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Abstract 
Reasoning on precedence relations is crucial for many 
planning and scheduling systems. In this paper we 
propose a double precedence graph where direct 
precedence relations are kept in addition to traditional 
precedence relations. By the direct precedence between 
activities A and B we mean that A directly precedes B (no 
activity is between A and B). We also show how these 
direct precedence relations can be used in incremental 
filtering of time windows and in introducing sequence-
dependent setup times between activities. 

Introduction 

Precedence relations play a crucial role in planning 
systems while time windows are more important for 
scheduling. As scheduling and planning technologies are 
coming together, filtering algorithms combining filtering 
based on precedence relations and time windows 
appeared in the context of constraint-based scheduling. 
Detectable precedences by Vilím (2002) are one of the 
first attempts for such a combination. Laborie (2003) 
presents a similar rule called energy precedence 
constraint for reservoir-like resources. In (Barták & 
Čepek, 2005) we proposed a new set of propagation rules 
that keep a transitive closure of the precedence relations, 
deduce new precedence relations, and shrink the time 
windows of the activities. They may also deduce that 
some optional activity will not be present in the final 
schedule. These rules achieve the same pruning as a 
monolithic algorithm proposed in (Vilím, Barták, Čepek, 
2004) and as the energy precedence constraint proposed 
by Laborie (2003) if it is applied to a unary resource (the 
energy precedence constraint is defined for reservoirs) 
and optional activities are not used. In (Barták & Čepek, 
2005) we focused on “implementation-friendly” design 
that uses light data structures (domains of variables in the 
sense of constraint satisfaction technology) and that is 
easy to integrate into existing constraint solvers. In this 
paper we further extend our work to cover sequence 
dependent setup times. We propose a so called double 
precedence graph where direct precedence relations are 
kept in addition to standard precedence relations. By the 
direct precedence between activities A and B we mean 
that A directly precedes B, in particular no activity can 
be scheduled between A and B. We will show how the 
propagation rules from (Barták & Čepek, 2005) can be 
modified to handle the double precedence graphs. We 

will also describe in detail how this additional 
information about direct precedence relations is used in 
modelling of setup times and in filtering of time 
windows. 
 The paper is organized as follows. First, we will 
describe in detail the scheduling problem that is behind 
our work. Then, we will propose a constraint model for 
sequence-dependent setup times which motivates the 
introduction of direct precedence relations. The main 
part of the paper is devoted to the description of 
incremental propagation rules that maintain a transitive 
closure of the double precedence graph. We will 
conclude by showing that additional information about 
direct precedence relations can also be used in 
incremental propagation of time windows. 

Motivation 

In this paper we address the problem of modelling a 
unary resource where activities must be allocated in such 
a way that they do not overlap in time. We assume that 
there are time windows restricting the position of these 
activities. The time window [R,D] for an activity 
specifies that the activity cannot start before R (release 
time) and cannot finish after D (deadline). We assume 
each activity to be non-interruptible so the activity 
occupies the resource from its start till its completion, 
that is, for a time interval whose length is equal to the 
given length of the activity. We also assume that there 
are precedence constraints for the activities. The 
precedence constraint A«B specifies that activity A must 
not finish later than activity B starts. The precedence 
constraints describe a partial order between the activities. 
The goal of scheduling is to decide a total order that 
satisfies (extends) the partial order (this corresponds to 
the definition of a unary resource) in such a way that 
each activity is scheduled within its time window. 
Moreover, we assume so called sequence-dependent 
setup times between the activities. For each pair of 
activities A and B there is a setup time TA,B meaning that 
if A is allocated directly before B then there must be a 
gap of at least TA,B time units between the completion of 
A and the start of B. We do not assume other restrictions 
on setup times. For example, setup times can be 
asymmetric (TA,B ≠ TB,A) and a triangular inequality does 
not need to hold between the setup times (a triangular 
inequality between the setup times says that 
TA,B≤TA,C+TC,B). Last but not least we allow some 



activities to be so called optional. It means that it is not 
known in advance whether such activities are allocated 
to the resource or not. If the optional activity is allocated 
to the resource, that is, it is included in the final resource 
schedule then we call this activity valid. If the activity is 
known not to be allocated to the resource then we call the 
activity invalid. In other cases, that is, the activity is not 
decided to be or not to be allocated to the resource, we 
call the activity undecided. Optional activities are useful 
for modelling alternative resources for the activities (an 
optional activity is used for each alternative resource and 
exactly one optional activity becomes valid) or for 
modelling alternative processes to accomplish a job 
(each process may consist of a different set of activities). 
 Note that for the above defined problem of scheduling 
with time windows it is known that deciding about an 
existence of a feasible schedule is NP-hard in the strong 
sense (Garey & Johnson, 1979) even when no 
precedence relations, setup times, and optional activities 
are considered. Hence there is a little hope even for a 
pseudo-polynomial solving algorithm and therefore using 
propagation rules and constraint satisfaction techniques 
is justified there. 

Modelling Sequence-Dependent Setup Times 
Sequence-dependent setup times appear frequently in 
real-life scheduling problems with complex resources. 
Setup times describe time necessary to setup a machine 
when switching from one item to a different item, for 
example to change a mould in the injection machine 
when changing the shape of a product. Sequence 
dependence typically means that switching from A to B 
may be different from switching B to A (we also call it 
asymmetry). For example, setup time to switch from 
transparent items to black items is different from 
switching black items to transparent ones. Usually, a 
triangular inequality holds between the setup times, that 
is TA,B≤TA,C+TC,B, where TA,B is a setup time for going 
from A to B. Scheduling models for setup times typically 
assume this triangular inequality (Vilím & Barták, 2002) 
and we are not aware about any model of setup times 
where the triangular inequality is not assumed. 
Nevertheless, there exist resources where this triangular 
inequality does not hold. For example, it might be faster 
to produce some intermediate product C than to switch 
directly from A to B. In this paper, we focus our 
attention to general sequence dependence setup times 
where neither symmetry of setup times nor triangular 
inequality is requested. 
 Typically, setup time is assumed to be an empty gap 
between two consecutive activities. We propose to 
include the setup time in the duration of the second 
activity. Basically, it means that duration of each activity 
will consists of its real duration plus a setup time. Clearly 
because of time windows we still need to keep the 
original start time of the activity but we add the extended 
start time to model the start time including the setup. The 
extended start time can now participate in non-
overlapping constraints like edge-finding without 
modifying these constraints. 
 

 
 
 
 
 
 
The difference between the start time and the extended 
start time equals exactly to the setup time for a given 
activity (if it is the first activity, we can use a startup 
time there). The open question is how to find out the 
setup time. If we know the directly preceding activity, 
we can look for the setup time in the list of all setup 
times for a given activity. If there are several candidates 
for the direct predecessor then we can compute the 
minimal and the maximal setup time. Basically, we can 
post a binary constraint between the variable describing a 
direct predecessor and the variable describing the setup 
time. The relation behind this constraint is extensionally 
defined – it is a list of setup times for the activity where 
index of each element corresponds to identification of 
the possible predecessor. 
 The above model of setup times has many advantages. 
First, the model does not require any restriction on setup 
times like the triangular inequality. Second, it is easy to 
implement. We will show later how the precedence 
graph can be extended to a double precedence graph that 
provides necessary information to propagate setup times. 
Last but least, it is not necessary to modify other filtering 
algorithms, like edge finding (Baptiste & Le Pape, 1996) 
or not-first/not-last rules (Torres & Lopez, 1999), to 
work with setup times, provided that these algorithms 
can accommodate variable duration of activities. 
Currently, we see only one important drawback. Domain 
filtering with the proposed model might be weaker than 
other models that assume some specific features of setup 
times. However, this is an obvious trade-off between 
efficiency and generality. 
 From the point of view of precedence graphs, we need 
additional information to be deducible from the 
precedence graph – the direct predecessor of each 
activity. We will show in the next section, how this 
information can be incrementally maintained. 

Double Precedence Graph and Its 
Maintenance 

As we mentioned above, precedence relations are 
defined among the activities. These precedence relations 
define a precedence graph which is an acyclic directed 
graph where nodes correspond to activities and there is 
an arc from A to B if A«B. Frequently, the scheduling 
algorithms need to know whether A must be before B in 
the schedule, that is whether there is a path from A to B 
in the precedence graph. It is possible to look for the path 
each time such a query occurs. However, if such queries 
occur frequently then it is more efficient to provide the 
answer immediately, that is, in time O(1). This can be 
achieved by keeping a transitive closure of the 
precedence graph. 

Definition 1: We say that a precedence graph G is 
transitively closed if for any path from A to B in G there 
is also an arc from A to B in G. 
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Defining the transitive closure is more complicated when 
optional activities are assumed. Let A«B and B«C and B 
be undecided. In such a case, it is not possible to deduce 
that A«C because if B is removed – becomes invalid – 
then the path from A to C is lost. Therefore, we need to 
define transitive closure more carefully. 

Definition 2: We say that a precedence graph G with 
optional activities is transitively closed if for any two 
arcs A to B and B to C such that B is a valid activity and 
A and C are either valid or undecided activities there is 
also an arc A to C in G. 

It is easy to prove that if there is a path from A to B such 
that A and B are either valid or undecided and all inner 
nodes in the path are valid then there is also an arc from 
A to B in a transitively closed graph (by induction of the 
path length). Hence, if no optional activity is used 
(activities are valid) then Definition 2 is identical to 
Definition 1. 

In (Barták & Čepek, 2005) we proposed a constraint 
model for the precedence graph and two propagation 
rules that maintain the transitive closure of the graph 
with optional activities. In this paper, we extend this 
model by adding information about possible direct 
predecessors and, symmetrically, possible direct 
successors to the transitively closed precedence graph.  

Definition 3: We say that A can directly precede B if 
both A and B are either valid or undecided activities, B is 
not before A (¬B«A) and there is no valid activity C 
such that A«C and C«B (relation « is assumed to be from 
the transitive closure of the precedence graph with 
optional activities). 

The relation of direct precedence introduces a new type 
of arc, say «d, in the precedence graph and hence we are 
speaking about the double precedence graph. There is 
one significant difference between the arcs of type « and 
the arcs of type «d. While the arcs « are added into the 
graph as scheduling proceeds, the arcs «d are removed 
from the graph. In the final schedule there is exactly one 
arc of type «d going into each valid activity (with the 
exception of the very first activity in the schedule) and 
one arc of type «d going from each valid activity (with 
the exception of the very last activity in the schedule). In 
the following paragraphs, we revise the constraint model 
from (Barták & Čepek, 2005) by adding information 
about the direct precedence relations. 

We index each activity by a unique number from the 
set 1,..,n, where n is the number of activities. For each 
activity we use a 0/1 variable Valid indicating whether 
the activity is valid (1) or invalid (0). If the activity is not 
known yet to be valid or invalid then the domain of Valid 
is {0,1}. The precedence graph is encoded in two sets 
attached to each activity. CanBeBefore is a set of indices 
of activities that can be before a given activity. 
CanBeAfter is a set of indices of activities that can be 
after the activity. If we add an arc between A and B 
(A«B) then we remove the index of A from 
CanBeAfter(B) and the index of B from 
CanBeBefore(A). For simplicity reasons we will write A 
instead of the index of A. Note that these sets can be 
easily implemented as finite domains of two variables so 
a special data structure is not necessary. For this 

implementation we propose to include value 0 in above 
two sets to ensure that the domain is not empty even if 
the activity is first or last (an empty domain in a CSP 
indicates the non-existence of a solution). The value 0 is 
not assumed as an index of any activity in the 
propagation rules. Usually, CSPs are solved by removing 
inconsistent values from the domains, this is called 
domain filtering. Our propagation rules do exactly the 
same job – inconsistent values are removed from the 
above sets. To simplify description of the propagation 
rules we define for every activity A the following sets: 

 MustBeAfter(A) = CanBeAfter(A)  \  CanBeBefore(A) 
 MustBeBefore(A)  = CanBeBefore(A)  \  CanBeAfter(A) 
 Unknown(A)  = CanBeBefore(A)  ∩  CanBeAfter(A). 

MustBeAfter(A) and MustBeBefore(A)  are sets of those 
activities that must be after and before the given activity 
A respectively. Unknown(A) is a set of activities that are 
not yet known to be before or after activity A. These sets 
can be stored in memory and incrementally maintained 
whenever the sets CanBeBefore or CanBeAfter are 
pruned or these sets can be computed on demand. 
 In the subsequent complexity analysis, we will assume 
that the set operations membership and deletion require 
time O(1), which can be realised for example by using a 
bitmap representation of the sets. Note that this 
assumption also holds for sets MustBeAfter, 
MustBeBefore, and Unknown even if they are computed 
on demand (in the propagation rules, we will only check 
membership in these sets).  

To model direct precedence relations and hence a 
double precedence graph, we add two sets to each 
activity: CanBeRightBefore and CanBeRightAfter 
containing initially values 0,..,n with the same meaning 
as above. The contents of these two new sets are defined 
according to Definition 3 as follows: 

A∈CanBeRightBefore(B) ≡ 
 A∈CanBeBefore(B) ∧ 

 ¬∃C valid(C)=1 ∧ C∈MustBeAfter(A) ∧ C∈MustBeBefore(B) 
A∈CanBeRightAfter(B) ≡ 
 A∈CanBeAfter(B) ∧ 
 ¬∃C valid(C) =1 ∧ C∈MustBeBefore(A) ∧ C∈MustBeAfter(B) 

Clearly, A «d B  ⇔ A∈CanBeRightBefore(B) ⇔ 
B∈CanBeRightAfter(A). Note that if the transitive 
closure of the precedence graph is kept then it is easy to 
maintain the above two sets. In particular, each time an 
activity is removed from CanBeBefore, the same activity 
is removed from CanBeRightBefore (similarly for 
CanBeRightAfter). Moreover, if an arc A«B is added to 
re-establish the transitive closure (because there exists a 
valid activity C such that A«C and C«B) then B is 
removed from CanBeRightAfter(A) and A is removed 
from CanBeRightBefore(B). 

We initiate the double precedence graph in the 
following way. First, the variables Valid(A), 
CanBeBefore(A), CanBeAfter(A),  CanBeRightAfter(A), 
and CanBeRightBefore(A) with their domains are 
created for every activity A. Then the known precedence 
relations are added in the above-described way (domains 
of CanBeBefore(A), CanBeRightBefore(A), 
CanBeAfter(A), and CanBeRightAfter(A) are pruned). 
Finally, the Valid(A) variable for every valid activity A 



is set to 1 (activities that are known to be invalid from 
the beginning may be omitted from the graph or their 
Valid variables are set to 0).  

Propagation rule /1/ is invoked when the validity 
status of the activity becomes known. “Valid(A) is 
instantiated” is its trigger. The part after  is a 
propagator describing pruning of domains. “exit” means 
that the constraint represented by the propagation rule is 
entailed so the propagator is not further invoked (its 
invocation does not cause further domain pruning). We 
will use the same notation in all rules. 

 
Valid(A) is instantiated  /1/ 

if Valid(A) = 0 then 
  for each B do        // disconnect A from B 
   CanBeBefore(B) ← CanBeBefore(B) \ {A} 
   CanBeAfter(B) ← CanBeAfter(B) \ {A} 
  CanBeRightBefore(B) ← CanBeRightBefore(B) \ {A} 
   CanBeRightAfter(B) ← CanBeRightAfter(B) \ {A} 
else                          // Valid(A)=1 
  for each B∈MustBeBefore(A) do 
   for each C∈MustBeAfter(A) do 
   CanBeRightAfter(B) ← CanBeRightAfter(B) \ {C} 
    CanBeRightBefore(C) ← CanBeRightBefore(C) \ {B} 

     if C∉MustBeAfter(B) then    // new precedence B«C 
     CanBeAfter(C) ← CanBeAfter(C) \ {B} 
    CanBeBefore(B) ← CanBeBefore(B) \ {C} 
    CanBeRightAfter(C) ← CanBeRightAfter(C) \ {B} 
     CanBeRightBefore(B) ← CanBeRightBefore(B) \ {C} 

      if C∉CanBeAfter(B) then    // break the cycle 
        post_constraint(Valid(B)=0 ∨ Valid(C)=0) 
exit 

 
Observation: Note that rule /1/ maintains symmetry for 
all valid and undecided activities because the domains 
are pruned symmetrically in pairs. This symmetry can be 
defined as follows: if Valid(B)≠0 and Valid(C)≠0 then 
B∈CanBeBefore(C) if and only if C∈CanBeAfter(B). 
This moreover implies that B∈MustBeBefore(C) if and 
only if C∈MustBeAfter(B). Finally, the same deduction 
implies that B∈CanBeRightBefore(C) if and only if 
C∈CanBeRightAfter(B). 

We shall show now, that if the entire precedence graph 
is known in advance (no arcs are added during the 
solving procedure), then rule /1/ is sufficient for keeping 
the (generalised) transitive closure according to 
Definition 2. To give a formal proof we need to define 
several notions more precisely.   

Let J={0,1, … ,n} be the set of activities, where 0 is a 
dummy activity with the sole purpose to keep all sets 
CanBeAfter(i) and CanBeBefore(i) nonempty for all 
1≤i≤n. Furthermore, let G=(J\{0},E) be the given 
precedence graph on the set of activities, and 
GT=(J\{0},T) its (generalised) transitive closure (note 
that the previously used notation i«j does not distinguish 
between the arcs which are given as input and those 
deduced by transitivity). The formal definition of the set 
T can be now given as follows:  

1. if (i,j)∈E then (i,j)∈T 
2. if (i,j)∈T and (j,k)∈T and Valid(i)≠0 and Valid(j)=1 

and Valid(k)≠0 then (i,k)∈T 

Furthermore, T is not maintained as a list of pairs of 
activities. Instead, it is represented using the set variables 
CanBeAfter(i) and CanBeBefore(i), 1≤i≤n in the 
following manner: (i,j)∈T if and only if i∉CanBeAfter(j) 
and j∉CanBeBefore(i). The incremental construction of  
the set T can be described as follows.  

Initialization: for every i ∈ J\{0} set 
• CanBeAfter(i) ← J\{i} 
• CanBeBefore(i) ← J\{i} 
• Valid(i) ← {0,1} 

Set-up: for every arc (i,j)∈E set 
• CanBeAfter(j) ← CanBeAfter(j)\{i} 
• CanBeBefore(i) ← CanBeBefore(i)\{j} 

Propagation: whenever an activity is made valid, call 
rule /1/ 
Clearly, T is empty after the initialization and T=E after 
the set-up. Now we are ready to state and prove formally 
that rule /1/ is sufficient for maintaining the set T. 

Proposition 1: Let i0, i1, … , im be a path in E such that 
Valid(ij)=1 for all 1≤j≤m-1 and Valid(i0)≠0 and 
Valid(im)≠0 (that is, the endpoints of the path are both 
either valid or undecided and all inner points of the path 
are valid). Then (i0,im)∈T, that is, i0∉CanBeAfter(im) and 
im∉CanBeBefore(i0). 
Proof: We shall proceed by induction on m. The base 
case m=1 is trivially true after the set-up. For the 
induction step let us assume that the statement of the 
lemma holds for all paths (satisfying the assumptions of 
the lemma) of length at most m-1. Let 1≤j≤m-1 be an 
index such that Valid(ij)←1 was set last among all inner 
points i1, … , im-1 on the path. By the induction 
hypothesis we get  

• i0∉CanBeAfter(ij) and ij∉CanBeBefore(i0) 
using the path i0, … , ij 

• ij∉CanBeAfter(im) and im∉CanBeBefore(ij) 
using the path ij, … , im 

We shall distinguish two cases. If im∈MustBeAfter(i0) 
(and thus by symmetry also i0∈MustBeBefore(im)) then 
by definition im∉CanBeBefore(i0) and 
i0∉CanBeAfter(im) and so the claim is true trivially. Thus 
let us in the remainder of the proof assume that 
im∉MustBeAfter(i0). 

Now let us show that i0∈CanBeBefore(ij) must hold, 
which in turn  (together with i0∉CanBeAfter(ij)) implies 
i0∈MustBeBefore(ij). Let us assume by contradiction that 
i0∉CanBeBefore(ij). However, at the time when both 
i0∉CanBeAfter(ij) and i0∉CanBeBefore(ij) became true, 
that is, when the second of these conditions was made 
satisfied by rule /1/, rule /1/ must have posted the 
constraint (Valid(i0)=0 ∨ Valid(ij)=0) which contradicts 
the assumptions of the lemma. By a symmetric argument 
we can prove that im∈MustBeAfter(ij). Thus when rule 
/1/ is triggered by setting Valid(ij)←1 both 
i0∈MustBeBefore(ij) and im∈MustBeAfter(ij) hold (and 
im∉MustBeAfter(i0) is assumed), and therefore rule /1/ 
removes im from the set CanBeBefore(i0) as well as  i0 
from the set CanBeAfter(im), which finishes the proof. 

Q.E.D. 

From now on there will be no need to distinguish 
between the “original” arcs from E and the transitively 
deduced ones, so we will work solely with the set T. To 



simplify notation we shall switch back to the A«B 
notation (which is equivalent to (A,B) ∈ T). 

Proposition 2: The worst-case time complexity of the 
propagation rule /1/ (instantiation of the Valid variable) 
including all possible recursive calls is O(n2), where n is 
a number of activities. 

Proof: If an activity is made invalid then it is removed 
from the sets CanBeBefore, CanBeAfter, 
CanBeRightBefore, and CanBeRightAfter of all other 
activities which takes the total time O(n). 

If activity A becomes valid then some new arcs may 
be added to the graph. The maximal number of such arcs 
is Θ(n2) – when Ω(n) of the activities must be before A 
and Ω(n) of the activities must be after A. It may happen 
that some other activities (at most O(n)) become invalid 
to break cycles. However, we already know that the time 
complexity of making an activity invalid is O(n). 
Together, the worst-case time complexity to make an 
activity valid is O(n2). 

Q.E.D. 

In some situations arcs may be added to the precedence 
graph during the solving procedure, either by the user, by 
the scheduler, or by other filtering algorithms like the 
one described in (Barták & Čepek, 2005). The following 
rule updates the double precedence graph to keep 
transitive closure when an arc of type « is added to the 
double precedence graph. 

A«B is added  /2/ 
 if A∈MustBeBefore(B) then exit 
 CanBeAfter(B) ← CanBeAfter(B) \ {A} 

   CanBeRightAfter(B) ← CanBeRightAfter(B) \ {A} 
  CanBeBefore(A) ← CanBeBefore(A) \ {B} 

 CanBeRightBefore(A) ← CanBeRightBefore(A) \ {B} 
 if A∉CanBeBefore(B) then    // break the cycle 

      post_constraint(Valid(A)=0 ∨ Valid(B)=0) 
 else 
     if Valid(A)=1 then    // transitive closure 
   for each C∈MustBeBefore(A) do 
    CanBeRightAfter(C) ← CanBeRightAfter(C) \ {B} 

      CanBeRightBefore(B) ← CanBeRightBefore(B) \ {C} 
    if C∉MustBeBefore(B) then      // new precedence 

       enqueue_for_propagation(add C«B) 
  if Valid(B)=1 then    // transitive closure 
   for each C∈MustBeAfter(B) do 
    CanBeRightAfter(A) ← CanBeRightAfter(A) \ {C} 

      CanBeRightBefore(C) ← CanBeRightBefore(C) \ {A} 
    if C∉MustBeAfter(A) then       // new precedence 

       enqueue_for_propagation(add A«C) 
 exit 

The rule /2/ does the following. If a new arc A«B is 
added then the sets CanBeBefore(A), CanBeAfter(B), 
CanBeRightBefore(A), and CanBeRightAfter(B) are 
updated. If a cycle is detected then the cycle is broken in 
the same way as in rule /1/. The rest of the propagation 
rule ensures that if one of endpoints of the added arc is 
valid then other arcs are added recursively to keep a 
transitive closure. If such an arc C«B is added then the 
arc C«dB between the same nodes is removed because 
there cannot be a direct precedence between B and C 

(there is A between B and C). The following proposition 
shows that all necessary arcs are added by rule /2/. 

Proposition 3: If the precedence graph G is transitively 
closed and arc A«B is added to G then the propagation 
rule /2/ updates the precedence graph G to be transitively 
closed again. 

Proof: Assume that arc A«B is added into G at a moment 
when arc B«C is already present in G. Moreover assume 
that Valid(A)≠0, Valid(B)=1, and Valid(C)≠0. We want 
to show that A«C is in G after rule /2/ is fired by the 
addition of A«B. The presence of arc B«C implies that 
C∈MustBeAfter(B) (and by symmetry also 
B∈MustBeBefore(C)). There are two possibilities. Either 
C∉MustBeAfter(A) in which case rule /2/ adds the arc 
A«C into G, or C∈MustBeAfter(A) (and by symmetry 
also A∈MustBeBefore(C)) which means that arc A«C 
was already present in G when arc A«B was added. 

The case when arc A«B is added into G at a moment 
when arc C«A is already present in G and  Valid(C)≠0, 
Valid(A)=1, Valid(B)≠0 holds can be handled similarly. 

Thus when an arc is added into G, all paths of length 
two which include this new arc are either already 
spanned by a transitive arc, or the transitive arc is added 
by rule /2/. In the latter case this may invoke adding 
more and more arcs. However, this process is obviously 
finite (cannot cycle) as an arc is added into G only if it is 
not present in G, and if an arc is removed form G 
(breaking the cycle), it can never be added back as one of 
its endpoins becomes invalid (and thus is permanently 
disconnected from G).  

Therefore, it is easy to see, that when the process of 
recursive arc additions terminates, the graph G is 
transitively closed. Indeed, for every path of length two 
in G one of the arcs is added later than the other, and we 
have already seen that at a moment of such an addition 
the transitive arc is either already on G or is added by 
rule /2/ in the next step. 

Q.E.D. 

Proposition 4: The worst-case time complexity of the 
propagation rule /2/ (adding a new arc) including all 
recursive calls to rules /1/ and /2/ is O(n3), where n is a 
number of activities. 

Proof: If arc A«B is added and B must also be before A 
then one of the activities A or B will become invalid 
which takes time O(n) (see Proof of Proposition 2). If 
both A and B are undecided then the rule prunes sets 
CanBeAfter(B), CanBeRightAfter(B), CanBeBefore(A), 
and CanBeRightBefore(A) and exits without further 
propagation. If A is valid and B is undecided (or vice 
versa) then all predecessors of A are connected to B. 
There are at most O(n) such predecessors and the new 
arcs are added by recursive invocation of rule /2/. The 
recursion stops at this level because every predecessor X 
of a valid predecessor C of A is also a predecessor of A 
(due to transitive closure) and hence the arc X«B has 
already been enqueued for propagation when addition of 
A«B was processed. Moreover, any duplicate copy of the 
same arc in the queue will be processes in time O(1) (see 
the first line of rule /2/). The “worst” situation happens 
when both A and B are valid. Then all predecessors of A 
are recursively connected to all successors of B. There 



are at most O(n2) such connections and processing each 
connection takes time O(n), so the worst-case time 
complexity is O(n3). 

Q.E.D. 

Proposition 5: The propagation rules /1/ and /2/ 
maintain correctly the sets CanBeRightBefore and 
CanBeRightAfter. 

Proof: We will prove the proposition for the set 
CanBeRightBefore only, the set CanBeRightAfter is 
maintained symmetrically. At the beginning, the set 
CanBeRightBefore(B) contains all activities but B which 
is all right, because all activities are undecided. Each 
time A is deleted from CanBeBefore(B), A is also 
deleted from CanBeRightBefore(B) in both rules /1/ and 
/2/. If any C becomes valid, A∈MustBeBefore(C), and 
B∈MustBeAfter(C) then A is deleted from 
CanBeRightBefore(B) in rule /1/. If a new arc A«C is 
added, C is valid, and B∈MustBeAfter(C) then A is 
deleted from CanBeRightBefore(B) in rule /2/. Similarly, 
if a new arc C«B is added, C is valid, and 
A∈MustBeBefore(C) then A is deleted from 
CanBeRightBefore(B) in rule /2/. According to 
Definition 3 these are the only ways how the direct 
precedence relation can be influenced. 

Q.E.D. 

Propagating Time Windows 
Our primary motivation for introducing the double 
precedence graph was modelling sequence-dependent 
setup times. However, the direct precedence relations 
between activities can also be used for propagating time 
windows. In (Barták & Čepek, 2005), we proposed a 
combination of the precedence graph with time windows 
propagation. In particular, we showed how time windows 
can be used to deduce new so called detectable 
precedences and how the precedence graph can be used 
to tighten lower and upper bounds of time windows. 
Moreover, if a lower bound for some time window is 
increased then this information can be incrementally 
propagated to lower bounds of time windows of 
subsequent activities. The following code from (Barták 
& Čepek, 2005) shows how increase of the earliest start 
time (est) of some valid activity A is propagated to the 
subsequent valid or undecided activities B. 

for each B∈MustBeAfter(A) & ¬∃C Valid(C)=1 & A«C & C«B do 
 est(B) ← est(A)+p(A)+ 
  ∑{p(X) | X∈MustBeBefore(B) & est(A)≤est(X) & 
  Valid(X)=1} 

Notice that only activities B such that ¬∃C Valid(C)=1 
& A«C & C«B are influenced. These activities B are 
exactly the current direct successors of A according to 
Definition 3. Hence the code can be rewritten using a 
double precedence graph as follows: 

for each B∈MustBeAfter(A)∩CanBeRightAfter(A) do 
 est(B) ← est(A)+p(A)+ 
  ∑{p(X) | X∈MustBeBefore(B) & est(A)≤est(X) & 
  Valid(X)=1} 

Note also that if the earliest start time of some valid 
activity B that is a direct successor of A is increased then 
this increase is propagated to direct successors of B and 
so on. Hence, every successor of A can eventually be 
influenced. A similar incremental propagation can be 
realized for the latest completion time of activities. 

Conclusions 
The paper reports a work in progress on incremental 
filtering algorithms for unary resources with time 
windows, precedence relations, setup times, and optional 
activities. In particular, we focused on extending the 
precedence graph to provide information about direct 
precedence relations between the activities. We proposed 
a double precedence graph where this information is 
incrementally maintained and hence available in time 
O(1). We showed how direct precedence relations can be 
used in modelling sequence-dependent setup times and in 
propagation of time windows. 
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