemented in the clpfd library of SICStus Prolog 3.11.2 [4]
and the experiments run on 1.8 GHz Pentium under Windows XP.

Figures 5-7 show the relation between the runtime and the number
of instantiated variables in the obtained solution for each studied
algorithm. Each curve shows the results for a particular algorithm
with an increasing cutoff limit. We use this type of comparison
because it is independent of the cutoff limit. So it characterizes
better the particular algorithm. A curve closer to bottom or to
right borders indicates a better algorithm (either a better time for
the same quality or a better quality for the same time).

0

1000

2000

3000

4000

5000

6000

10 15 20 25 30 35 40 45

quality (number of instantiated variables)

tim
e

(m
s)

Figure 5. Relation between runtime and quality of solution for
RCSP 〈50,12, 250/1225,0.35〉, -CS, -DBS, ∆-IB, -LAN.

0

2000

4000

6000

8000

10000

12000

750 770 790 810 830 850 870 890 910

quality (number of instantiated variables)

tim
e

(m
s)

Figure 6. Relation between runtime and quality of solution for
QWH, order 30 and 40% holes, -CS, -DBS, ∆-IB, -LAN.

10

100

1000

10000

100000

45 50 55 60 65 70

quality (number of instantiated variables)

tim
e

(m
s)

Figure 7. Relation between runtime and quality of solution for
RPP, size 16 and 40 rectangles, -CS, -DBS, ∆-IB, -LAN.

In the experiments, LAN Search achieved the best runtime for a
given solution quality so it has the best quality/performance ratio.
However, the quality of the best obtained solution for LAN
Search in the artificial benchmarks (RCSP and QWH) is not as
good as the best quality obtained by the other algorithms. But
LAN Search is a hands-down winner for RPP derived from the
real-life problem both in terms of solution quality and runtime
(notice the logarithmic scale for the runtime in Figure 7).

5. CONCLUSIONS
In this paper, we presented a new uniform view of existing cutoff
strategies for incomplete depth-first search and we described their
extension towards producing incomplete solutions. This extension
is useful for solving over-constrained problems as well as hard-to-
solve problems where complete assignments do not exist or it is
hard to find them. We also introduced a new cutoff strategy, a so
called LAN Search, based on a limited number of assignments per
variable. The accomplished experiments confirmed the runtime
stability of this new strategy that achieved the best
quality/performance ratio. The experiments also showed that for
structured problems (QWH and RPP) LAN Search produces good
solutions even for small cutoff limits. Therefore, it is possible to
use a small cutoff limit (2-5) for the structured problems and to
achieve a good runtime. Both these features make LAN Search
different from the other incomplete depth-first search techniques
where finding a suitable cutoff limit is an open research question.
Nevertheless, a further study of why LAN search works well,
especially why it has so exceptional performance in solving a
RPP, is an interesting direction for future research.

The paper focused on a single iteration of each algorithm. Once
the iteration is finished, the incomplete algorithms usually restart
with modified attributes to improve further the solution. The
results in [11] showed that restarts can significantly improve
solution quality for timetabling problems. So we believe that
adding a restart strategy is a promising addition to the proposed
cutoff strategy. Recall also, that a single iteration of LAN Search
already achieved the far best results for this type of problem in
comparison to other incomplete depth-first search techniques.
Still, the quality of a single iteration for other types of problems
could be improved, for example by using variable locking [2] that
ensures finding locally maximal consistent assignments.

The other interesting area for further studies is a generalization of
the proposed cutoff scheme. While DBS, CS, and IB are tree
oriented search algorithms that can be applied to any branching
scheme, LAN Search is oriented primarily to variable
assignments. It is not clear whether and how it can be extended to
a general tree search. Such extension would be valuable because
the current results of LAN Search are quite promising and in
some areas, like scheduling, different branching schemes are
preferred over the variable assignments.

6. ACKNOWLEDGMENTS
The research is supported by the Czech Science Foundation under
the contract No. 201/04/1102 and by Purdue University. We
would like to thank anonymous reviewers for useful comments.

7. REFERENCES
[1] Dimitris Achlioptas, Carla Gomes, Henry Kautz, and Bart

Selman. Generating Satisfiable Problem Instances. In
Proceedings of National Conference on Artificial
Intelligence (AAAI-2000). AAAI Press, 2000, 256-261.

[2] Roman Barták, Tomáš Müller, Hana Rudová. A New
Approach to Modelling and Solving Minimal Perturbation
Problems. In Recent Advances in Constraints, 2003.
Springer-Verlag LNAI 3010, 2004, 223-249.

[3] N. Beldiceanu, E. Bourreau, P. Chan, D. Rivreau, D. Partial
Search Strategy in CHIP. In 2nd International Conference on
Metaheuristics (MIC 97), 1997.

[4] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended
finite domain constraint solver. In Programming Languages:
Implementations, Logics, and Programming. Springer-
Verlag LNCS 1292, 1997.

[5] R. Dechter. Constraint Processing. Morgan Kaufmann
Publishers, 2003.

[6] Matthew L. Ginsberg and William D. Harvey. Iterative
Broadening. In Proceedings of National Conference on
Artificial Intelligence. AAAI Press, 1990, 216-220.

[7] William D. Harvey. Nonsystematic backtracking search.
PhD thesis, Stanford University, 1995.

[8] William D. Harvey and Matthew L. Ginsberg. Limited
discrepancy search. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1995, 607-615.

[9] Ewan MacIntyre, Patrick Prosser, Barbara Smith, and Toby
Walsh. Random Constraint Satisfaction: theory meets
practice. In Michael Maher and Jean-Francois Puget (eds.):
Principles and Practice of Constraint Programming - CP98.
Springer-Verlag LNCS 1520, 1998, 325-339.

[10] Hana Rudová. Random Placement Problem.
http://www.fi.muni.cz/~hanka/rpp/, 2002.

[11] Hana Rudová and Keith Murray. University Course
Timetabling with Soft Constraints. In Edmund Burke and
Patrick De Causmaecker (eds.): Practice And Theory of
Automated Timetabling IV. Springer-Verlag LNCS 2740,
2003, 310-328.

