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Abstract 
Constraint-based scheduling is a powerful tool for solving 
real-life scheduling problems thanks to a natural integration 
of special solving algorithms encoded in global constraints. 
The filtering algorithms behind these constraints are based 
on propagation rules modelling some aspects of the 
problems, for example a unary resource. This paper 
describes new incremental propagation rules integrating a 
propagation of precedence relations and time windows for 
activities allocated to a unary resource. Moreover, the rules 
also cover so called optional activities that may or may not 
be present in the final schedule. 

Introduction   
Real-life scheduling problems usually include a variety of 
constraints so special scheduling algorithms (Brucker, 
2001) describing a single aspect of the problem can hardly 
be applied to solve the problem completely. Constraint-
based scheduling (Baptiste, Le Pape, Nuijten, 2001) 
provides a natural framework for modelling and solving 
real-life problems because it allows integration of different 
constraints. The above mentioned special scheduling 
algorithms can be often transformed into propagators for 
the constraints so the big effort put in developing these 
algorithms is capitalised in constraint-based scheduling. 
 Many filtering algorithms for specialised scheduling 
constraints have been developed in recent years (Baptiste, 
Le Pape, Nuijten, 2001). There exist algorithms based for 
example on edge-finding (Baptiste & Le Pape, 1996) or 
not-first/not-last (Torres & Lopez, 1997) techniques that 
restrict the time windows of the activities. Other 
algorithms are based on relative ordering of activities, for 
example filtering based on optimistic and pessimistic 
resource profiles (Cesta & Stella, 1997). Recently, as 
scheduling and planning technologies are coming together, 
filtering algorithms combining filtering based on relative 
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ordering and time windows appeared. Detectable 
precedences by Vilím (2002) are one of the first attempts 
for such a combination. Laborie (2003) presents a similar 
rule called energy precedence constraint for reservoir-like 
resources.   
 Filtering algorithms for scheduling constraints typically 
assume that all the constrained activities will be included 
in the final schedule. This is not always true, for example 
assume that there are alternative processes to accomplish a 
job or alternative resources per activity. These alternatives 
are typically modelled using optional activities that may or 
may not be included in the final schedule depending on 
which process or resource is selected. The optional activity 
may still participate in the constraints but it should not 
influence other activities until it is known to be in the 
schedule. This could be realised by allowing the duration 
of the optional activity to be zero for time-windows based 
filtering like edge-finding (Baptiste, Le Pape, Nuijten, 
2001). However, this makes filtering weaker and as shown 
in (Vilím, Barták, Čepek, 2004) a stronger and faster 
filtering can be achieved if optional activities are assumed 
in the filtering algorithm directly. The paper (Focacci, 
Laborie, Nuijten, 2000) proposed a global precedence 
graph where alternative resources correspond to paths in 
the graph, but the graph is used merely for cost-based 
filtering (optimization of makespan or setup times). 
 In this paper we address the problem of integrated 
filtering based on precedence relations and time windows. 
From the beginning we assume the existence of optional 
activities. A filtering algorithm for these so called 
detectable precedences with optional activities on a unary 
resource has been proposed in (Vilím, Barták, Čepek, 
2004). This algorithm uses Θ-Λ-tree to achieve O(n.log n) 
time complexity and it is a monolithic algorithm (must be 
repeated completely if there is any change of domains). 
The same pruning can be achieved by the energy 
precedence constraint proposed by Laborie (2003) if it is 
applied to a unary resource (the energy precedence 
constraint is defined for reservoirs). However, the energy 
precedence constraint is not defined for optional activities 
and details of implementation are not given in the paper. 



 We propose a new set of propagation rules that keep a 
transitive closure of the precedence relations, deduce new 
precedence relations, and shrink the time windows of the 
activities. They may also deduce that some optional 
activity will not be present in the final schedule. There are 
two main differences from the algorithm proposed in 
(Vilím, Barták, Čepek, 2004). First, we use “light” data 
structures, namely domains of variables. Second, the new 
rules are incremental so they directly react to changes of 
particular domains rather than running a monolithic 
algorithm from scratch. Such rules are much easier for 
implementation and for integration to existing constraint 
solvers and the hope is their incremental nature will lead to 
a good practical efficiency. The implementation of the 
rules is currently being done so the paper reports a work in 
progress. 
 The paper is organised as follows. We first give more 
details on the problem to be solved. Then we describe the 
constraint services available for implementation of new 
constraints. In the main part of the paper, we describe a 
constraint-based representation of the precedence graph 
and we propose a set of propagation rules for the 
precedence graph. After that, we describe propagation 
rules for shrinking time windows by using information 
about precedence relations. 

The Problem 
In this paper we address the problem of modelling a unary 
resource where activities must be allocated in such a way 
that they do not overlap in time. We assume that there are 
time windows restricting the position of these activities. 
The time window [R,D] for an activity specifies that the 
activity cannot start before R (release time) and cannot 
finish after D (deadline). We assume the activity to be non-
interruptible so the activity occupies the resource from its 
start till its completion, i.e. for a time interval whose length 
is equal to the given length of the activity. We also assume 
that that there are precedence constraints for the activities. 
The precedence constraint A«B specifies that activity A 
must not finish later than activity B starts. The precedence 
constraints describe a partial order between the activities. 
The goal of scheduling is to decide a total order that 
satisfies (extends) the partial order (this corresponds to the 
definition of a unary resource) in such a way that each 
activity is scheduled within its time window. Last but not 
least we allow some activities to be so called optional. It 
means that it is not known in advance whether such 
activities are allocated to the resource or not. If the 
optional activity is allocated to the resource, that is, it is 
included in the final resource schedule then we call this 
activity valid. If the activity is known not to be allocated to 
the resource then we call the activity invalid. In other 
cases, that is the activity is not decided to be or not to be 
allocated to the resource, we call the activity undecided. 
Optional activities are useful for modelling alternative 
resources for the activities (an optional activity is used for 
each alternative resource and exactly one optional activity 

becomes valid) or for modelling alternative processes to 
accomplish a job (each process may consist of a different 
set of activities). 
 Note that for the above defined problem of scheduling 
with time windows it is known that deciding about an 
existence of a feasible schedule is NP-hard in the strong 
sense (Garey & Johnson, 1979) even when no precedence 
relations or optional activities are considered, so there is a 
little hope even for a pseudo-polynomial solving 
algorithm. Hence using propagation rules and constraint 
satisfaction techniques is justified there. 

Constraints and Constraint Services 
Constraint satisfaction problem is defined as a triple 
(X,D,C), where X is a finite set of variables, D is a set of 
domains for these variables, each variable may have its 
own domain which is a finite set of values, and C is a set 
of constraints restricting possible combinations of the 
values assigned to variables (a constraint is a relation over 
the variables’ domains). The task is to find a value for each 
variable from the corresponding domain in such a way that 
all the constraints are satisfied (Dechter, 2003). 
 There exist many constraint solvers that provide tools 
for solving constraint satisfaction problems, for example 
ILOG Solver, Mozart or the clpfd library of SICStus 
Prolog. These solvers are typically based on combination 
of domain filtering with depth-first search. Domain 
filtering is a process of removing values from the domains 
that do not satisfy some constraint. Each constraint has a 
filtering algorithm assigned to it that does this job for the 
constraint, and these algorithms communicate via the 
domains of the variables – if a filtering algorithm shrinks a 
domain of some variable, the algorithms for constraints 
that use this variable propagate the change to other 
variables until a fixed point is reached or until some 
domain becomes empty. Such a procedure is called a 
(generalised) arc consistency. When all domains are 
reduced to singletons then the solution is found. If some 
domain becomes empty then no solution exists. In all other 
cases the search procedure splits the space of possible 
assignments by adding a new constraint (for example by 
assigning a value to the variable) and the solution is being 
searched for in sub-spaces defined by the constraint and its 
negation (other branching schemes may also be applied). 
 The constraint solvers usually provide an interface for 
user-defined filtering algorithms so the users may extend 
the capabilities of the solvers by writing their own filtering 
algorithms (Schulte, 2002). This interface consists of two 
parts: triggers and propagators. The user should specify 
when the filtering algorithm is called – a trigger. This is 
typically a change of domain of some variable, for 
example when the lower bound of the domain is increased, 
the upper bound is decreased, or any element is deleted 
from the domain. The propagator then describes how this 
change is propagated to domains of other variables.  The 
constraint solver provides procedures for access to 
domains of variables and for operations over the domains 



(membership, union, intersection, etc.). The output of the 
propagator is a proposal how to change domains of other 
variables in the constraint. The algorithm may also deduce 
that the constraint cannot be satisfied (fail) or that the 
constraint is entailed (exit). We will describe the 
propagation rules in such a way that they can be easily 
transformed into a filtering algorithm in the above sense. 
Each propagation rule will consist of a trigger describing 
when the rule is activated and a propagator describing how 
the domains of other variables are changed. 

Rules for the Precedence Graph 
As we mentioned above, precedence relations are defined 
among the activities. These precedence relations define a 
precedence graph which is an acyclic directed graph where 
nodes correspond to activities and there is an arc from A to 
B if A«B. Frequently, the scheduling algorithms need to 
know whether A must be before B in the schedule, that is 
whether there is a path from A to B in the precedence 
graph. It is possible to look for the path each time such a 
query occurs. However, if such queries occur frequently 
then it is more efficient to provide the answer immediately, 
that is, in time O(1). This can be achieved by keeping a 
transitive closure of the precedence graph. 

Definition 1: We say that a precedence graph G is 
transitively closed if for any path from A to B in G there is 
also an arc from A to B in G. 

Defining the transitive closure is more complicated when 
optional activities are assumed. In particular, if A«B and 
B«C and B is undecided then we cannot deduce that A«C 
simply because if B is removed – becomes invalid – then 
the path from A to C is lost. Therefore, we need to define 
transitive closure more carefully. 

Definition 2: We say that a precedence graph G with 
optional activities is transitively closed if for any two arcs 
A to B and B to C such that B is a valid activity and A and 
C are either valid or undecided activities there is also an 
arc A to C in G. 

It is easy to prove that if there is a path from A to B such 
that A and B are either valid or undecided and all inner 
nodes in the path are valid then there is also an arc from A 
to B in a transitively closed graph (by induction of the path 
length). Hence, if no optional activity is used (all activities 
are valid) then Definition 2 is identical to Definition 1. 
 In the next paragraphs we will propose a constraint 
model for the precedence graph and two propagation rules 
that maintain the transitive closure of the graph with 
optional activities. We index each activity by a unique 
number from the set 1,..,n, where n is the number of 
activities. For each activity we use a 0/1 variable Valid 
indicating whether the activity is valid (1) or invalid (0). If 
the activity is not known yet to be valid or invalid then the 
domain of Valid is {0,1}. The precedence graph is encoded 
in two sets attached to each activity. CanBeBefore is a set 
of indices of activities that can be before a given activity. 

CanBeAfter is a set of indices of activities that can be after 
the activity. If we add an arc between A and B (A«B) then 
we remove the index of A from CanBeAfter(B) and the 
index of B from CanBeBefore(A). For simplicity reasons 
we will write A instead of the index of A. Note that these 
sets can be easily implemented as finite domains of two 
variables so a special data structure is not necessary. For 
this implementation we propose to include value 0 in 
above two sets to ensure that the domain is not empty even 
if the activity is first or last (an empty domain in CSP 
indicates the non-existence of a solution). The value 0 is 
not assumed as an index of any activity in the propagation 
rules. To simplify description of propagation rules we 
define the following sets (not kept in memory but 
computed on demand): 

 MustBeAfter = CanBeAfter \ CanBeBefore 
 MustBeBefore = CanBeBefore \ CanBeAfter 
 Unknown = CanBeBefore ∩ CanBeAfter. 

MustBeAfter and MustBeBefore are sets of activities that 
must be after respectively before the given activity. 
Unknown is a set of activities that are not yet known to be 
before or after the activity. 
 We initiate the precedence graph in the following way. 
First, the variables Valid, CanBeBefore, and CanBeAfter 
with their domains are created. Then the known 
precedence relations are added in the above-described way 
(domains of CanBeBefore and CanBeAfter are pruned). 
Finally, the Valid variables for the valid activities are set to 
1 (activities that are known to be invalid from the 
beginning may be omitted from the graph) and the 
following propagation rule is fired when Valid(A) is set. 
 The propagation rule is invoked when the validity status 
of the activity is known. “Valid(A) is instantiated” is its 
trigger. The part after  is a propagator describing pruning 
of domains. “exit” means that the constraint represented by 
the propagation rule is entailed so the propagator is not 
further invoked (its invocation does not cause further 
domain pruning). We will use the same notation in all 
rules. 

 Valid(A) is instantiated  /1/ 
if Valid(A) = 0 then 
  for each B do /* disconnect A from B */ 
   CanBeBefore(B) ← CanBeBefore(B) \ {A} 
   CanBeAfter(B) ← CanBeAfter(B) \ {A} 
else /* Valid(A)=1 */ 
  for each B∈MustBeBefore(A) do 
   for each C∈MustBeAfter(A)\MustBeAfter(B) do 
    /* new precedence B«C */ 
    CanBeAfter(C) ← CanBeAfter(C) \ {B} 
    CanBeBefore(B) ← CanBeBefore(B) \ {C} 
    if B∉CanBeBefore(C) then    // break the cycle 
       post_constraint(Valid(B)=0 ∨ Valid(C)=0) 
exit 

Observation: Note that rule /1/ maintains symmetry for all 
valid and undecided activities because the domains are 
pruned symmetrically in pairs. This symmetry can be 



defined as follows: if Valid(B)≠0 and Valid(C)≠0 then 
B∈CanBeBefore(C) if and only if C∈CanBeAfter(B). This 
moreover implies that B∈MustBeBefore(C) if and only if 
C∈MustBeAfter(B). 
 
We shall show now, that if the entire precedence graph is 
known in advance (no arcs are added during the solving 
procedure), then rule /1/ is sufficient for keeping the 
(generalised) transitive closure according to Definition 2. 
To give a formal proof we need to define several notions 
more precisely.   
 Let J={0,1, … ,n} be the set of activities, where 0 is a 
dummy activity with the sole purpose to keep all sets 
CanBeAfter(i) and CanBeBefore(i) nonempty for all 
1≤i≤n. Furthermore, let G=(J\{0},E) be the given 
precedence graph on the set of activities, and GT=(J\{0},T) 
its (generalised) transitive closure (note that the previously 
used notation i«j does not distinguish between the arcs 
which are given as input and those deduced by 
transitivity). The formal definition of the set T can be now 
given as follows:  

1. if (i,j)∈E then (i,j)∈T 
2. if (i,j)∈T and (j,k)∈T and Valid(i)≠0 and 

Valid(j)=1 and Valid(k)≠0 then (i,k)∈T 

Furthermore, the set T is not maintained as a list of pairs of 
activities. Instead, it is represented using the set variables 
CanBeAfter(i) and CanBeBefore(i), 1≤i≤n in the following 
manner: (i,j)∈T if and only if i∉CanBeAfter(j) and 
j∉CanBeBefore(i). The incremental construction of the set 
T can be described as follows.  

Initialization: for every i ∈ J\{0} set 
• CanBeAfter(i) ← J\{i} 
• CanBeBefore(i) ← J\{i} 
• Valid(i) ← {0,1} 

Set-up: for every arc (i,j)∈E set 
• CanBeAfter(j) ← CanBeAfter(j)\{i} 
• CanBeBefore(i) ← CanBeBefore(i)\{j} 

Propagation: whenever a variable is made valid, call rule 
/1/ 

Clearly, T is empty after the initialization and T=E after 
the set-up. Now we are ready to state and prove formally 
that rule /1/ is sufficient for maintaining the set T on those 
activities which are already valid or still undecided. 

Proposition 1: Let i0, i1, … , im be a path in E such that 
Valid(ij)=1 for all 1≤j≤m-1 and Valid(i0)≠0 and 
Valid(im)≠0 (that is, the endpoints of the path are both 
either valid or undecided and all inner points of the path 
are valid). Then (i0,im)∈T, that is i0∉CanBeAfter(im) and 
im∉CanBeBefore(i0). 

Proof: We shall proceed by induction on m. The base 
case m=1 is trivially true after the set-up. For the 
induction step let us assume that the statement of the 
lemma holds for all paths (satisfying the assumptions 
of the lemma) of length at most m-1. Let 1≤j≤m-1 be 
an index such that Valid(ij)←1 was set last among all 

inner points i1, … , im-1 on the path. By the induction 
hypothesis we get  

• i0∉CanBeAfter(ij) and ij∉CanBeBefore(i0) 
using the path i0, … , ij 

• ij∉CanBeAfter(im) and im∉CanBeBefore(ij) 
using the path ij, … , im 

We shall distinguish two cases. If im∈MustBeAfter(i0) 
(and thus by symmetry also i0∈MustBeBefore(im)) 
then by definition im∉CanBeBefore(i0) and 
i0∉CanBeAfter(im) and so the claim is true trivially. 
Thus let us in the remainder of the proof assume that 
im∉MustBeAfter(i0). 

Now let us show that i0∈CanBeBefore(ij) must hold, 
which in turn  (together with i0∉CanBeAfter(ij)) 
implies i0∈MustBeBefore(ij). Let us assume by 
contradiction that i0∉CanBeBefore(ij). However, at 
the time when both i0∉CanBeAfter(ij) and 
i0∉CanBeBefore(ij) became true, that is when the 
second of these conditions was made satisfied by rule 
/1/, rule /1/ must have posted the constraint 
(Valid(i0)=0 ∨ Valid(ij)=0) which contradicts the 
assumptions of the lemma. By a symmetric argument 
we can prove that im∈MustBeAfter(ij). Thus when 
rule /1/ is triggered by setting Valid(ij)←1 both 
i0∈MustBeBefore(ij) and im∈MustBeAfter(ij) hold 
(and im∉MustBeAfter(i0) is assumed), and therefore 
rule /1/ removes im from the set CanBeBefore(i0) as 
well as  i0 from the set CanBeAfter(im), which finishes 
the proof. 

From now on there will be no need to distinguish between 
the “original” arcs from E and the transitively deduced 
ones, so we will work solely with the set T. To simplify 
notation we shall switch back to the A«B notation (which 
is equivalent to (A,B) ∈ T). 
 In some situations arcs may be added to the precedence 
graph during the solving procedure, either by the user, by 
the scheduler, or by other filtering algorithms like the one 
described in the next section. The following rule updates 
the precedence graph to keep transitive closure when an 
arc is added to the precedence graph. 

 A«B is added  /2/ 
  CanBeAfter(B) ← CanBeAfter(B) \ {A} 
   CanBeBefore(A) ← CanBeBefore(A) \ {B} 
  if A∉CanBeBefore(B) then    // break the cycle 
      post_constraint(Valid(A)=0 ∨ Valid(B)=0) 
  else 
      if Valid(A)=1 then    // transitive closure 
    for each C∈MustBeBefore(A)\MustBeBefore(B) do 
     add C«B  
   if Valid(B)=1 then    // transitive closure 
    for each C∈MustBeAfter(B)\MustBeAfter(A) do 
     add A«C 
  exit 

The rule /2/ does the following. If a new arc is added then 
the sets CanBeBefore and CanBeAfter are updated. If a 
cycle is detected then the cycle is broken in the same way 



as in rule /1/. The rest of the propagation rule ensures that 
if an arc is added and one of its endpoints is valid then 
other arcs are added recursively to keep a transitive 
closure. The following proposition shows that all 
necessary arcs are added by rule /2/. 

Proposition 2: If the precedence graph is transitively 
closed and some arc is added then the propagation rule /2/ 
updates the precedence graph to be transitively closed 
again. 

Proof: If an arc A«B is added and B is valid then 
according to the definition of transitive closure for 
each C such that B«C the arc A«C should be present 
in the precedence graph. The rule /2/ adds all these 
arcs. Symmetrically, if A is valid then for each C such 
that C«A all arcs C«B (where A«B) are added by the 
rule. Note also, that if the rule adds a new arc then this 
change in the precedence graph is propagated further 
so it may force adding other arcs. Hence all the 
necessary arcs are added. The rule adds only new arcs 
so the recursive calls to the rule must stop sometime. 

Rules for Time Windows 
An absolute position of the activity in time is frequently 
restricted by a release time and deadline that define a time 
window for processing the activity. The activity cannot 
start before the release time and it must be finished before 
the deadline. We assume the activity to be uninterruptible 
so it occupies the resource from its start till its completion. 
The processing time of activity A is constant, we denote it 
by p(A). The goal of time window filtering is to remove 
time points from the time window when the activity cannot 
be processed. Usually, only the lower and upper bounds of 
the time window change so we are speaking about 
shrinking the time window. 
 The standard constraint model for time allocation of the 
activity assumes two variables – start(A) and end(A) – 
describing when the activity A starts and completes. 
Initially, the domain for the variable start(A) is 
[release_time(A), deadline(A)-p(A)] and, similarly, the 
initial domain for the variable end(A) is  
[release_time(A)+p(A), deadline(A)]. If these two initial 
domains are empty then the activity is made invalid. We 
will use the following notation to describe bounds of the 
above domains: 

 est(A) = min(start(A)) earliest start time 
 lst(A) = max(start(A)) latest start time 
 ect(A) = min(end(A)) earliest completion time 
 lct(A) = max(end(A)) latest completion time 

This notation can be extended in a natural way to sets of 
activities. Let Ω be a set of activities, then: 

 est(Ω) = min{est(A), A∈Ω} 
 lst(Ω) = max{lst(A), A∈Ω} 
 ect(Ω) = min{ect(A), A∈Ω} 

 lct(Ω) = max{lct(A), A∈Ω} 
 p(Ω) = ∑{p(A), A∈Ω} 

During propagation, we will be increasing est and 
decreasing lct which corresponds to shrinking the time 
window for the activity. For simplicity reasons we use a 
formula est(A) ← X to describe a requested change of  
est(A) which actually means est(A) ← max(est(A), X). 
Similarly lct(A) ← X means lct(A) ← min(lct(A), X). 
 The time windows can be used to deduce a new 
precedence between activities. In particular, if 
est(A)+p(A)+p(B)>lct(B) then activity A cannot be 
processed before activity B and hence we can deduce B«A. 
This is called a detectable precedence in (Vilím, 2002). 
Vice versa, the precedence graph can be used to shrink 
time windows of the activities. In particular, we can 
compute the earliest completion time of the set of valid 
activities that must be processed before some activity A 
and the latest start time of the set of valid activities that 
must be processed after A. These two numbers define 
bounds of the time window for A. Formally: 

est(A) ← max{est(Ω)+p(Ω) | Ω⊆{X|X«A & Valid(X)=1}} 
lct(A) ← min{lct(Ω)-p(Ω) | Ω⊆{X|A«X & Valid(X)=1}} 

The above two formulas are special cases of the energy 
precedence constraint (Laborie, 2003) for unary resources. 
Note also that the new bound for est(A) can be computed 
in O(n.log n) time, where n is the number of activities in 
Θ = {X | X«A & Valid(X)=1}, rather that exploring all 
subsets Ω⊆Θ. The algorithm is based on the following 
observation: if Ω’ is the set with the maximal 
est(Ω’)+p(Ω’) then Ω’⊇{X | X∈Θ & est(Ω’)≤est(X)}, 
otherwise adding such X to Ω’ will increase 
est(Ω’)+p(Ω’). Consequently, it is enough to explore sets 
ΩX = {Y | Y∈Θ & est(X)≤est(Y)} for each X∈Θ which is 
done by the following algorithm (the new bound is 
computed in the variable end): 

dur ← 0 
end ← inf 
for each Y∈{X | X«A & Valid(X)=1} 
    in non-increasing order of est(Y) do 
  dur ← dur + p(Y) 
  end ← max(end, est(Y)+dur) 

The bound for lct(A) can be computed in a symmetrical 
way in O(n.log n) time, where n is the number of activities 
in {X | A«X & Valid(X)=1}. 
 We now present two groups of propagation rules 
working with time windows and a precedence graph. The 
first group of rules realise the energy precedence constraint 
in an incremental way by reacting to changes in the 
precedence graph. The rules are invoked by making the 
activity valid /1a/ and by adding a new precedence relation 
/2a/. Because these rules have the same triggers as the 
rules for the precedence graph, they can be actually 
combined with them. Hence, we name the new rules using 
the number of the corresponding rule for the precedence 
graph. 



 The rules shrink the time windows using information 
about the precedence relations as described above. Only 
valid activities influence time windows of other (non 
invalid) activities. This corresponds to our requirement that 
optional activities that are not yet known to be valid should 
not influence other activities but they can be influenced. 
Notice also that if A«C, C«B, and C is valid then it is 
enough to explore possible increase of est(C) only. The 
reason is that if est(C) is really increased then the rule /3/ is 
invoked for C (see below) and the change is propagated 
directly to est(B). Similarly, only activities B such that 
there is no valid activity C in between B and A are 
explored for change of lct(B). 
 When activity A becomes valid and B is after A (A«B) 
or when A is valid and arc A«B is added then A can 
(newly) participate in sets ΩX that are used to compute est 
of B (see above). Visibly, only sets containing A are of 
interest because only these sets can lead to change of 
est(B). The other sets ΩX used to update est(B) have 
already been explored or will be explored when calling the 
rules for some valid activity in ΩX. Moreover, all valid 
activities C such that C«A are used to compute est(A) so 
they can complete together no later than in est(A). Hence 
these activities do not influence directly est(B) (they 
influence it through changes of est(A)). Thus, we need to 
explore all subsets of valid activities X such that X«B and 
¬X«A and these subsets contain A. Only these subsets can 
deduce a possible change of est(B). These are exactly the 
sets used in rules /1a/ and /2a/. A symmetrical analysis can 
be done for activities B before A. Note also that sets Ω’ in 
rules /1a/ and /2a/ can be explored in the same way as we 
described for the energy precedence constraint above. 
 

 Valid(A) is instantiated  /1a/ 
   if Valid(A)=1 then 
  for each B∈MustBeAfter(A) s.t. 
     ¬∃C Valid(C)=1 & A«C & C«B do 
       let Ω = {X | X∈MustBeBefore(B) &  
        X∈CanBeAfter(A) & Valid(X)=1} 
       est(B) ← max{est(Ω’∪{A})+p(Ω’)+p(A) | Ω’⊆Ω} 
  for each B∈MustBeBefore(A) s.t. 
     ¬∃C Valid(C)=1 & B«C & C«A do 
       let Ω = {X | X∈MustBeAfter(B) &  
        X∈CanBeBefore(A) & Valid(X)=1} 
        lct(B) ← min{lct(Ω’∪{A})-p(Ω’)-p(A) | Ω’⊆Ω} 
  exit 
 
 A«B is added  /2a/ 
  if Valid(A)=1 & Valid(B)≠0 then 
       let Ω = {X | X∈MustBeBefore(B) &  
        X∈CanBeAfter(A) & Valid(X)=1} 
       est(B) ← max{est(Ω’∪{A})+p(Ω’)+p(A) | Ω’⊆Ω} 
   if Valid(B)=1 & Valid(A)≠0 then 
       let Ω = {X | X∈MustBeAfter(A) &  
        X∈CanBeBefore(B) & Valid(X)=1} 
       lct(A) ← min{lct(Ω’∪{B})-p(Ω’)-p(B) | Ω’⊆Ω} 
   exit 

The second group of rules is triggered by shrinking the 
time window (/3/ for increased est and /4/ for decreased 
lct). The rules in this group can deduce that the activity is 
invalid, if it has an empty time window, and they can 
deduce a new detectable precedence. Moreover, if the 
activity is valid then the change of its time window is 
propagated to other activities whose relative position to a 
given activity is known (they are before or after the given 
activity). If est of valid activity A is increased then it may 
influence est of B such that A«B (note that B is either valid 
or undecided, because invalid activities are disconnected 
from the graph). This happens if and only if est(B) ≤ 
est(ΩA)+p(ΩA) (see above for the definition of ΩA with 
respect to B). Notice that rule /3/ computes est(ΩA)+p(ΩA) 
to update est(B). Symmetrically, rule /4/ updates lct(B) for 
activities B such that B«A, if necessary. Hence, the 
propagation rules incrementally maintain the energy 
precedence constraint. 
 

est(A) is increased   /3/ 
  if Valid(A)=0 or est(A)+p(A) > lct(A) then 
   Valid(A) ← 0 
   exit 
  else 
   ect(A) ← est(A)+p(A) 
   for each B∈Unknown(A) do 
    if est(A)+p(A)+p(B) > lct(B) then 
     B«A /* detectable precedence */ 
   if Valid(A)=1 then 
    for each B∈MustBeAfter(A) s.t. 
      ¬∃C Valid(C)=1 & A«C & C«B do 
     est(B) ← est(A)+p(A)+ 
      ∑{p(X) | X∈MustBeBefore(B) & 
       est(A)≤est(X) & Valid(X)=1} 

 
lct(A) is decreased   /4/ 
  if Valid(A)=0 or est(A)+p(A) > lct(A) then 
   Valid(A) ← 0 
   exit 
  else 
   lst(A) ← lct(A)-p(A) 
   for each B∈Unknown(A) do 
    if est(B)+p(B)+p(A) > lct(A) then 
     A«B /* detectable precedence */ 
   if Valid(A)=1 then 
    for each B∈MustBeBefore(A) s.t. 
      ¬∃C Valid(C)=1 & B«C & C«A do 
     lct(B) ← lct(A)-p(A)- 
      ∑{p(X) | X∈MustBeAfter(B) & 
       lct(X)≤lct(A) & Valid(X)=1} 

Conclusions 
The paper reports a work in progress on constraint models 
for the unary resource with precedence relations between 
the activities and time windows for the activities. Optional 
activities that may or may not be allocated to the resource 
are also assumed. We propose a set of propagation rules 



that keep a transitive closure of the precedence relations, 
deduce additional precedence constraints based on time 
windows, and shrink the time windows for the activities. 
These rules are intended to complement the existing 
filtering algorithms based on edge-finding etc. to further 
improve domain pruning. Our next steps include formal 
complexity analysis, detail comparison to existing 
propagation rules (edge finder, etc.), implementation of the 
proposed rules, and testing in real-life environment. 
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