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Abstract: Traditional planning deals with the problem of finding activities to satisfy a 
given goal while traditional scheduling solves the problem of allocation known 
activities to limited resources and to limited time. In many real-life problems 
both tasks should be accomplished together. In the paper we describe a 
scheduling engine of the Visopt ShopFloor system that integrates planning and 
scheduling component in a unified framework. 
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1. INTRODUCTION 

Integrating planning and scheduling is a hot research topic especially in 
the planning community. This integration usually means adding time and 
resource restrictions to the planning problem. Because solving planning 
problems is usually hard, adding time and resource constraints may make the 
problem even harder. Therefore, some researchers propose to keep planning 
and scheduling separated (Srivastava and Kambhampati  1999). In particular, 
the planning problem is solved first, i.e., the set of activities is generated, 
and the scheduling problem is solved next, i.e., the activities are allocated to 
resources and time. This is useful, if the planning space is large - if it is hard 
just to find a valid plan. However, in many real problems it is pretty easy to 
find a valid plan but it is more complicated to find a good plan in respect to 
available resources and time. In (Barták, 1999b) we argued for a more 
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tighten integration of planning and scheduling where time and resource 
constraints play an important role in guiding the planner. The basic idea is to 
post time and resource constraints as soon as the planner introduces some 
activity. These constraints then help the planner to decide among the 
alternative activities in a forward or backward chaining style of planning. 

In this paper, we describe an approach bridging the gap between planning 
and scheduling from the scheduling side. Basically, it means that we are 
solving a scheduling problem where the activities can be introduced 
(planned) during the scheduling process. We use the concept of tight 
integration of planning and scheduling proposed in (Barták, 1999b). This 
concept utilises the underlying constraint satisfaction technology that was 
slightly modified to allow dynamic changes of the constraint store. The 
planning component uses mixed forward and backward chaining and it is 
fully integrated into the scheduler. Because the used planning technique is 
not very complicated we are speaking rather about enhancing schedulers by 
planning technology. 

This is an application paper describing the solver behind the Visopt 
ShopFloor commercial scheduling system. The main purpose of the paper is 
not to present the GUI of the Visopt ShopFloor system with all its 
possibilities to model scheduling problems in the factories but to present the 
ideas that are used in the underlying solver. This solver is based on the above 
surveyed ideas of enhancing scheduling by adding planning capabilities, i.e., 
we concentrate on the problems where the structure of activities is not 
known in advance but it must be planned during the process of scheduling. 
The system is intended to production scheduling in real-life complex 
industries. Thus, the solved problem does not fit to any “standard” academic 
view of scheduling problems like job-shop, flow-shop, or open-shop. 
Probably the closest formal problem is the resource-constrained project 
scheduling problem but Visopt ShopFloor system covers even more complex 
problems, e.g. complex transition schemes of resources, including modelling 
set-ups with by-products and recycling etc. The system has already been 
tested in real-life factories and its development still continues. 

The paper is organised as follows. First, we describe the problem area 
and we give some examples where introduction of activities during 
scheduling is necessary. Then, we show how the problems can be specified 
formally, i.e., what modelling tools are available for the users. After that we 
briefly sketch the system architecture. The main part of the paper is about 
the solver. We describe the basic technology, the constraint model, and the 
scheduling strategy. The paper is concluded with the results of some real-life 
projects and with discussion of future development of the system. 



 
 
2. PROBLEM AREA 

Visopt ShopFloor is a general scheduling system applicable to production 
scheduling. It means that the system is not designed for a particular factory 
but it can be applied to various scheduling problems. 

The goal of production scheduling is to generate a plan (a schedule) of 
production for a specified time period. This plan should satisfy the demands 
and it should be as profitable as possible. Demands are specified by ordered 
items with ordered quantity and delivery time. The demand is satisfied if the 
ordered quantity of the item is ready for delivery at the delivery time. It 
means that the item must be produced, purchased, or already stored in the 
factory. Production of the item is done on resources called producers. The 
items are produced in batches (the resource schedule is described as a 
sequence of batches); the batch specifies a quantum of item that is produced 
together. It is possible to produce several items in a single batch (main 
products and co-products). The batch can also describe various processing 
formulas, i.e., the same item can be produced using different input items. If 
one batch produces some item then there must be another batch or delivery 
that consumes the item. In general, there could be many-to-many relation 
between producers and consumers (Figure 1). It means that the quantity of 
the item produced in a single batch can be split to several consuming batches 
of various resources and vice versa. The feasible schedule must ensure that 
the item flow in the factory is correct in the above sense.  

 producer 

consumer 

 

Figure 1. Items are flowing (arrows) between the batches (rectangles). 

To summarise the above discussion, the goal of production scheduling is 
to generate a schedule for each resource in such a way that the item flow 
between the resources is correct. A schedule of the resource is a sequence of 
batches. Sequencing of batches can be further restricted by some transition 
criteria. For example, minimum and maximum number of batches of the 
same type (same output item) must be processed in a sequence. When the 
batch type is changed then a changeover batch must be inserted or a cleaning 
batch must be used when a given number of production batches is processed 
(Figure 2). Such transition scheme is fully specified by the user (see Section 
3.1 for details). 
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clean load heat unload load heat unload cool clean 

 

Figure 2. A resource schedule is a sequence of batches with complex sequencing constraints 
(e.g., after two load-heat-unload cycles there must be cleaning. 

In addition to production resources there could be also moving resources 
that are used to transport items between the production resources. Moving is 
done in batches as well so the behaviour of the mover is similar to the 
behaviour of the producer. 

Producers and movers are called main resources. There could be also 
secondary resources that assist to main resources. Tool and worker are 
examples of the secondary resource. Again, the schedule of the secondary 
resource is a sequence of batches (activities) - each such batch is 
synchronised with a batch of the respective main resource, i.e. both batches 
run in parallel (same start times and same completion times). 

2.1 Why do we need planning? 

In (Barták 1999a) we gave several examples where traditional static 
scheduling approach is not sufficient because some activities are not known 
before scheduling starts. Moreover, these activities cannot be planned in 
advance because their appearance depends on allocation of other activities. 
We call these activities the process dependent activities, which mean that 
these activities might or might not appear in the final schedule depending on 
some other activities. Nevertheless, appearance of the activity is strictly 
determined by the activities on which it depends (e.g. its suppliers and 
consumers) so there is no uncertainty for the activity existence. In the next 
paragraphs we give some examples of such process dependent activities. All 
these examples are taken from real-life problems. 

In (Pegman, 1998), one of the first examples of the process dependent 
activity is given. Pegman describes a scheduling system for metal 
production. The metal blocks must have a particular temperature before they 
can be processed. Naturally, the temperature of the metal block is decreasing 
slowly after its heating so if the delay between the end of heating and the 
start of processing is too long then the temperature of the block might be too 
low. In such a case, the metal block must be reheated before it can be 
processed. Because re-heating consumes the resource (the oven), there must 
be a special re-heating activity introduced. Pegman uses a technique of 
dummy activity that is either active, if re-heating is necessary, or it is not 
used if the delay between heating and processing is short enough. 



 
 

Another example of process-dependent activity is changeover that is 
necessary to be inserted between two activities of different type processed by 
the same resource. In constraint-based scheduling, the changeovers are 
usually modelled using a transition time between two activities. During such 
transition, the resource cannot be used. However, if some item is produced 
during changeover, so called by-product, or the changeover requires another 
resource, e.g. a worker, then we need an activity to model the changeover. 
Again, the appearance of the changeover activity is dependent on the actual 
allocation of other activities to resources. Thus the changeover activity 
cannot be planned in advance. 

The appearance of the changeover activity that produces a by-product 
may lead to adding other activities consuming this by-product. For example, 
the by-product can be re-cycled and used to satisfy some demand. In general, 
we may have several process routes to satisfy the demand and these process 
routes may have a very different structure of the activities. It is possible to 
select one of the process routes in advance (planning) but in (Barták, 1999b) 
we argued to postpone this decision into scheduling stage when more 
information is available (e.g., we can use a by-product produced by some 
changeover). 

Some of the above examples can be modelled using a technique of 
dummy activities. However, if the number of dummy activities is large then 
this technique is not applicable. In such a case, it is better to introduce the 
activities on demand during scheduling, i.e., to enhance scheduling by 
planning capabilities. 

3. PROBLEM FORMALISATION  

Visopt ShopFloor uses a general description of the production scheduling 
problem based on the resource-centric model (Brusoni et all 1996). The 
problem is specified by a set of resources, a set of dependencies between the 
resources, and a set of demands. In this section we give more details about 
these parts of the model. For simplicity reasons, we describe only the key 
features of the modelling framework. 

3.1 Resources 

The resource is described as a set of activities. For each activity the user 
specifies its duration and time windows when the activity is processed. The 
activity occupies the resource from its start time till its end time. The 
interruptible activities may run out of time windows but they must start and 
complete in a time window. The activity also specifies the produced and 
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consumed items with their quantities. In fact, the set of input and output 
items (with quantities) forms a lot and it is possible to have several lots in 
the activity. The number of lots is then restricted by the capacity of the 
activity. 

We use the notion of activity to describe parameters of batches - a batch 
type; sometime we call it also a state. Thus, the user describes activities, but 
in the schedule we use batches of a particular activity (Figure 3). The 
batches are not overlapping. The user may specify the minimal and maximal 
number of batches of given activity that can be processed in a sequence. It is 
also possible to describe a transition scheme between the activities with 
transition times etc. The transition is not allowed until a minimum number of 
batches of given activity is processed and the transition is forced when the 
maximum number of batches is reached. The user may also describe a global 
batch counter, i.e., to specify activities whose batches are counted, and the 
activity to which we must switch if a given limit is reached. 

 
A A A B C C 

C C A A A 

C C B A A A 

produce A (3-4) 

produce B (1-2) 

produce C (2-4) 
 

Figure 3. Activities are connected in a transition scheme with minimum and maximum 
number of batches per activity (left). This scheme restricts the feasible sequences of batches 

(right). 

The above scheme of the resource allows natural description of complex 
resources. Changeovers and setups can be modelled as standard activities (if 
they produce some items or if they use secondary resources) or they can be 
modelled as a transition time between the activities. The global batch 
counters describe features like insertion of the cleaning batch after N 
production batches. Different processing formulas can be modelled using 
different lots in the activity. 

The same scheme (Figure 4) can be used to model producers, movers, 
and secondary resources. Thus we can model rather complex behaviour of 
the secondary resource like a learning curve, e.g., after ten batches the 
worker is more experienced = transition to a new state. Or we can capture a 
recreation schedule, e.g., after three "production" batches the worker needs 
one "recreation" batch.  



 
 

Resource 
 Activity 
  duration + time windows + interruptible 
  capacity 
  Lot 
   input + output items with quantities 
  Next activities with transition times 

 

Figure 4. The basic schema of the resource model 

3.2 Dependencies 

The relations between the resources are called dependencies. Basically 
the dependency describes an item flow between batches of different 
resources. For each item, the user specifies a supplying resource with a 
supplying activity and a consuming resource with a consuming activity. 
Moreover, the user also describes the delay between the end of the supplying 
batch and the start of the consuming batch (Figure 5). 

 

dependency 

delay 

supplier 

consumer 

 

Figure 5. Dependencies express supplier-consumer relations 

Note also, that is possible to specify several dependencies for a single 
item so one consumer may be connected to several suppliers and vice versa.  

Basically, the dependencies express supplier-consumer relations but if we 
use some artificial item and negative delay, we can also model resource 
synchronisation via dependencies. Thanks to the flexibility of the above 
model there is no problem to describe alternative production routes, in 
particular to express many-to-many relations (Figure 1), or to model 
recycling. It is also possible to use dependencies for modelling simple stores 
by allowing variable delay (= storing time).  
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Dependency 
 Item 
  Supplying resource with activity 
  Consuming resource with activity 
  delay  

Figure 6. The basic schema of the dependency 

3.3 Demands 

To start-up production we need some demands. The demand is specified 
by an ordered item with quantity and required delivery time. The user may 
allow alternative items to be delivered instead of the ordered item and it is 
also possible to allow delaying of the delivery. The demands can be 
specified as consumers in dependencies so we know which resources can 
supply the final product. 

3.4 Purchases 

Usually, the items are produced in the factory but some items can also be 
purchased from external suppliers. It could be raw material, intermediate 
items, or even the final products. To model such situations, it is possible to 
specify whether given item can be purchased or not. Then, purchase plays a 
role of the supplier in dependencies 

3.5 The task 

When resources, dependencies, demands, and purchases are specified 
then the goal of the scheduling system is to generate a plan covering the 
demands and satisfying the production constraints (a feasible plan). There 
are no batches known in advance, the system has to find out what batches are 
necessary and to which resources these batches should be allocated. Only the 
batches describing the initial situation of some resources may be known. It 
means that we are solving a planning problem under time and resource 
constraints (Figure 7).  
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Figure 7. The scheduling task is to find out batches (rectangles) covering the demands (dots) 
and to allocate the batches to resources. 

So far, we discussed only the feasibility problem but we can also model 
optimisation. It is possible to assign a cost parameter to every object in the 
schedule and then the task is to minimise the sum of costs. For example, the 
user may specify penalty for delaying deliveries or for using alternative 
items. It is possible to assign cost to batches (e.g. energy consumption) or to 
dependencies (e.g., moving/storing cost). More details about optimisation 
issues can be found in (Barták, 2002b). 

4. SYSTEM ARCHITECTURE  

Visopt ShopFloor system consists of two independent parts: the 
ShopFloor user interface and the solver (Figure 8). 

 

Constraint model 
• generating variables 
• introducing constraints 

Search strategy 
• assigning values 
• (branching) 

resource 

Search strategy 
• assigning values 
• (branching) 

Search strategy 
• assigning values 
• (branching) 

resource 
Solver 

GUI 

Factory model 

 

Figure 8. Visopt ShopFloor System Architecture 
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The ShopFloor user interface serves for the problem specification. It 
provides a graphical modelling environment where the user describes the 
structure of the factory, i.e., the resources and the production routes (the 
relations between the resources). It is possible to model the problem from 
scratch or to upload the problem from an ERP database. In the second case, 
the ShopFloor visualises the problem description so the user can easily make 
changes in the model. The ShopFloor user interface uses its own database 
model that is converted to a factory model before scheduling. 

The factory model is a structured text file containing a complete 
description of the problem including the demands. This file is in a human 
readable form so it is possible to check manually the data or to generate the 
file using arbitrary text editor (for example to model simple benchmarks 
without going through the complexity of the GUI). It is even possible to pre-
process the model before it is sent to the solver. The factory model serves as 
an interface specifying the input to the solver so the solver is independent of 
the user interface. We described the basic components of the factory model 
in the previous section. 

The solver is responsible for planning/scheduling. It consists of the 
constraint model that is generated automatically from the factory model and 
of the scheduling strategy. We use a modular architecture of the solver so it 
is possible to add new resource types later. Also the scheduling strategy can 
be exchanged easily to reflect a particular type of the problem. We give 
more details about the solver in the next section. The solver produces a plan 
that is returned to the ShopFloor user interface. The plan is presented to the 
user in the form of a Gantt chart. 

Separating GUI and solver gives us flexibility in designing dedicated user 
interfaces for the solver or in using the user interface just for data 
visualisation. 

5. THE SOLVER 

The solver, or we call it also a scheduling engine, gets the problem 
specification in the form of a factory model and it generates a feasible plan if 
it exists. We use a constraint satisfaction technology to implement the solver. 
First, the solver generates the constraint model using the factory model. 
Second, the solver tries to find a solution of the constraint model. 

Unfortunately, we cannot use the traditional static view of constraint 
satisfaction problems (CSP) where the variables and constraints are specified 
first and variable labelling is done next. The problem here is the presence of 
the planning component; in particular the batches are introduced during 



 
 
scheduling. Thus the structure of variables and constraints is changing as the 
search progresses. 

In the next section we explain how we use the constraint technology to 
overcome the difficulty with static CSP. Then we describe the constraint 
model, i.e., how the variables and constraints are introduced. Finally, we 
characterise the scheduling strategy. 

5.1 Technology 

Traditional formulation of CSP is static in the sense that the variables and 
constraints are defined first and the search is done next. Modelling planning 
problems as CSP is hard because of the variability of the plans (Nareyek, 
2000). It means that the problem cannot be modelled statically (with dummy 
variables) because of large size of the problem formulation. Thus CSP is 
used when some planning decisions, e.g., about the plan length, are done. 
Another possibility is using some generalisations of CSP like Structural CSP 
(Nareyek, 1999). 

The planning sub-problem in our problem area consists of decision about 
batches necessary to satisfy the demands. The scheduling sub-problem 
consists of resource allocation and time scheduling. Note that solving the 
planning sub-problem separately is rather easy, what makes it hard is 
assuming time and resources. Thus it seems that we can use some simple 
planning technology like backward chaining combined with look-ahead 
using constraints. It means that in the first step all alternative batches to 
satisfy the demands are introduced including the time and resource 
constraints. Then the constraint-based scheduler selects the necessary 
batches and allocates them to resources. As soon as the batch is selected, the 
planner introduces all alternative batches that supply items to this batch etc. 
Basically the role of the planner is to watch the current partial schedule and 
when some batch is missing, the planer introduces all the alternative batches 
for its position. 

Constraint satisfaction plays important role in the above process; in 
particular constraint propagation is used to filter the planning alternatives. 
Notice that new batches are added when some scheduling decision is done, 
i.e., when a value is assigned to some variable. It means that variable 
labelling interleaves with problem formulation, i.e., new variables and 
constrains are added when the value is assigned to the variable. This could 
be naturally implemented in constraint logic programming (CLP) where 
constraints prune the search space. 

Recall that the original formulation of CLP is based on exactly the same 
idea - using constraints to prune the search space without distinguishing the 
problem formulation and labelling (Gallaire,1985). Recently, when CSP 
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appeared, the separation of problem definition and labelling was introduced 
to CLP as well. This second approach is more efficient if all the alternatives 
can be captured in a static set of variables and constraints (Van Hentenryck 
and Deville, 1991). As we already mentioned, when planning decisions are 
involved, this is not necessarily the case. Thus we propose to use CLP where 
labelling is interleaved with introduction of variables and constraints. Notice 
finally, that despite the dynamic character of the constraint satisfaction 
problem we do not need to use frameworks like Structural CSP (Nareyek, 
1999) or Dynamic CSP (Mittal and Falkenhainer, 1990) which require a 
special implementation of the constraint engine. We can use the existing 
constraint solvers where labelling is seen as a procedure for adding new 
constraints (and variables) to the system. 

5.2 Slot Representation 

Traditional scheduling systems use a task centric model of the problem, 
i.e., the activities belonging to a single task (demand) are connected in a 
chain with the precedence relations between the activities. However, this 
model assumes rather simple behaviour of resources, typically, unary and 
cumulative resources are used. Moreover, it is hard to model sharing of 
activities between the tasks (many-to-many relations), the changeover 
activities, or recycling.  In our problem area, the transition scheme makes 
resources more complicated so we decided to use a resource centric model. 

The resource centric model is realised via a slot representation. The 
partial resource schedule is represented here as a sequence of slots, where 
the slot is a shell to be filled by the batch. This model is similar to 
timetabling models - the main difference is that the slots are not assigned to 
time in our representation. In particular, the duration of the slot is not fixed 
(it depends on the batch that will be filled in the slot) and the slot may slide 
in time. Still, the sequence of slots cannot be changed so it is not possible to 
swap position of two slots (but the batches in the slots may be swapped – 
simply slots are filled by batches in a different order). 

 
time shift 

 

Figure 9. Slots cannot be swapped but they can slide in time. 

Each slot is specified by a set of variables describing its position in time 
(start, end, duration) and specifying what activity can be filled in the slot (a 
state variable). Note that the slots may be introduced even if we do not know 



 
 
yet the batches in the slots. Thus we can post the constraints among the slot 
variables to prune the search space by restricting which batches can be 
allocated to a given resource in a given time. Typically, time variables are 
connected to the state variables to describe time windows and duration of 
batches. We use tabular constraints for this purpose, where a tabular 
constraint is a general binary constraint with user defined domain (Barták, 
2000). Because sequencing of slots is fixed as well, it is possible to model 
the transition scheme using the constraints posted between two neighbouring 
slots. To count batches of the same state, we use a special variable called 
serial that participates in the transition constraints. A detailed description of 
the transition constraints can be found in (Barták, 2002a). 

The maximal number of slots covering the schedule period can be 
computed in advance so the slots can be introduced before scheduling. The 
difficulty of this approach is that it may introduce too many slots leading to 
huge CSP for large-scale real-life problems. Therefore we decided to 
introduce a minimal number of slots (from left) that can cover the current 
demands for the resource. Note that the list of demands for the resource may 
extend as scheduling progresses and the batches are being scheduled in other 
resources. Thus, we use a guard watching the list of demands for the 
resource and when the existing slots cannot cover the current demands, then 
the new slots are added to the end of the slot list. It is also possible to add 
new slots due to the transition scheme, e.g. to model resources that cannot be 
interrupted (like big ovens in metal production factories). 

The slot representation models naturally the batch resources. Its 
advantage is that we can post resource constraints early so we can use them 
to prune the search space even if the batches allocated to the resource are not 
decided yet. Filling the slots corresponds to batch sequencing. A small 
disadvantage is that when a batch is filled into the slot then its position in the 
sequence is fixed. If we want to insert a batch before some batch then this 
already filled batch must be moved to the next slot so it frees the slot for the 
inserted batch. Thus decision about batches in slots must be done carefully 
assuming all the demands for the resource. 

5.3 Dependencies 

Dependencies are used to propagate demands between the resources. 
Recall that dependency describes a supplier-consumer relation so it connects 
the supplying object (batch or purchase) with the consuming object (batch or 
delivery). Basically, the dependency is a constraint binding the end time of 
the supplying object with the start time of the consuming object. It also 
describes what quantity is moved between the objects. At the beginning, we 
know only the deliveries corresponding to user demands but we do not know 
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the actual suppliers for the deliveries. Thus we cannot post the dependency 
constraints. Nevertheless, the factory model specifies what resource and 
activity may supply the ordered item. Even if the actual batch(es) is not 
known we can find the slots in possible supplying resources to which the 
supplying batch(es) can be filled. Then we can post a conditional constraint 
between the slot and the delivery binding the times if the quantity moved 
between these objects is non-empty. The problem is that the number of 
eligible slots may be very large so the number of conditional constraints will 
also be very large. Thus in real-life problem this eager method is not 
applicable. We use a more lazy method that connects only the first slot of 
each possible supplying resource to the delivery. If we find later that the 
quantity moved between this slot and the delivery is empty and still some 
quantity must be supplied then the next possible slot is connected with the 
delivery etc. (Figure 10). This approach is applicable to finding suppliers as 
well as consumers of batches, i.e., when a batch is filled in some slot then we 
can start the above process of finding missing suppliers and/or consumers. 

 

XX  Possible suppliers 

Consumer 
 

Figure 10. The dependency generator introduces the dependencies to the first possible slot 
(from left). If the slot is not dependent (X) then the dependency is moved to the next free slot. 

The above dependency mechanism realises the backward chaining 
method of planning. We introduce the alternatives with short look ahead and 
the decision about the used alternative is postponed to the scheduling stage. 
Because the constraints are already posted, we are speaking about active 
decision postponement (Joslin and Pollack 1995). 

Each slot keeps a list of dependencies going to the slot and this list is 
used during labelling to decide which dependencies will really go to the slot 
(the quantity in the dependency is non-empty). Moreover, it is possible to 
keep the list of dependencies (demands) for each resource and to apply some 
ordering constraints to them, like in (Laborie, 2001) and (Baptiste and Le 
Pape, 1996). 

5.4 Scheduling Strategy 

As we described above, the constraint model is dynamic but autonomous. 
It means that the variables and constraints are introduced automatically when 



 
 
values of other variables are known. The decisions about variables' values 
are done by the scheduling strategy. The only but significant difference from 
the traditional constraint satisfaction is that the set of variables is increasing 
as the search progresses. Moreover, the set of variables may be different in 
different search branches. 

To implement the scheduling strategy we use depth-first search. 
Naturally, the variable ordering must respect the dynamic nature of the 
problem so let us look at the scheduling strategy from the scheduling point 
of view. The goal of the scheduling strategy is to fill the slots by batches, 
i.e., to decide about the value of the state variable in each slot, and to decide 
about the connections between the batches. We call this process closing the 
slot. We know that the slots are introduced in left to right manner and that 
the dependencies are first started from demands. This observation 
determines the ordering of slots to be closed (variable ordering). We decided 
to generate the schedule in slices going from left to right. The slots in each 
slice are closed in the order from demands/deliveries to purchases (Figure 
11). The width of the slice is determined by the user (it is heuristic 
information). We call the process of closing the slots in the slice a 
scheduling step. 

 purchases 

time 
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ce
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demands 

 

Figure 11. Variable (slot) ordering used by the scheduling strategy. 

When the slot is selected, the next question is what batch should be filled 
in, i.e., what value should be assigned to the state variable. This decision is 
done using the dependencies going into the slot. The scheduling strategy 
selects some dependency that can be connected to the slot. Then it sets the 
quantity in the dependency to be greater than zero, so the dependency is 
effectively anchored to the slot. This anchoring usually determines the value 
of the state variable (if not, the scheduling strategy selects one). The process 
of selecting dependencies going to the slot is repeated until the batch 
capacity is exhausted. The remaining dependencies are moved automatically 
to the next possible slot (Figure 12). The selection of dependencies is driven 
by heuristic that uses information about time and cost; dependencies going to 
earlier times and leading to less expensive production are preferred. 
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Figure 12. When the dependency is selected for the slot, then the incompatible dependencies 
are moved to next free slot. 

During the first round, the batches are filled to the slots in the slice and 
the dependencies between the batches are anchored. Thus the planning sub-
problem and the resource allocation sub-problem are solved. To complete 
the scheduling step, the scheduling strategy decides about time allocation of 
closed batches; the earliest times are preferred. 

Notice that the choice of variable ordering ensures that the variables are 
already present in the system. Unfortunately, the dynamic nature of the 
problem complicates the direct usage of more advanced search techniques 
that are basically oriented on static problems like Limited Discrepancy 
Search (Harvey, Ginsberg 1995). We are currently exploring the possibility 
of how to apply the good ideas from these more advanced search techniques 
in our dynamic problems. 

6. THE RESULTS 

The Visopt ShopFloor has been tested in several pilot projects, in 
particular in one of the biggest and famous candy producers in The 
Netherlands, in one of the biggest dairies in Israel, and in a chemical factory 
in Germany among others. The goal of these pilot projects was to model the 
most complex production lines in these factories and to provide a feasible 
schedule for them. At this stage, it is hard to estimate savings when Visopt 
ShopFloor is applied because these production lines were scheduled 
manually so far. It is even complicated to evaluate quality of the generated 
schedules because there are no existing schedules to compare with. 
Nevertheless, the production experts in the companies agree that the 
generated plans satisfy the production rules and that they "look good". Note, 
that in many real problems, the quality of the produced schedule is rather 
subjective than objective. Even if the solver uses an objective function (cost) 
to produce “good schedules”, still, it is the user who decides about the 
quality of the schedule. One of such criterions could be that the plan is 
optimized enough that the experienced human planner is not able to produce 



 
 
better plan. The big win is that our system can cover all the features of the 
complex production lines that the other tested systems like SAP APO cannot 
model. 

Because we cannot compare our system to existing schedulers (other 
schedulers cannot even model the problems that we are solving) we provide 
here the results of some of our tests based on real-life data from the above 
mentioned enterprises. To show capabilities of the solver we report the size 
of the problem, the size of the solution, and the runtime. 

The solver is implemented in SICStus Prolog (3.8.7) and the tests are run 
on Celeron 500 MHz with 192 MB RAM. Prolog programming language is 
chosen for its rapid prototyping capabilities and for natural integration of the 
constraint satisfaction technology. 

Table 1 describes the size of the problems. We include the number of 
resources in the factory, the total number of states (the types of batches), and 
the number of different items going between the resources. These numbers 
characterise a given production line. In some sense, Table 1 indicates the 
size of the planning domain. To describe the size of the actual problem, we 
also specify the number of demands with the total ordered quantity and the 
duration of the scheduled period in time units. The quantity and time 
attributes roughly describe the size of the variables’ domains used in the 
system. For example 10080 time units correspond to one week production 
with a minute resolution. It means that the scheduler must produce plans for 
one week where we know what is going on in every minute. 

Table 1. Model size for five test problems. 
 resources states items demands 

# / quantity 
duration 

1 57 704 45 256/196744 840 
2 22 677 56 9/7600 3168 
3 28 115 34 1/50 8640 
4 19 334 47 50/144000 10080 
5 34 574 294 45/88485 11520 

 
Table 2 describes the size of the solution and the runtime. We report here 

the total number of batches and the total number of dependencies in the final 
schedule. From these numbers we can estimate roughly the number of 
variables and the number of constraints in the final schedule. For example, 
each batch is described by at least ten variables (the actual number depends 
on the number of items in the batch) and each dependency is described by at 
least six variables. However, note that much more variables and constraints 
are used during scheduling because many alternative batches and 
dependencies must be explored. For example, if many-to-many relations are 
used between the resources then the number of introduced dependencies is 
very large. 
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Table 2. Solution size and runtime. 
 batches dependencies runtime (sec.) 
1 990 1428 234 
2 651 898 131 
3 256 310 221 
4 1000 1441 302 
5 5807 10175 10095 

 
The above results show that we can solve problems close in size to 

traditional scheduling problems and much larger than traditional planning 
problems. The large-scale scheduling problems contain about twenty 
thousands activities (personal communication to Wim Nuiten from ILOG) 
and the plans generated by state-of-the-art planners consists of tens of 
activities (Long and Fox, 2002). The results are not surprising because the 
plan complexity in our models is not very large. What makes them hard is 
satisfaction of time and resource constraints. On the other hand, the activities 
are introduced dynamically in our system according to the production rules. 
The traditional scheduling technology cannot be applied there due to the size 
of the static problem formulation. Even if we introduce the batches 
dynamically, still a lot of memory is necessary to resolve the planning sub-
problem. For example, the model 5 is solved using model decomposition to 
fulfil the current memory limit of SICStus Prolog (256 MB on 32-bit 
architectures). 

7. CONCLUSIONS  

In this paper, we show that tight integration of planning and scheduling is 
possible and that it extends modelling capabilities of the scheduling systems. 
Constraint satisfaction technology proved itself to be flexible enough for 
modelling such integrated planning and scheduling problems. However, it is 
necessary to use a more dynamic view of CSP. In particular the existing 
global constraints need to be “open” to accept incoming variables. We 
proposed a general mechanism of dynamic global constraints in (Barták, 
2003). Our experience also confirms that large-scale integrated planning and 
scheduling problems can hardly be modelled in a static way using dummy 
variables. Large memory consumption is one of the difficulties that we are 
solving now despite the fact that we are using only a limited number of 
dummy variables to model planning alternatives. 

The presented technology is used in a scheduling engine of the 
commercial system Visopt ShopFloor. The integrated planning component is 
the main difference of our system from the traditional schedulers. However, 
the dynamic nature of our system is different from on-line (reactive) 



 
 
scheduling - neither the demands nor the factory is changing during the 
scheduling process. We are working on a rescheduling feature that allows 
the software to react faster to changes in the production environment. 

The unique features of Visopt, which the other scheduling systems 
cannot cover, include modelling of complex transition schemes for 
resources, modelling of arbitrary dependency structure of the factory, 
modelling of set-ups, cleaning, and maintenance including by-products, and 
modelling of process and item alternatives. Moreover, Visopt ShopFloor 
attempts to be a general scheduler where the customer describes the problem 
in a declarative way and the system generates schedules automatically. Other 
scheduling software is either provided as a toolkit  (e.g. ILOG Scheduler), so 
the particular scheduler must be programmed using this toolkit, or the 
software solves a particular scheduling problem but it cannot be extended to 
other problem areas. Opposite to these systems, Visopt ShopFloor (Visopt, 
2002) provides intuitive graphical modelling environment independent of the 
solver, generality covering many scheduling problems, and extendibility via 
adding new type of resources. 
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