
Double Precedence Graphs

Roman Barták*, Ondřej Čepek*

*Charles University, Faculty of Mathematics and Physics
Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic

{roman.bartak,ondrej.cepek}@mff.cuni.cz

Institute of Finance and Administration
Estonská 500, 101 00 Praha 10, Czech Republic

Abstract
Reasoning on precedence relations is crucial for many
planning and scheduling systems. In this paper we
propose a double precedence graph where direct
precedence relations are kept in addition to traditional
precedence relations. By the direct precedence between
activities A and B we mean that A directly precedes B (no
activity is between A and B). We also show how these
direct precedence relations can be used in incremental
filtering of time windows and in introducing sequence-
dependent setup times between activities.

Introduction

Precedence relations play a crucial role in planning
systems while time windows are more important for
scheduling. As scheduling and planning technologies are
coming together, filtering algorithms combining filtering
based on precedence relations and time windows
appeared in the context of constraint-based scheduling.
Detectable precedences by Vilím (2002) are one of the
first attempts for such a combination. Laborie (2003)
presents a similar rule called energy precedence
constraint for reservoir-like resources. In (Barták &
Čepek, 2005) we proposed a new set of propagation rules
that keep a transitive closure of the precedence relations,
deduce new precedence relations, and shrink the time
windows of the activities. They may also deduce that
some optional activity will not be present in the final
schedule. These rules achieve the same pruning as a
monolithic algorithm proposed in (Vilím, Barták, Čepek,
2004) and as the energy precedence constraint proposed
by Laborie (2003) if it is applied to a unary resource (the
energy precedence constraint is defined for reservoirs)
and optional activities are not used. In (Barták & Čepek,
2005) we focused on “implementation-friendly” design
that uses light data structures (domains of variables in the
sense of constraint satisfaction technology) and that is
easy to integrate into existing constraint solvers. In this
paper we further extend our work to cover sequence
dependent setup times. We propose a so called double
precedence graph where direct precedence relations are
kept in addition to standard precedence relations. By the
direct precedence between activities A and B we mean
that A directly precedes B, in particular no activity can
be scheduled between A and B. We will show how the
propagation rules from (Barták & Čepek, 2005) can be
modified to handle the double precedence graphs. We

will also describe in detail how this additional
information about direct precedence relations is used in
modelling of setup times and in filtering of time
windows.
 The paper is organized as follows. First, we will
describe in detail the scheduling problem that is behind
our work. Then, we will propose a constraint model for
sequence-dependent setup times which motivates the
introduction of direct precedence relations. The main
part of the paper is devoted to the description of
incremental propagation rules that maintain a transitive
closure of the double precedence graph. We will
conclude by showing that additional information about
direct precedence relations can also be used in
incremental propagation of time windows.

Motivation

In this paper we address the problem of modelling a
unary resource where activities must be allocated in such
a way that they do not overlap in time. We assume that
there are time windows restricting the position of these
activities. The time window [R,D] for an activity
specifies that the activity cannot start before R (release
time) and cannot finish after D (deadline). We assume
each activity to be non-interruptible so the activity
occupies the resource from its start till its completion,
that is, for a time interval whose length is equal to the
given length of the activity. We also assume that there
are precedence constraints for the activities. The
precedence constraint A«B specifies that activity A must
not finish later than activity B starts. The precedence
constraints describe a partial order between the activities.
The goal of scheduling is to decide a total order that
satisfies (extends) the partial order (this corresponds to
the definition of a unary resource) in such a way that
each activity is scheduled within its time window.
Moreover, we assume so called sequence-dependent
setup times between the activities. For each pair of
activities A and B there is a setup time TA,B meaning that
if A is allocated directly before B then there must be a
gap of at least TA,B time units between the completion of
A and the start of B. We do not assume other restrictions
on setup times. For example, setup times can be
asymmetric (TA,B ≠ TB,A) and a triangular inequality does
not need to hold between the setup times (a triangular
inequality between the setup times says that
TA,B≤TA,C+TC,B). Last but not least we allow some

activities to be so called optional. It means that it is not
known in advance whether such activities are allocated
to the resource or not. If the optional activity is allocated
to the resource, that is, it is included in the final resource
schedule then we call this activity valid. If the activity is
known not to be allocated to the resource then we call the
activity invalid. In other cases, that is, the activity is not
decided to be or not to be allocated to the resource, we
call the activity undecided. Optional activities are useful
for modelling alternative resources for the activities (an
optional activity is used for each alternative resource and
exactly one optional activity becomes valid) or for
modelling alternative processes to accomplish a job
(each process may consist of a different set of activities).
 Note that for the above defined problem of scheduling
with time windows it is known that deciding about an
existence of a feasible schedule is NP-hard in the strong
sense (Garey & Johnson, 1979) even when no
precedence relations, setup times, and optional activities
are considered. Hence there is a little hope even for a
pseudo-polynomial solving algorithm and therefore using
propagation rules and constraint satisfaction techniques
is justified there.

Modelling Sequence-Dependent Setup Times
Sequence-dependent setup times appear frequently in
real-life scheduling problems with complex resources.
Setup times describe time necessary to setup a machine
when switching from one item to a different item, for
example to change a mould in the injection machine
when changing the shape of a product. Sequence
dependence typically means that switching from A to B
may be different from switching B to A (we also call it
asymmetry). For example, setup time to switch from
transparent items to black items is different from
switching black items to transparent ones. Usually, a
triangular inequality holds between the setup times, that
is TA,B≤TA,C+TC,B, where TA,B is a setup time for going
from A to B. Scheduling models for setup times typically
assume this triangular inequality (Vilím & Barták, 2002)
and we are not aware about any model of setup times
where the triangular inequality is not assumed.
Nevertheless, there exist resources where this triangular
inequality does not hold. For example, it might be faster
to produce some intermediate product C than to switch
directly from A to B. In this paper, we focus our
attention to general sequence dependence setup times
where neither symmetry of setup times nor triangular
inequality is requested.
 Typically, setup time is assumed to be an empty gap
between two consecutive activities. We propose to
include the setup time in the duration of the second
activity. Basically, it means that duration of each activity
will consists of its real duration plus a setup time. Clearly
because of time windows we still need to keep the
original start time of the activity but we add the extended
start time to model the start time including the setup. The
extended start time can now participate in non-
overlapping constraints like edge-finding without
modifying these constraints.

The difference between the start time and the extended
start time equals exactly to the setup time for a given
activity (if it is the first activity, we can use a startup
time there). The open question is how to find out the
setup time. If we know the directly preceding activity,
we can look for the setup time in the list of all setup
times for a given activity. If there are several candidates
for the direct predecessor then we can compute the
minimal and the maximal setup time. Basically, we can
post a binary constraint between the variable describing a
direct predecessor and the variable describing the setup
time. The relation behind this constraint is extensionally
defined – it is a list of setup times for the activity where
index of each element corresponds to identification of
the possible predecessor.
 The above model of setup times has many advantages.
First, the model does not require any restriction on setup
times like the triangular inequality. Second, it is easy to
implement. We will show later how the precedence
graph can be extended to a double precedence graph that
provides necessary information to propagate setup times.
Last but least, it is not necessary to modify other filtering
algorithms, like edge finding (Baptiste & Le Pape, 1996)
or not-first/not-last rules (Torres & Lopez, 1999), to
work with setup times, provided that these algorithms
can accommodate variable duration of activities.
Currently, we see only one important drawback. Domain
filtering with the proposed model might be weaker than
other models that assume some specific features of setup
times. However, this is an obvious trade-off between
efficiency and generality.
 From the point of view of precedence graphs, we need
additional information to be deducible from the
precedence graph – the direct predecessor of each
activity. We will show in the next section, how this
information can be incrementally maintained.

Double Precedence Graph and Its
Maintenance

As we mentioned above, precedence relations are
defined among the activities. These precedence relations
define a precedence graph which is an acyclic directed
graph where nodes correspond to activities and there is
an arc from A to B if A«B. Frequently, the scheduling
algorithms need to know whether A must be before B in
the schedule, that is whether there is a path from A to B
in the precedence graph. It is possible to look for the path
each time such a query occurs. However, if such queries
occur frequently then it is more efficient to provide the
answer immediately, that is, in time O(1). This can be
achieved by keeping a transitive closure of the
precedence graph.

Definition 1: We say that a precedence graph G is
transitively closed if for any path from A to B in G there
is also an arc from A to B in G.

start time extended
start time

end time

SETUP ACTIVITY

Defining the transitive closure is more complicated when
optional activities are assumed. Let A«B and B«C and B
be undecided. In such a case, it is not possible to deduce
that A«C because if B is removed – becomes invalid –
then the path from A to C is lost. Therefore, we need to
define transitive closure more carefully.

Definition 2: We say that a precedence graph G with
optional activities is transitively closed if for any two
arcs A to B and B to C such that B is a valid activity and
A and C are either valid or undecided activities there is
also an arc A to C in G.

It is easy to prove that if there is a path from A to B such
that A and B are either valid or undecided and all inner
nodes in the path are valid then there is also an arc from
A to B in a transitively closed graph (by induction of the
path length). Hence, if no optional activity is used
(activities are valid) then Definition 2 is identical to
Definition 1.

In (Barták & Čepek, 2005) we proposed a constraint
model for the precedence graph and two propagation
rules that maintain the transitive closure of the graph
with optional activities. In this paper, we extend this
model by adding information about possible direct
predecessors and, symmetrically, possible direct
successors to the transitively closed precedence graph.

Definition 3: We say that A can directly precede B if
both A and B are either valid or undecided activities, B is
not before A (¬B«A) and there is no valid activity C
such that A«C and C«B (relation « is assumed to be from
the transitive closure of the precedence graph with
optional activities).

The relation of direct precedence introduces a new type
of arc, say «d, in the precedence graph and hence we are
speaking about the double precedence graph. There is
one significant difference between the arcs of type « and
the arcs of type «d. While the arcs « are added into the
graph as scheduling proceeds, the arcs «d are removed
from the graph. In the final schedule there is exactly one
arc of type «d going into each valid activity (with the
exception of the very first activity in the schedule) and
one arc of type «d going from each valid activity (with
the exception of the very last activity in the schedule). In
the following paragraphs, we revise the constraint model
from (Barták & Čepek, 2005) by adding information
about the direct precedence relations.

We index each activity by a unique number from the
set 1,..,n, where n is the number of activities. For each
activity we use a 0/1 variable Valid indicating whether
the activity is valid (1) or invalid (0). If the activity is not
known yet to be valid or invalid then the domain of Valid
is {0,1}. The precedence graph is encoded in two sets
attached to each activity. CanBeBefore is a set of indices
of activities that can be before a given activity.
CanBeAfter is a set of indices of activities that can be
after the activity. If we add an arc between A and B
(A«B) then we remove the index of A from
CanBeAfter(B) and the index of B from
CanBeBefore(A). For simplicity reasons we will write A
instead of the index of A. Note that these sets can be
easily implemented as finite domains of two variables so
a special data structure is not necessary. For this

implementation we propose to include value 0 in above
two sets to ensure that the domain is not empty even if
the activity is first or last (an empty domain in a CSP
indicates the non-existence of a solution). The value 0 is
not assumed as an index of any activity in the
propagation rules. Usually, CSPs are solved by removing
inconsistent values from the domains, this is called
domain filtering. Our propagation rules do exactly the
same job – inconsistent values are removed from the
above sets. To simplify description of the propagation
rules we define for every activity A the following sets:

 MustBeAfter(A) = CanBeAfter(A) \ CanBeBefore(A)
 MustBeBefore(A) = CanBeBefore(A) \ CanBeAfter(A)
 Unknown(A) = CanBeBefore(A) ∩ CanBeAfter(A).

MustBeAfter(A) and MustBeBefore(A) are sets of those
activities that must be after and before the given activity
A respectively. Unknown(A) is a set of activities that are
not yet known to be before or after activity A. These sets
can be stored in memory and incrementally maintained
whenever the sets CanBeBefore or CanBeAfter are
pruned or these sets can be computed on demand.
 In the subsequent complexity analysis, we will assume
that the set operations membership and deletion require
time O(1), which can be realised for example by using a
bitmap representation of the sets. Note that this
assumption also holds for sets MustBeAfter,
MustBeBefore, and Unknown even if they are computed
on demand (in the propagation rules, we will only check
membership in these sets).

To model direct precedence relations and hence a
double precedence graph, we add two sets to each
activity: CanBeRightBefore and CanBeRightAfter
containing initially values 0,..,n with the same meaning
as above. The contents of these two new sets are defined
according to Definition 3 as follows:

A∈CanBeRightBefore(B) ≡
 A∈CanBeBefore(B) ∧

 ¬∃C valid(C)=1 ∧ C∈MustBeAfter(A) ∧ C∈MustBeBefore(B)
A∈CanBeRightAfter(B) ≡
 A∈CanBeAfter(B) ∧
 ¬∃C valid(C) =1 ∧ C∈MustBeBefore(A) ∧ C∈MustBeAfter(B)

Clearly, A «d B ⇔ A∈CanBeRightBefore(B) ⇔
B∈CanBeRightAfter(A). Note that if the transitive
closure of the precedence graph is kept then it is easy to
maintain the above two sets. In particular, each time an
activity is removed from CanBeBefore, the same activity
is removed from CanBeRightBefore (similarly for
CanBeRightAfter). Moreover, if an arc A«B is added to
re-establish the transitive closure (because there exists a
valid activity C such that A«C and C«B) then B is
removed from CanBeRightAfter(A) and A is removed
from CanBeRightBefore(B).

We initiate the double precedence graph in the
following way. First, the variables Valid(A),
CanBeBefore(A), CanBeAfter(A), CanBeRightAfter(A),
and CanBeRightBefore(A) with their domains are
created for every activity A. Then the known precedence
relations are added in the above-described way (domains
of CanBeBefore(A), CanBeRightBefore(A),
CanBeAfter(A), and CanBeRightAfter(A) are pruned).
Finally, the Valid(A) variable for every valid activity A

is set to 1 (activities that are known to be invalid from
the beginning may be omitted from the graph or their
Valid variables are set to 0).

Propagation rule /1/ is invoked when the validity
status of the activity becomes known. “Valid(A) is
instantiated” is its trigger. The part after is a
propagator describing pruning of domains. “exit” means
that the constraint represented by the propagation rule is
entailed so the propagator is not further invoked (its
invocation does not cause further domain pruning). We
will use the same notation in all rules.

Valid(A) is instantiated /1/

if Valid(A) = 0 then
 for each B do // disconnect A from B
 CanBeBefore(B) ← CanBeBefore(B) \ {A}
 CanBeAfter(B) ← CanBeAfter(B) \ {A}
 CanBeRightBefore(B) ← CanBeRightBefore(B) \ {A}
 CanBeRightAfter(B) ← CanBeRightAfter(B) \ {A}
else // Valid(A)=1
 for each B∈MustBeBefore(A) do
 for each C∈MustBeAfter(A) do
 CanBeRightAfter(B) ← CanBeRightAfter(B) \ {C}
 CanBeRightBefore(C) ← CanBeRightBefore(C) \ {B}

 if C∉MustBeAfter(B) then // new precedence B«C
 CanBeAfter(C) ← CanBeAfter(C) \ {B}
 CanBeBefore(B) ← CanBeBefore(B) \ {C}
 CanBeRightAfter(C) ← CanBeRightAfter(C) \ {B}
 CanBeRightBefore(B) ← CanBeRightBefore(B) \ {C}

 if C∉CanBeAfter(B) then // break the cycle
 post_constraint(Valid(B)=0 ∨ Valid(C)=0)
exit

Observation: Note that rule /1/ maintains symmetry for
all valid and undecided activities because the domains
are pruned symmetrically in pairs. This symmetry can be
defined as follows: if Valid(B)≠0 and Valid(C)≠0 then
B∈CanBeBefore(C) if and only if C∈CanBeAfter(B).
This moreover implies that B∈MustBeBefore(C) if and
only if C∈MustBeAfter(B). Finally, the same deduction
implies that B∈CanBeRightBefore(C) if and only if
C∈CanBeRightAfter(B).

We shall show now, that if the entire precedence graph
is known in advance (no arcs are added during the
solving procedure), then rule /1/ is sufficient for keeping
the (generalised) transitive closure according to
Definition 2. To give a formal proof we need to define
several notions more precisely.

Let J={0,1, … ,n} be the set of activities, where 0 is a
dummy activity with the sole purpose to keep all sets
CanBeAfter(i) and CanBeBefore(i) nonempty for all
1≤i≤n. Furthermore, let G=(J\{0},E) be the given
precedence graph on the set of activities, and
GT=(J\{0},T) its (generalised) transitive closure (note
that the previously used notation i«j does not distinguish
between the arcs which are given as input and those
deduced by transitivity). The formal definition of the set
T can be now given as follows:

1. if (i,j)∈E then (i,j)∈T
2. if (i,j)∈T and (j,k)∈T and Valid(i)≠0 and Valid(j)=1

and Valid(k)≠0 then (i,k)∈T

Furthermore, T is not maintained as a list of pairs of
activities. Instead, it is represented using the set variables
CanBeAfter(i) and CanBeBefore(i), 1≤i≤n in the
following manner: (i,j)∈T if and only if i∉CanBeAfter(j)
and j∉CanBeBefore(i). The incremental construction of
the set T can be described as follows.

Initialization: for every i ∈ J\{0} set
• CanBeAfter(i) ← J\{i}
• CanBeBefore(i) ← J\{i}
• Valid(i) ← {0,1}

Set-up: for every arc (i,j)∈E set
• CanBeAfter(j) ← CanBeAfter(j)\{i}
• CanBeBefore(i) ← CanBeBefore(i)\{j}

Propagation: whenever an activity is made valid, call
rule /1/
Clearly, T is empty after the initialization and T=E after
the set-up. Now we are ready to state and prove formally
that rule /1/ is sufficient for maintaining the set T.

Proposition 1: Let i0, i1, … , im be a path in E such that
Valid(ij)=1 for all 1≤j≤m-1 and Valid(i0)≠0 and
Valid(im)≠0 (that is, the endpoints of the path are both
either valid or undecided and all inner points of the path
are valid). Then (i0,im)∈T, that is, i0∉CanBeAfter(im) and
im∉CanBeBefore(i0).
Proof: We shall proceed by induction on m. The base
case m=1 is trivially true after the set-up. For the
induction step let us assume that the statement of the
lemma holds for all paths (satisfying the assumptions of
the lemma) of length at most m-1. Let 1≤j≤m-1 be an
index such that Valid(ij)←1 was set last among all inner
points i1, … , im-1 on the path. By the induction
hypothesis we get

• i0∉CanBeAfter(ij) and ij∉CanBeBefore(i0)
using the path i0, … , ij

• ij∉CanBeAfter(im) and im∉CanBeBefore(ij)
using the path ij, … , im

We shall distinguish two cases. If im∈MustBeAfter(i0)
(and thus by symmetry also i0∈MustBeBefore(im)) then
by definition im∉CanBeBefore(i0) and
i0∉CanBeAfter(im) and so the claim is true trivially. Thus
let us in the remainder of the proof assume that
im∉MustBeAfter(i0).

Now let us show that i0∈CanBeBefore(ij) must hold,
which in turn (together with i0∉CanBeAfter(ij)) implies
i0∈MustBeBefore(ij). Let us assume by contradiction that
i0∉CanBeBefore(ij). However, at the time when both
i0∉CanBeAfter(ij) and i0∉CanBeBefore(ij) became true,
that is, when the second of these conditions was made
satisfied by rule /1/, rule /1/ must have posted the
constraint (Valid(i0)=0 ∨ Valid(ij)=0) which contradicts
the assumptions of the lemma. By a symmetric argument
we can prove that im∈MustBeAfter(ij). Thus when rule
/1/ is triggered by setting Valid(ij)←1 both
i0∈MustBeBefore(ij) and im∈MustBeAfter(ij) hold (and
im∉MustBeAfter(i0) is assumed), and therefore rule /1/
removes im from the set CanBeBefore(i0) as well as i0
from the set CanBeAfter(im), which finishes the proof.

Q.E.D.

From now on there will be no need to distinguish
between the “original” arcs from E and the transitively
deduced ones, so we will work solely with the set T. To

simplify notation we shall switch back to the A«B
notation (which is equivalent to (A,B) ∈ T).

Proposition 2: The worst-case time complexity of the
propagation rule /1/ (instantiation of the Valid variable)
including all possible recursive calls is O(n2), where n is
a number of activities.

Proof: If an activity is made invalid then it is removed
from the sets CanBeBefore, CanBeAfter,
CanBeRightBefore, and CanBeRightAfter of all other
activities which takes the total time O(n).

If activity A becomes valid then some new arcs may
be added to the graph. The maximal number of such arcs
is Θ(n2) – when Ω(n) of the activities must be before A
and Ω(n) of the activities must be after A. It may happen
that some other activities (at most O(n)) become invalid
to break cycles. However, we already know that the time
complexity of making an activity invalid is O(n).
Together, the worst-case time complexity to make an
activity valid is O(n2).

Q.E.D.

In some situations arcs may be added to the precedence
graph during the solving procedure, either by the user, by
the scheduler, or by other filtering algorithms like the
one described in (Barták & Čepek, 2005). The following
rule updates the double precedence graph to keep
transitive closure when an arc of type « is added to the
double precedence graph.

A«B is added /2/
 if A∈MustBeBefore(B) then exit
 CanBeAfter(B) ← CanBeAfter(B) \ {A}

 CanBeRightAfter(B) ← CanBeRightAfter(B) \ {A}
 CanBeBefore(A) ← CanBeBefore(A) \ {B}

 CanBeRightBefore(A) ← CanBeRightBefore(A) \ {B}
 if A∉CanBeBefore(B) then // break the cycle

 post_constraint(Valid(A)=0 ∨ Valid(B)=0)
 else
 if Valid(A)=1 then // transitive closure
 for each C∈MustBeBefore(A) do
 CanBeRightAfter(C) ← CanBeRightAfter(C) \ {B}

 CanBeRightBefore(B) ← CanBeRightBefore(B) \ {C}
 if C∉MustBeBefore(B) then // new precedence

 enqueue_for_propagation(add C«B)
 if Valid(B)=1 then // transitive closure
 for each C∈MustBeAfter(B) do
 CanBeRightAfter(A) ← CanBeRightAfter(A) \ {C}

 CanBeRightBefore(C) ← CanBeRightBefore(C) \ {A}
 if C∉MustBeAfter(A) then // new precedence

 enqueue_for_propagation(add A«C)
 exit

The rule /2/ does the following. If a new arc A«B is
added then the sets CanBeBefore(A), CanBeAfter(B),
CanBeRightBefore(A), and CanBeRightAfter(B) are
updated. If a cycle is detected then the cycle is broken in
the same way as in rule /1/. The rest of the propagation
rule ensures that if one of endpoints of the added arc is
valid then other arcs are added recursively to keep a
transitive closure. If such an arc C«B is added then the
arc C«dB between the same nodes is removed because
there cannot be a direct precedence between B and C

(there is A between B and C). The following proposition
shows that all necessary arcs are added by rule /2/.

Proposition 3: If the precedence graph G is transitively
closed and arc A«B is added to G then the propagation
rule /2/ updates the precedence graph G to be transitively
closed again.

Proof: Assume that arc A«B is added into G at a moment
when arc B«C is already present in G. Moreover assume
that Valid(A)≠0, Valid(B)=1, and Valid(C)≠0. We want
to show that A«C is in G after rule /2/ is fired by the
addition of A«B. The presence of arc B«C implies that
C∈MustBeAfter(B) (and by symmetry also
B∈MustBeBefore(C)). There are two possibilities. Either
C∉MustBeAfter(A) in which case rule /2/ adds the arc
A«C into G, or C∈MustBeAfter(A) (and by symmetry
also A∈MustBeBefore(C)) which means that arc A«C
was already present in G when arc A«B was added.

The case when arc A«B is added into G at a moment
when arc C«A is already present in G and Valid(C)≠0,
Valid(A)=1, Valid(B)≠0 holds can be handled similarly.

Thus when an arc is added into G, all paths of length
two which include this new arc are either already
spanned by a transitive arc, or the transitive arc is added
by rule /2/. In the latter case this may invoke adding
more and more arcs. However, this process is obviously
finite (cannot cycle) as an arc is added into G only if it is
not present in G, and if an arc is removed form G
(breaking the cycle), it can never be added back as one of
its endpoins becomes invalid (and thus is permanently
disconnected from G).

Therefore, it is easy to see, that when the process of
recursive arc additions terminates, the graph G is
transitively closed. Indeed, for every path of length two
in G one of the arcs is added later than the other, and we
have already seen that at a moment of such an addition
the transitive arc is either already on G or is added by
rule /2/ in the next step.

Q.E.D.

Proposition 4: The worst-case time complexity of the
propagation rule /2/ (adding a new arc) including all
recursive calls to rules /1/ and /2/ is O(n3), where n is a
number of activities.

Proof: If arc A«B is added and B must also be before A
then one of the activities A or B will become invalid
which takes time O(n) (see Proof of Proposition 2). If
both A and B are undecided then the rule prunes sets
CanBeAfter(B), CanBeRightAfter(B), CanBeBefore(A),
and CanBeRightBefore(A) and exits without further
propagation. If A is valid and B is undecided (or vice
versa) then all predecessors of A are connected to B.
There are at most O(n) such predecessors and the new
arcs are added by recursive invocation of rule /2/. The
recursion stops at this level because every predecessor X
of a valid predecessor C of A is also a predecessor of A
(due to transitive closure) and hence the arc X«B has
already been enqueued for propagation when addition of
A«B was processed. Moreover, any duplicate copy of the
same arc in the queue will be processes in time O(1) (see
the first line of rule /2/). The “worst” situation happens
when both A and B are valid. Then all predecessors of A
are recursively connected to all successors of B. There

are at most O(n2) such connections and processing each
connection takes time O(n), so the worst-case time
complexity is O(n3).

Q.E.D.

Proposition 5: The propagation rules /1/ and /2/
maintain correctly the sets CanBeRightBefore and
CanBeRightAfter.

Proof: We will prove the proposition for the set
CanBeRightBefore only, the set CanBeRightAfter is
maintained symmetrically. At the beginning, the set
CanBeRightBefore(B) contains all activities but B which
is all right, because all activities are undecided. Each
time A is deleted from CanBeBefore(B), A is also
deleted from CanBeRightBefore(B) in both rules /1/ and
/2/. If any C becomes valid, A∈MustBeBefore(C), and
B∈MustBeAfter(C) then A is deleted from
CanBeRightBefore(B) in rule /1/. If a new arc A«C is
added, C is valid, and B∈MustBeAfter(C) then A is
deleted from CanBeRightBefore(B) in rule /2/. Similarly,
if a new arc C«B is added, C is valid, and
A∈MustBeBefore(C) then A is deleted from
CanBeRightBefore(B) in rule /2/. According to
Definition 3 these are the only ways how the direct
precedence relation can be influenced.

Q.E.D.

Propagating Time Windows
Our primary motivation for introducing the double
precedence graph was modelling sequence-dependent
setup times. However, the direct precedence relations
between activities can also be used for propagating time
windows. In (Barták & Čepek, 2005), we proposed a
combination of the precedence graph with time windows
propagation. In particular, we showed how time windows
can be used to deduce new so called detectable
precedences and how the precedence graph can be used
to tighten lower and upper bounds of time windows.
Moreover, if a lower bound for some time window is
increased then this information can be incrementally
propagated to lower bounds of time windows of
subsequent activities. The following code from (Barták
& Čepek, 2005) shows how increase of the earliest start
time (est) of some valid activity A is propagated to the
subsequent valid or undecided activities B.

for each B∈MustBeAfter(A) & ¬∃C Valid(C)=1 & A«C & C«B do
 est(B) ← est(A)+p(A)+
 ∑{p(X) | X∈MustBeBefore(B) & est(A)≤est(X) &
 Valid(X)=1}

Notice that only activities B such that ¬∃C Valid(C)=1
& A«C & C«B are influenced. These activities B are
exactly the current direct successors of A according to
Definition 3. Hence the code can be rewritten using a
double precedence graph as follows:

for each B∈MustBeAfter(A)∩CanBeRightAfter(A) do
 est(B) ← est(A)+p(A)+
 ∑{p(X) | X∈MustBeBefore(B) & est(A)≤est(X) &
 Valid(X)=1}

Note also that if the earliest start time of some valid
activity B that is a direct successor of A is increased then
this increase is propagated to direct successors of B and
so on. Hence, every successor of A can eventually be
influenced. A similar incremental propagation can be
realized for the latest completion time of activities.

Conclusions
The paper reports a work in progress on incremental
filtering algorithms for unary resources with time
windows, precedence relations, setup times, and optional
activities. In particular, we focused on extending the
precedence graph to provide information about direct
precedence relations between the activities. We proposed
a double precedence graph where this information is
incrementally maintained and hence available in time
O(1). We showed how direct precedence relations can be
used in modelling sequence-dependent setup times and in
propagation of time windows.

Acknowledgements
The research is supported by the Czech Science
Foundation under the contract no. 201/04/1102.

References
Baptiste, P. and Le Pape, C. 1996. Edge-finding constraint
propagation algorithms for disjunctive and cumulative
scheduling, Proceedings of the Fifteenth Workshop of the U.K.
Planning Special Interest Group (PLANSIG).
Barták R. and Čepek O. 2005. Incremental Propagation Rules
for A Precedence Graph with Optional Activities and Time
Windows. In Proceedings of The 2nd Multidisciplinary
International Conference on Scheduling: Theory and
Applications (MISTA 2005), New York.
Garey M. R. and Johnson D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness,
W.H.Freeman and Company, San Francisco.
Laborie P. 2003. Algorithms for propagating resource
constraints in AI planning and scheduling: Existing approaches
and new results, Artificial Intelligence, 143, 151-188.
Torres P. and Lopez P. 1999. On Not-First/Not-Last conditions
in disjunctive scheduling, European Journal of Operational
Research, 127, 332-343.
Vilím P. 2002. Batch Processing with Sequence Dependent
Setup Times: New Results, Proceedings of the 4th Workshop of
Constraint Programming for Decision and Control, CPDC'02,
Gliwice, Poland.
Vilím P., Barták R., and Čepek O. 2004. Unary Resource
Constraint with Optional Activities, Principles and Practice of
Constraint Programming (CP 2004), Springer Verlag, 62-76.
Vilím P. and Barták R. 2002. Filtering Algorithms for Batch
Processing with Sequence Dependent Setup Times. In
Proceedings of The Sixth International Conference on Artificial
Intelligence Planning and Scheduling (AIPS 2002), AAAI
Press, Toulouse, 312-320.

