
Incremental Propagation Rules for Precedence Graph
with Optional Activities and Time Windows

Roman Barták*, Ondřej Čepek*

*Charles University
Faculty of Mathematics and Physics

Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic
{roman.bartak, ondrej.cepek}@mff.cuni.cz

Institute of Finance and Administration

Estonská 500, 101 00 Praha 10, Czech Republic

Abstract
Constraint-based scheduling is a powerful tool for solving
real-life scheduling problems thanks to a natural integration
of special solving algorithms encoded in global constraints.
The filtering algorithms behind these constraints are based
on propagation rules modelling some aspects of the
problems, for example a unary resource. This paper
describes new incremental propagation rules integrating a
propagation of precedence relations and time windows for
activities allocated to a unary resource. Moreover, the rules
also cover so called optional activities that may or may not
be present in the final schedule.

Introduction
Real-life scheduling problems usually include a variety of
constraints so special scheduling algorithms (Brucker,
2001) describing a single aspect of the problem can hardly
be applied to solve the problem completely. Constraint-
based scheduling (Baptiste, Le Pape, Nuijten, 2001)
provides a natural framework for modelling and solving
real-life problems because it allows integration of different
constraints. The above mentioned special scheduling
algorithms can be often transformed into propagators for
the constraints so the big effort put in developing these
algorithms is capitalised in constraint-based scheduling.
 Many filtering algorithms for specialised scheduling
constraints have been developed in recent years (Baptiste,
Le Pape, Nuijten, 2001). There exist algorithms based for
example on edge-finding (Baptiste & Le Pape, 1996) or
not-first/not-last (Torres & Lopez, 1997) techniques that
restrict the time windows of the activities. Other
algorithms are based on relative ordering of activities, for
example filtering based on optimistic and pessimistic
resource profiles (Cesta & Stella, 1997). Recently, as
scheduling and planning technologies are coming together,
filtering algorithms combining filtering based on relative

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

ordering and time windows appeared. Detectable
precedences by Vilím (2002) are one of the first attempts
for such a combination. Laborie (2003) presents a similar
rule called energy precedence constraint for reservoir-like
resources.
 Filtering algorithms for scheduling constraints typically
assume that all the constrained activities will be included
in the final schedule. This is not always true, for example
assume that there are alternative processes to accomplish a
job or alternative resources per activity. These alternatives
are typically modelled using optional activities that may or
may not be included in the final schedule depending on
which process or resource is selected. The optional activity
may still participate in the constraints but it should not
influence other activities until it is known to be in the
schedule. This could be realised by allowing the duration
of the optional activity to be zero for time-windows based
filtering like edge-finding (Baptiste, Le Pape, Nuijten,
2001). However, this makes filtering weaker and as shown
in (Vilím, Barták, Čepek, 2004) a stronger and faster
filtering can be achieved if optional activities are assumed
in the filtering algorithm directly. The paper (Focacci,
Laborie, Nuijten, 2000) proposed a global precedence
graph where alternative resources correspond to paths in
the graph, but the graph is used merely for cost-based
filtering (optimization of makespan or setup times).
 In this paper we address the problem of integrated
filtering based on precedence relations and time windows.
From the beginning we assume the existence of optional
activities. A filtering algorithm for these so called
detectable precedences with optional activities on a unary
resource has been proposed in (Vilím, Barták, Čepek,
2004). This algorithm uses Θ-Λ-tree to achieve O(n.log n)
time complexity and it is a monolithic algorithm (must be
repeated completely if there is any change of domains).
The same pruning can be achieved by the energy
precedence constraint proposed by Laborie (2003) if it is
applied to a unary resource (the energy precedence
constraint is defined for reservoirs). However, the energy
precedence constraint is not defined for optional activities
and details of implementation are not given in the paper.

 We propose a new set of propagation rules that keep a
transitive closure of the precedence relations, deduce new
precedence relations, and shrink the time windows of the
activities. They may also deduce that some optional
activity will not be present in the final schedule. There are
two main differences from the algorithm proposed in
(Vilím, Barták, Čepek, 2004). First, we use “light” data
structures, namely domains of variables. Second, the new
rules are incremental so they directly react to changes of
particular domains rather than running a monolithic
algorithm from scratch. Such rules are much easier for
implementation and for integration to existing constraint
solvers and the hope is their incremental nature will lead to
a good practical efficiency. The implementation of the
rules is currently being done so the paper reports a work in
progress.
 The paper is organised as follows. We first give more
details on the problem to be solved. Then we describe the
constraint services available for implementation of new
constraints. In the main part of the paper, we describe a
constraint-based representation of the precedence graph
and we propose a set of propagation rules for the
precedence graph. After that, we describe propagation
rules for shrinking time windows by using information
about precedence relations.

The Problem
In this paper we address the problem of modelling a unary
resource where activities must be allocated in such a way
that they do not overlap in time. We assume that there are
time windows restricting the position of these activities.
The time window [R,D] for an activity specifies that the
activity cannot start before R (release time) and cannot
finish after D (deadline). We assume the activity to be non-
interruptible so the activity occupies the resource from its
start till its completion, i.e. for a time interval whose length
is equal to the given length of the activity. We also assume
that that there are precedence constraints for the activities.
The precedence constraint A«B specifies that activity A
must not finish later than activity B starts. The precedence
constraints describe a partial order between the activities.
The goal of scheduling is to decide a total order that
satisfies (extends) the partial order (this corresponds to the
definition of a unary resource) in such a way that each
activity is scheduled within its time window. Last but not
least we allow some activities to be so called optional. It
means that it is not known in advance whether such
activities are allocated to the resource or not. If the
optional activity is allocated to the resource, that is, it is
included in the final resource schedule then we call this
activity valid. If the activity is known not to be allocated to
the resource then we call the activity invalid. In other
cases, that is the activity is not decided to be or not to be
allocated to the resource, we call the activity undecided.
Optional activities are useful for modelling alternative
resources for the activities (an optional activity is used for
each alternative resource and exactly one optional activity

becomes valid) or for modelling alternative processes to
accomplish a job (each process may consist of a different
set of activities).
 Note that for the above defined problem of scheduling
with time windows it is known that deciding about an
existence of a feasible schedule is NP-hard in the strong
sense (Garey & Johnson, 1979) even when no precedence
relations or optional activities are considered, so there is a
little hope even for a pseudo-polynomial solving
algorithm. Hence using propagation rules and constraint
satisfaction techniques is justified there.

Constraints and Constraint Services
Constraint satisfaction problem is defined as a triple
(X,D,C), where X is a finite set of variables, D is a set of
domains for these variables, each variable may have its
own domain which is a finite set of values, and C is a set
of constraints restricting possible combinations of the
values assigned to variables (a constraint is a relation over
the variables’ domains). The task is to find a value for each
variable from the corresponding domain in such a way that
all the constraints are satisfied (Dechter, 2003).
 There exist many constraint solvers that provide tools
for solving constraint satisfaction problems, for example
ILOG Solver, Mozart or the clpfd library of SICStus
Prolog. These solvers are typically based on combination
of domain filtering with depth-first search. Domain
filtering is a process of removing values from the domains
that do not satisfy some constraint. Each constraint has a
filtering algorithm assigned to it that does this job for the
constraint, and these algorithms communicate via the
domains of the variables – if a filtering algorithm shrinks a
domain of some variable, the algorithms for constraints
that use this variable propagate the change to other
variables until a fixed point is reached or until some
domain becomes empty. Such a procedure is called a
(generalised) arc consistency. When all domains are
reduced to singletons then the solution is found. If some
domain becomes empty then no solution exists. In all other
cases the search procedure splits the space of possible
assignments by adding a new constraint (for example by
assigning a value to the variable) and the solution is being
searched for in sub-spaces defined by the constraint and its
negation (other branching schemes may also be applied).
 The constraint solvers usually provide an interface for
user-defined filtering algorithms so the users may extend
the capabilities of the solvers by writing their own filtering
algorithms (Schulte, 2002). This interface consists of two
parts: triggers and propagators. The user should specify
when the filtering algorithm is called – a trigger. This is
typically a change of domain of some variable, for
example when the lower bound of the domain is increased,
the upper bound is decreased, or any element is deleted
from the domain. The propagator then describes how this
change is propagated to domains of other variables. The
constraint solver provides procedures for access to
domains of variables and for operations over the domains

(membership, union, intersection, etc.). The output of the
propagator is a proposal how to change domains of other
variables in the constraint. The algorithm may also deduce
that the constraint cannot be satisfied (fail) or that the
constraint is entailed (exit). We will describe the
propagation rules in such a way that they can be easily
transformed into a filtering algorithm in the above sense.
Each propagation rule will consist of a trigger describing
when the rule is activated and a propagator describing how
the domains of other variables are changed.

Rules for the Precedence Graph
As we mentioned above, precedence relations are defined
among the activities. These precedence relations define a
precedence graph which is an acyclic directed graph where
nodes correspond to activities and there is an arc from A to
B if A«B. Frequently, the scheduling algorithms need to
know whether A must be before B in the schedule, that is
whether there is a path from A to B in the precedence
graph. It is possible to look for the path each time such a
query occurs. However, if such queries occur frequently
then it is more efficient to provide the answer immediately,
that is, in time O(1). This can be achieved by keeping a
transitive closure of the precedence graph.

Definition 1: We say that a precedence graph G is
transitively closed if for any path from A to B in G there is
also an arc from A to B in G.

Defining the transitive closure is more complicated when
optional activities are assumed. In particular, if A«B and
B«C and B is undecided then we cannot deduce that A«C
simply because if B is removed – becomes invalid – then
the path from A to C is lost. Therefore, we need to define
transitive closure more carefully.

Definition 2: We say that a precedence graph G with
optional activities is transitively closed if for any two arcs
A to B and B to C such that B is a valid activity and A and
C are either valid or undecided activities there is also an
arc A to C in G.

It is easy to prove that if there is a path from A to B such
that A and B are either valid or undecided and all inner
nodes in the path are valid then there is also an arc from A
to B in a transitively closed graph (by induction of the path
length). Hence, if no optional activity is used (all activities
are valid) then Definition 2 is identical to Definition 1.
 In the next paragraphs we will propose a constraint
model for the precedence graph and two propagation rules
that maintain the transitive closure of the graph with
optional activities. We index each activity by a unique
number from the set 1,..,n, where n is the number of
activities. For each activity we use a 0/1 variable Valid
indicating whether the activity is valid (1) or invalid (0). If
the activity is not known yet to be valid or invalid then the
domain of Valid is {0,1}. The precedence graph is encoded
in two sets attached to each activity. CanBeBefore is a set
of indices of activities that can be before a given activity.

CanBeAfter is a set of indices of activities that can be after
the activity. If we add an arc between A and B (A«B) then
we remove the index of A from CanBeAfter(B) and the
index of B from CanBeBefore(A). For simplicity reasons
we will write A instead of the index of A. Note that these
sets can be easily implemented as finite domains of two
variables so a special data structure is not necessary. For
this implementation we propose to include value 0 in
above two sets to ensure that the domain is not empty even
if the activity is first or last (an empty domain in CSP
indicates the non-existence of a solution). The value 0 is
not assumed as an index of any activity in the propagation
rules. To simplify description of propagation rules we
define the following sets (not kept in memory but
computed on demand):

 MustBeAfter = CanBeAfter \ CanBeBefore
 MustBeBefore = CanBeBefore \ CanBeAfter
 Unknown = CanBeBefore ∩ CanBeAfter.

MustBeAfter and MustBeBefore are sets of activities that
must be after respectively before the given activity.
Unknown is a set of activities that are not yet known to be
before or after the activity.
 We initiate the precedence graph in the following way.
First, the variables Valid, CanBeBefore, and CanBeAfter
with their domains are created. Then the known
precedence relations are added in the above-described way
(domains of CanBeBefore and CanBeAfter are pruned).
Finally, the Valid variables for the valid activities are set to
1 (activities that are known to be invalid from the
beginning may be omitted from the graph) and the
following propagation rule is fired when Valid(A) is set.
 The propagation rule is invoked when the validity status
of the activity is known. “Valid(A) is instantiated” is its
trigger. The part after is a propagator describing pruning
of domains. “exit” means that the constraint represented by
the propagation rule is entailed so the propagator is not
further invoked (its invocation does not cause further
domain pruning). We will use the same notation in all
rules.

 Valid(A) is instantiated /1/
if Valid(A) = 0 then
 for each B do /* disconnect A from B */
 CanBeBefore(B) ← CanBeBefore(B) \ {A}
 CanBeAfter(B) ← CanBeAfter(B) \ {A}
else /* Valid(A)=1 */
 for each B∈MustBeBefore(A) do
 for each C∈MustBeAfter(A)\MustBeAfter(B) do
 /* new precedence B«C */
 CanBeAfter(C) ← CanBeAfter(C) \ {B}
 CanBeBefore(B) ← CanBeBefore(B) \ {C}
 if B∉CanBeBefore(C) then // break the cycle
 post_constraint(Valid(B)=0 ∨ Valid(C)=0)
exit

Observation: Note that rule /1/ maintains symmetry for all
valid and undecided activities because the domains are
pruned symmetrically in pairs. This symmetry can be

defined as follows: if Valid(B)≠0 and Valid(C)≠0 then
B∈CanBeBefore(C) if and only if C∈CanBeAfter(B). This
moreover implies that B∈MustBeBefore(C) if and only if
C∈MustBeAfter(B).

We shall show now, that if the entire precedence graph is
known in advance (no arcs are added during the solving
procedure), then rule /1/ is sufficient for keeping the
(generalised) transitive closure according to Definition 2.
To give a formal proof we need to define several notions
more precisely.
 Let J={0,1, … ,n} be the set of activities, where 0 is a
dummy activity with the sole purpose to keep all sets
CanBeAfter(i) and CanBeBefore(i) nonempty for all
1≤i≤n. Furthermore, let G=(J\{0},E) be the given
precedence graph on the set of activities, and GT=(J\{0},T)
its (generalised) transitive closure (note that the previously
used notation i«j does not distinguish between the arcs
which are given as input and those deduced by
transitivity). The formal definition of the set T can be now
given as follows:

1. if (i,j)∈E then (i,j)∈T
2. if (i,j)∈T and (j,k)∈T and Valid(i)≠0 and

Valid(j)=1 and Valid(k)≠0 then (i,k)∈T

Furthermore, the set T is not maintained as a list of pairs of
activities. Instead, it is represented using the set variables
CanBeAfter(i) and CanBeBefore(i), 1≤i≤n in the following
manner: (i,j)∈T if and only if i∉CanBeAfter(j) and
j∉CanBeBefore(i). The incremental construction of the set
T can be described as follows.

Initialization: for every i ∈ J\{0} set
• CanBeAfter(i) ← J\{i}
• CanBeBefore(i) ← J\{i}
• Valid(i) ← {0,1}

Set-up: for every arc (i,j)∈E set
• CanBeAfter(j) ← CanBeAfter(j)\{i}
• CanBeBefore(i) ← CanBeBefore(i)\{j}

Propagation: whenever a variable is made valid, call rule
/1/

Clearly, T is empty after the initialization and T=E after
the set-up. Now we are ready to state and prove formally
that rule /1/ is sufficient for maintaining the set T on those
activities which are already valid or still undecided.

Proposition 1: Let i0, i1, … , im be a path in E such that
Valid(ij)=1 for all 1≤j≤m-1 and Valid(i0)≠0 and
Valid(im)≠0 (that is, the endpoints of the path are both
either valid or undecided and all inner points of the path
are valid). Then (i0,im)∈T, that is i0∉CanBeAfter(im) and
im∉CanBeBefore(i0).

Proof: We shall proceed by induction on m. The base
case m=1 is trivially true after the set-up. For the
induction step let us assume that the statement of the
lemma holds for all paths (satisfying the assumptions
of the lemma) of length at most m-1. Let 1≤j≤m-1 be
an index such that Valid(ij)←1 was set last among all

inner points i1, … , im-1 on the path. By the induction
hypothesis we get

• i0∉CanBeAfter(ij) and ij∉CanBeBefore(i0)
using the path i0, … , ij

• ij∉CanBeAfter(im) and im∉CanBeBefore(ij)
using the path ij, … , im

We shall distinguish two cases. If im∈MustBeAfter(i0)
(and thus by symmetry also i0∈MustBeBefore(im))
then by definition im∉CanBeBefore(i0) and
i0∉CanBeAfter(im) and so the claim is true trivially.
Thus let us in the remainder of the proof assume that
im∉MustBeAfter(i0).

Now let us show that i0∈CanBeBefore(ij) must hold,
which in turn (together with i0∉CanBeAfter(ij))
implies i0∈MustBeBefore(ij). Let us assume by
contradiction that i0∉CanBeBefore(ij). However, at
the time when both i0∉CanBeAfter(ij) and
i0∉CanBeBefore(ij) became true, that is when the
second of these conditions was made satisfied by rule
/1/, rule /1/ must have posted the constraint
(Valid(i0)=0 ∨ Valid(ij)=0) which contradicts the
assumptions of the lemma. By a symmetric argument
we can prove that im∈MustBeAfter(ij). Thus when
rule /1/ is triggered by setting Valid(ij)←1 both
i0∈MustBeBefore(ij) and im∈MustBeAfter(ij) hold
(and im∉MustBeAfter(i0) is assumed), and therefore
rule /1/ removes im from the set CanBeBefore(i0) as
well as i0 from the set CanBeAfter(im), which finishes
the proof.

From now on there will be no need to distinguish between
the “original” arcs from E and the transitively deduced
ones, so we will work solely with the set T. To simplify
notation we shall switch back to the A«B notation (which
is equivalent to (A,B) ∈ T).
 In some situations arcs may be added to the precedence
graph during the solving procedure, either by the user, by
the scheduler, or by other filtering algorithms like the one
described in the next section. The following rule updates
the precedence graph to keep transitive closure when an
arc is added to the precedence graph.

 A«B is added /2/
 CanBeAfter(B) ← CanBeAfter(B) \ {A}
 CanBeBefore(A) ← CanBeBefore(A) \ {B}
 if A∉CanBeBefore(B) then // break the cycle
 post_constraint(Valid(A)=0 ∨ Valid(B)=0)
 else
 if Valid(A)=1 then // transitive closure
 for each C∈MustBeBefore(A)\MustBeBefore(B) do
 add C«B
 if Valid(B)=1 then // transitive closure
 for each C∈MustBeAfter(B)\MustBeAfter(A) do
 add A«C
 exit

The rule /2/ does the following. If a new arc is added then
the sets CanBeBefore and CanBeAfter are updated. If a
cycle is detected then the cycle is broken in the same way

as in rule /1/. The rest of the propagation rule ensures that
if an arc is added and one of its endpoints is valid then
other arcs are added recursively to keep a transitive
closure. The following proposition shows that all
necessary arcs are added by rule /2/.

Proposition 2: If the precedence graph is transitively
closed and some arc is added then the propagation rule /2/
updates the precedence graph to be transitively closed
again.

Proof: If an arc A«B is added and B is valid then
according to the definition of transitive closure for
each C such that B«C the arc A«C should be present
in the precedence graph. The rule /2/ adds all these
arcs. Symmetrically, if A is valid then for each C such
that C«A all arcs C«B (where A«B) are added by the
rule. Note also, that if the rule adds a new arc then this
change in the precedence graph is propagated further
so it may force adding other arcs. Hence all the
necessary arcs are added. The rule adds only new arcs
so the recursive calls to the rule must stop sometime.

Rules for Time Windows
An absolute position of the activity in time is frequently
restricted by a release time and deadline that define a time
window for processing the activity. The activity cannot
start before the release time and it must be finished before
the deadline. We assume the activity to be uninterruptible
so it occupies the resource from its start till its completion.
The processing time of activity A is constant, we denote it
by p(A). The goal of time window filtering is to remove
time points from the time window when the activity cannot
be processed. Usually, only the lower and upper bounds of
the time window change so we are speaking about
shrinking the time window.
 The standard constraint model for time allocation of the
activity assumes two variables – start(A) and end(A) –
describing when the activity A starts and completes.
Initially, the domain for the variable start(A) is
[release_time(A), deadline(A)-p(A)] and, similarly, the
initial domain for the variable end(A) is
[release_time(A)+p(A), deadline(A)]. If these two initial
domains are empty then the activity is made invalid. We
will use the following notation to describe bounds of the
above domains:

 est(A) = min(start(A)) earliest start time
 lst(A) = max(start(A)) latest start time
 ect(A) = min(end(A)) earliest completion time
 lct(A) = max(end(A)) latest completion time

This notation can be extended in a natural way to sets of
activities. Let Ω be a set of activities, then:

 est(Ω) = min{est(A), A∈Ω}
 lst(Ω) = max{lst(A), A∈Ω}
 ect(Ω) = min{ect(A), A∈Ω}

 lct(Ω) = max{lct(A), A∈Ω}
 p(Ω) = ∑{p(A), A∈Ω}

During propagation, we will be increasing est and
decreasing lct which corresponds to shrinking the time
window for the activity. For simplicity reasons we use a
formula est(A) ← X to describe a requested change of
est(A) which actually means est(A) ← max(est(A), X).
Similarly lct(A) ← X means lct(A) ← min(lct(A), X).
 The time windows can be used to deduce a new
precedence between activities. In particular, if
est(A)+p(A)+p(B)>lct(B) then activity A cannot be
processed before activity B and hence we can deduce B«A.
This is called a detectable precedence in (Vilím, 2002).
Vice versa, the precedence graph can be used to shrink
time windows of the activities. In particular, we can
compute the earliest completion time of the set of valid
activities that must be processed before some activity A
and the latest start time of the set of valid activities that
must be processed after A. These two numbers define
bounds of the time window for A. Formally:

est(A) ← max{est(Ω)+p(Ω) | Ω⊆{X|X«A & Valid(X)=1}}
lct(A) ← min{lct(Ω)-p(Ω) | Ω⊆{X|A«X & Valid(X)=1}}

The above two formulas are special cases of the energy
precedence constraint (Laborie, 2003) for unary resources.
Note also that the new bound for est(A) can be computed
in O(n.log n) time, where n is the number of activities in
Θ = {X | X«A & Valid(X)=1}, rather that exploring all
subsets Ω⊆Θ. The algorithm is based on the following
observation: if Ω’ is the set with the maximal
est(Ω’)+p(Ω’) then Ω’⊇{X | X∈Θ & est(Ω’)≤est(X)},
otherwise adding such X to Ω’ will increase
est(Ω’)+p(Ω’). Consequently, it is enough to explore sets
ΩX = {Y | Y∈Θ & est(X)≤est(Y)} for each X∈Θ which is
done by the following algorithm (the new bound is
computed in the variable end):

dur ← 0
end ← inf
for each Y∈{X | X«A & Valid(X)=1}
 in non-increasing order of est(Y) do
 dur ← dur + p(Y)
 end ← max(end, est(Y)+dur)

The bound for lct(A) can be computed in a symmetrical
way in O(n.log n) time, where n is the number of activities
in {X | A«X & Valid(X)=1}.
 We now present two groups of propagation rules
working with time windows and a precedence graph. The
first group of rules realise the energy precedence constraint
in an incremental way by reacting to changes in the
precedence graph. The rules are invoked by making the
activity valid /1a/ and by adding a new precedence relation
/2a/. Because these rules have the same triggers as the
rules for the precedence graph, they can be actually
combined with them. Hence, we name the new rules using
the number of the corresponding rule for the precedence
graph.

 The rules shrink the time windows using information
about the precedence relations as described above. Only
valid activities influence time windows of other (non
invalid) activities. This corresponds to our requirement that
optional activities that are not yet known to be valid should
not influence other activities but they can be influenced.
Notice also that if A«C, C«B, and C is valid then it is
enough to explore possible increase of est(C) only. The
reason is that if est(C) is really increased then the rule /3/ is
invoked for C (see below) and the change is propagated
directly to est(B). Similarly, only activities B such that
there is no valid activity C in between B and A are
explored for change of lct(B).
 When activity A becomes valid and B is after A (A«B)
or when A is valid and arc A«B is added then A can
(newly) participate in sets ΩX that are used to compute est
of B (see above). Visibly, only sets containing A are of
interest because only these sets can lead to change of
est(B). The other sets ΩX used to update est(B) have
already been explored or will be explored when calling the
rules for some valid activity in ΩX. Moreover, all valid
activities C such that C«A are used to compute est(A) so
they can complete together no later than in est(A). Hence
these activities do not influence directly est(B) (they
influence it through changes of est(A)). Thus, we need to
explore all subsets of valid activities X such that X«B and
¬X«A and these subsets contain A. Only these subsets can
deduce a possible change of est(B). These are exactly the
sets used in rules /1a/ and /2a/. A symmetrical analysis can
be done for activities B before A. Note also that sets Ω’ in
rules /1a/ and /2a/ can be explored in the same way as we
described for the energy precedence constraint above.

 Valid(A) is instantiated /1a/
 if Valid(A)=1 then
 for each B∈MustBeAfter(A) s.t.
 ¬∃C Valid(C)=1 & A«C & C«B do
 let Ω = {X | X∈MustBeBefore(B) &
 X∈CanBeAfter(A) & Valid(X)=1}
 est(B) ← max{est(Ω’∪{A})+p(Ω’)+p(A) | Ω’⊆Ω}
 for each B∈MustBeBefore(A) s.t.
 ¬∃C Valid(C)=1 & B«C & C«A do
 let Ω = {X | X∈MustBeAfter(B) &
 X∈CanBeBefore(A) & Valid(X)=1}
 lct(B) ← min{lct(Ω’∪{A})-p(Ω’)-p(A) | Ω’⊆Ω}
 exit

 A«B is added /2a/
 if Valid(A)=1 & Valid(B)≠0 then
 let Ω = {X | X∈MustBeBefore(B) &
 X∈CanBeAfter(A) & Valid(X)=1}
 est(B) ← max{est(Ω’∪{A})+p(Ω’)+p(A) | Ω’⊆Ω}
 if Valid(B)=1 & Valid(A)≠0 then
 let Ω = {X | X∈MustBeAfter(A) &
 X∈CanBeBefore(B) & Valid(X)=1}
 lct(A) ← min{lct(Ω’∪{B})-p(Ω’)-p(B) | Ω’⊆Ω}
 exit

The second group of rules is triggered by shrinking the
time window (/3/ for increased est and /4/ for decreased
lct). The rules in this group can deduce that the activity is
invalid, if it has an empty time window, and they can
deduce a new detectable precedence. Moreover, if the
activity is valid then the change of its time window is
propagated to other activities whose relative position to a
given activity is known (they are before or after the given
activity). If est of valid activity A is increased then it may
influence est of B such that A«B (note that B is either valid
or undecided, because invalid activities are disconnected
from the graph). This happens if and only if est(B) ≤
est(ΩA)+p(ΩA) (see above for the definition of ΩA with
respect to B). Notice that rule /3/ computes est(ΩA)+p(ΩA)
to update est(B). Symmetrically, rule /4/ updates lct(B) for
activities B such that B«A, if necessary. Hence, the
propagation rules incrementally maintain the energy
precedence constraint.

est(A) is increased /3/
 if Valid(A)=0 or est(A)+p(A) > lct(A) then
 Valid(A) ← 0
 exit
 else
 ect(A) ← est(A)+p(A)
 for each B∈Unknown(A) do
 if est(A)+p(A)+p(B) > lct(B) then
 B«A /* detectable precedence */
 if Valid(A)=1 then
 for each B∈MustBeAfter(A) s.t.
 ¬∃C Valid(C)=1 & A«C & C«B do
 est(B) ← est(A)+p(A)+
 ∑{p(X) | X∈MustBeBefore(B) &
 est(A)≤est(X) & Valid(X)=1}

lct(A) is decreased /4/
 if Valid(A)=0 or est(A)+p(A) > lct(A) then
 Valid(A) ← 0
 exit
 else
 lst(A) ← lct(A)-p(A)
 for each B∈Unknown(A) do
 if est(B)+p(B)+p(A) > lct(A) then
 A«B /* detectable precedence */
 if Valid(A)=1 then
 for each B∈MustBeBefore(A) s.t.
 ¬∃C Valid(C)=1 & B«C & C«A do
 lct(B) ← lct(A)-p(A)-
 ∑{p(X) | X∈MustBeAfter(B) &
 lct(X)≤lct(A) & Valid(X)=1}

Conclusions
The paper reports a work in progress on constraint models
for the unary resource with precedence relations between
the activities and time windows for the activities. Optional
activities that may or may not be allocated to the resource
are also assumed. We propose a set of propagation rules

that keep a transitive closure of the precedence relations,
deduce additional precedence constraints based on time
windows, and shrink the time windows for the activities.
These rules are intended to complement the existing
filtering algorithms based on edge-finding etc. to further
improve domain pruning. Our next steps include formal
complexity analysis, detail comparison to existing
propagation rules (edge finder, etc.), implementation of the
proposed rules, and testing in real-life environment.

Acknowledgements
The research is supported by the Czech Science
Foundation under the contract no. 201/04/1102. We would
like to thank anonymous reviewers for comments on early
draft.

References
Baptiste, P. and Le Pape, C. 1996. Edge-finding constraint
propagation algorithms for disjunctive and cumulative
scheduling, Proceedings of the Fifteenth Workshop of the
U.K. Planning Special Interest Group (PLANSIG).

Baptiste P., Le Pape C., and Nuijten W. 2001. Constraint-
Based Scheduling: Applying Constraint Programming to
Scheduling Problems, Kluwer Academic Publishers.

Brucker P. 2001. Scheduling Algorithms, Springer Verlag.

Cesta A. and Stella C. 1997. A Time and Resource
Problem for Planning Architectures, Recent Advances in AI
Planning (ECP’97), LNAI 1348, Springer Verlag, 117-
129.

Dechter R. 2003. Constraint Processing, Morgan
Kaufmann.

Focacci F., Laborie P., and Nuijten W. 2000. Solving
Scheduling Problems with Setup Times and Alternative
Resources. Proceedings of AIPS 2000.

Garey M. R. and Johnson D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness,
W.H.Freeman and Company, San Francisco.

Laborie P. 2003. Algorithms for propagating resource
constraints in AI planning and scheduling: Existing
approaches and new results. Artificial Intelligence, 143,
151-188.

Schulte C. 2002. Programming Constraint Services, High-
Level Programming of Standard and New Constraint
Services, Springer Verlag.

Torres P. and Lopez P. 1999. On Not-First/Not-Last
conditions in disjunctive scheduling, European Journal of
Operational Research, 127, 332-343.

Vilím P. 2002. Batch Processing with Sequence Dependent
Setup Times: New Results, Proceedings of the 4th
Workshop of Constraint Programming for Decision and
Control, CPDC'02, Gliwice, Poland.

Vilím P., Barták R., and Čepek O. 2004. Unary Resource
Constraint with Optional Activities, Principles and
Practice of Constraint Programming (CP 2004), LNCS
3258, Springer Verlag, 62-76.

