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Abstract 
Constraint-based techniques are frequently used in solving 
real-life scheduling problems thanks to natural modeling 
capabilities and strong constraint propagation techniques 
encoded within global constraints. In this paper we present 
new incremental propagation rules for shrinking time 
windows of activities allocated to a disjunctive resource. 
These rules use information about precedence constraints 
between the activities and support optional activities. 

Introduction   
Real-life scheduling problems usually include a variety of 
constraints so special scheduling algorithms (Brucker 
2001) describing a single aspect of the problem can hardly 
be applied to solve the problem completely. Constraint-
based scheduling (Baptiste, Le Pape, and Nuijten 2001) 
provides a natural framework for modelling and solving 
real-life problems because it allows integration of different 
constraints. The above mentioned special scheduling 
algorithms can be often transformed into propagators for 
the constraints so the big effort put in developing these 
algorithms is capitalised in constraint-based scheduling. 
 Many filtering algorithms for specialised scheduling 
constraints have been developed in recent years (Baptiste, 
Le Pape, and Nuijten 2001). In scheduling, these 
algorithms frequently use global information about time 
windows of all activities to shrink some of these time 
windows by removing infeasible time points. Precedence 
relations between the activities are usually kept there 
indirectly via the time windows and these relations are not 
directly accessible. As shown by Vilím (2002) and Laborie 
(2003), the precedence relations can by used to deduce 
further pruning of time windows and vice versa, time 
windows can be used to deduce new precedence relations. 
In this paper we will propose new incremental propagation 
rules for this type of reasoning. In particular, we will show 
how to realise the energy precedence constraint by Laborie 
(2003) on a disjunctive resource with optional activities. 
 The paper is organized as follows. We will first describe 
in detail the problem to be solved. Then we will discuss the 
existing works in the area and give an overview of our 
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previous work on precedence graphs with optional 
activities. The main part of the paper will be devoted to the 
description of incremental propagation rules realising the 
energy precedence constraint by Laborie (2003). We will 
also prove the soundness of these rules and give their 
theoretical worst-case time complexity. 

Motivation 
In this paper we address the problem of modelling a 
disjunctive resource where activities must be allocated in 
such a way that they do not overlap in time. Let SA be a 
start time of activity A and PA be its processing time 
(duration). Then the above feature of the resource can be 
described by a set of constraints in the form of disjunction 
(SA + PA ≤ SB ∨ SB + PB ≤ SA) among all pairs of activities 
allocated to the resource. Therefore the resource is called 
disjunctive. Another frequent name for this type of 
resource is a unary resource indicating that at most one 
activity can be processed at any time. 
 We assume that there are time windows restricting the 
position of the activities. The time window [RA, DA] for 
activity A specifies that the activity cannot start before RA 
(release time) and cannot finish after DA (deadline). 
Formally, RA ≤ SA ∧ SA ≤ DA - PA.  We assume the activity 
to be non-interruptible so the activity occupies the resource 
from its start till its completion, that is, for a time interval 
whose length is equal to the duration of the activity. 
 We also assume that there are precedence constraints 
between the activities. The precedence constraint A « B 
specifies that activity A must not finish later than activity 
B starts. This relation can be reformulated as SA + PA ≤ SB. 
The precedence constraints describe a partial order 
between the activities. The goal of scheduling is to decide 
a linear order that satisfies (extends) the partial order (this 
corresponds to the definition of a unary resource) in such a 
way that each activity is scheduled within its time window. 
The ultimate goal is to decide the start time of each activity 
in such a way that the above constraints are satisfied 
(discrete time is assumed). It is easy to show that if a 
feasible linear order of activities is found then a feasible 
assignment of start times exists.  
 Last but not least we allow some activities to be so 
called optional. It means that it is not known in advance 
whether such activities are allocated to the resource or not. 
If the optional activity is allocated to the resource, that is, it 



is included in the final resource schedule then we call this 
activity valid. If the activity is known not to be allocated to 
the resource then we call the activity invalid. In other 
cases, that is, the activity is not decided to be or not to be 
allocated to the resource, we call the activity undecided. 
Optional activities are useful for modelling alternative 
resources for the activities (an optional activity is used for 
each alternative resource and exactly one optional activity 
becomes valid) or for modelling alternative processes to 
accomplish a job (each process may consist of a different 
set of activities). 
 Note that for the above defined problem of scheduling 
with time windows it is known that deciding about an 
existence of a feasible schedule is NP-hard in the strong 
sense (Garey and Johnson 1979) even when no precedence 
relations or optional activities are considered, so there is a 
little hope even for a pseudo-polynomial solving 
algorithm. Hence using propagation rules and constraint 
satisfaction techniques is justified here. 

Related Works 
Disjunctive resources are studied for a long time in 
constraint-based scheduling (Baptiste, Le Pape, and 
Nuijten 2001). There exist algorithms based for example 
on edge-finding (Baptiste and Le Pape 1996) or not-
first/not-last (Torres and Lopez 1997) techniques that 
restrict the time windows of the activities. Edge-finding 
deduces that some activity must be processed before or 
after some subset of activities, while not-first/not-last rules 
deduce that some activity cannot be processed first or last 
in a subset of activities. Other algorithms are based on 
relative ordering of activities, for example filtering based 
on optimistic and pessimistic resource profiles (Cesta and 
Stella 1997). Recently, as scheduling and planning 
technologies are coming together, filtering algorithms 
combining filtering based on relative ordering and time 
windows appeared. Detectable precedences by Vilím 
(2002) are one of the first attempts for such a combination. 
Laborie (2003) presents a similar rule called energy 
precedence constraint for reservoir-like resources. 
 Filtering algorithms for scheduling constraints typically 
assume that all the constrained activities will be included 
in the final schedule. This is not always true, for example 
assume that there are alternative processes to accomplish a 
job or alternative resources per activity. These alternatives 
are typically modelled using optional activities that may or 
may not be included in the final schedule depending on 
which process or resource is selected. The optional activity 
may still participate in the constraints but it should not 
influence other activities until it is known to be in the 
schedule. This could be realised by allowing the duration 
of the optional activity to be zero for time-windows based 
filtering like edge-finding. However, this makes filtering 
weaker and as shown in (Vilím, Barták, and Čepek 2005) a 
stronger and faster filtering can be achieved if optional 
activities are assumed in the filtering algorithm directly. 
The paper (Focacci, Laborie, and Nuijten 2000) proposed a 

global precedence graph where alternative resources 
correspond to paths in the graph, but the graph is used 
merely for cost-based filtering (optimization of makespan 
or setup times). 
 In this paper we address the problem of integrated 
filtering based on precedence relations and time windows. 
From the beginning we assume the existence of optional 
activities. A filtering algorithm for so called detectable 
precedences with optional activities on a unary resource 
has been proposed in (Vilím, Barták, and Čepek 2005). 
This algorithm uses Θ-Λ-tree to achieve O(n.log n) time 
complexity and it is a monolithic algorithm (must be 
repeated completely if there is any change of domains). 
This algorithm handles detectable precedences only and it 
cannot accommodate precedences given from the external 
world. The algorithm proposed in this paper can handle 
any precedence relation. 
 The energy precedence constraint by Laborie (2003) can 
compute new bounds for time windows from arbitrary 
precedences and can discover new precedences from time 
windows in reservoir type of resource. However, the 
energy precedence constraint is not defined for optional 
activities and the paper gave just the principles without 
describing the filtering algorithm. Our propagation rules 
extend the work by Laborie to optional activities and we 
will present the rules in the implementation-friendly way 
(the rules can be immediately transformed into a filtering 
algorithm used by a constraint solver). To achieve this 
goal, we use “light” data structures, namely domains of 
variables, only. Moreover, the new rules are incremental so 
they directly react to changes of particular domains rather 
than running a monolithic algorithm from scratch. Such 
rules are much easier for implementation and for 
integration to existing constraint solvers. Our hope is that 
their incremental nature will also lead to a good practical 
efficiency. 
 Last but not least, there exists extensive literature on 
temporal networks and among them the disjunctive 
temporal networks (Stergiou and Koubarakis 1998) are the 
closest approach to our proposal. The main difference of 
our proposal from (most) works on temporal networks is 
that we are not solving the temporal problem completely. 
We propose a filtering algorithm that removes infeasible 
values. This algorithm is expected to serve as a look-ahead 
technique in the search frameworks solving the problem. 
Moreover, we are not covering arbitrary disjunctive 
temporal network but a specific one modelling a unary 
resource. By borrowing the ides from scheduling of unary 
resources we can achieve stronger domain pruning. 
Finally, we assume optional activities that may or may not 
appear in the network. 

Precedence Graphs 
Our propagation rules that will be presented in the next 
section require information about precedence relations 
between the activities. This information is usually kept in a 
precedence graph which is an acyclic directed graph where 



nodes correspond to activities and there is an arc from A to 
B if A « B. Moreover, we require fast access to every 
predecessor and successor of each activity which can be 
guaranteed if a transitive closure of the graph is kept. 
Then, information about all predecessors and successors is 
available in time O(1). The transitive closure of a 
precedence graph with optional activities can be defined in 
the following way. 

Definition 1: We say that a precedence graph G with 
optional activities is transitively closed if for any two arcs 
A to B and B to C such that B is a valid activity and A and 
C are either valid or undecided activities there is also an 
arc A to C in G. 

It is easy to prove that if there is a path from A to B such 
that A and B are either valid or undecided and all inner 
nodes in the path are valid then there is also an arc from A 
to B in a transitively closed graph (by induction on the 
path length). Hence, if no optional activity is used (all 
activities are valid) then Definition 1 corresponds to a 
standard definition of the transitive closure. 
 In (Barták and Čepek 2005), we proposed a double 
precedence graph that models both standard precedence 
relations and direct precedence relations. Briefly speaking, 
the direct precedence between A and B means that A can 
be directly before B, that is, there is no activity that must 
be scheduled between A and B. We also proposed there a 
constraint model for such double precedence graphs. This 
model includes propagation rules for keeping the transitive 
closure of the precedence graph as well as for keeping 
information about direct precedence relations. The model 
uses the following data structures to model precedence 
relations (we will not use information about direct 
precedence relations in this paper, hence we omit their 
description). Each activity A has a variable ValidA attached 
to it. If activity A is valid then ValidA = 1. If activity A is 
invalid then ValidA = 0. If activity A is undecided then the 
value of ValidA is not defined, in particular it is different 
from 0 and 1 (in terms of constraint satisfaction, the 
domain of ValidA for undecided activity A is {0,1}). 
Information about precedence relations is accessible via 
the following sets (« is a transitive closure of precedence 
relations): 

CanBeBefore(A) – activities that can be before A 
(B ∈ CanBeBefore(A) ⇔ ¬ A « B) 
CanBeAfter(A) – activities that can be after A 
(B ∈ CanBeAfter(A) ⇔ ¬ B « A) 
MustBeBefore(A) – activities that must be before A 
(B ∈ MustBeBefore(A) ≡ B « A) 
MustBeAfter(A) – activities that must be after A 
(B ∈ MustBeAfter(A) ≡ A « B) 
Unknown(A) – activities whose position relatively to 
activity A is unknown 
(B ∈ Unknown(A) ⇔ ¬ A « B ∧ ¬ B « A) 

Sets MustBeBefore, MustBeAfter, and Unknown are used 
just to simplify notation – these sets can be derived from 
the other two sets in the following way (see also Figure 1): 

MustBeBefore(A) = CanBeBefore(A) \ CanBeAfter(A) 
MustBeAfter(A) = CanBeAfter(A) \ CanBeBefore(A) 
Unknown(A) = CanBeBefore(A) ∩ CanBeAfter(A). 

Note finally, that if an activity becomes invalid then it is 
removed from the above sets of all valid and undecided 
activities, which corresponds to removing the activity from 
the precedence graph. 
 
 
 
 
 
 

 
 
 

 

Figure 1. Representation of the precedence graph. 

Propagating Time Windows 
The standard constraint model for time allocation of the 
activity assumes two variables – SA and EA – describing 
when the activity A starts and finishes. If the processing 
time PA of activity A is constant then the variable EA is not 
necessary. However, we use this variable to simplify 
notation used in the propagation rules. The position of 
activity A in time is restricted by release time RA and 
deadline DA that define a time window for processing the 
activity. For a valid activity A, we define the initial domain 
for the variable SA to be [RA, DA - PA] and, similarly, the 
initial domain for the variable EA to be [RA + PA, DA]. For 
an undecided activity A, we define the initial domain of SA 
to be [RA, sup] and the initial domain for EA to be [inf, DA]. 
The reason is that an empty domain means failure in 
constraint satisfaction, however, if the time window 
becomes empty for an undecided activity then this activity 
should become invalid instead of generating a failure. 
Hence, we use unrestricted domains for undecided 
activities and we will check emptiness of the time window 
explicitly in the propagation rules. As soon as the activity 
becomes valid, domains of time variables are restricted on 
both sides. 
 The goal of time window filtering is to remove those 
time points from the time window in which the activity 
cannot be processed. Usually, only the lower and upper 
bounds of the time window change, that is, the earliest start 
time increases and the latest completion time decreases. 
Notice that this information is kept for both valid and 
undecided activities. We will use the following notation to 
describe bounds of the above domains: 
 estA = min(SA) earliest start time 
 lstA = max(SA) latest start time 
 ectA = min(EA) earliest completion time 
 lctA = max(EA) latest completion time 
 

A 

MustBeBefore(A) 
MustBeAfter(A) 

Unknown(A) 

CantBeBefore(A) 

CantBeAfter(A) 



This notation can be extended in a natural way to sets of 
activities. Let Ω be a set of activities, then: 
 estΩ = min{estA | A∈Ω} 
 lstΩ = max{lstA | A∈Ω} 
 ectΩ = min{ectA | A∈Ω} 
 lctΩ = max{lctA | A∈Ω} 
 pΩ = ∑{pA | A∈Ω} 
During propagation, we will be increasing est and 
decreasing lct of activities which corresponds to shrinking 
their time windows. 
 The earliest start time of activity A is influenced by the 
activities that are processed before A. To be more specific 
activity A must start after the earliest completion time of 
any set of valid activities that must be processed before A. 
This time can be formally expressed using the formula 
 max{estΩ + pΩ | Ω ⊆ {X | X « A ∧ ValidX = 1}}. 
Similarly, the latest completion time of A is influenced by 
the valid activities that must be processed after A. Hence, 
we can use the following filtering rules to shrink the time 
window of activity A: 
 estA ← max{estΩ + pΩ | Ω ⊆ {X | X « A ∧ ValidX = 1}} 
 lctA ← min{lctΩ - pΩ | Ω ⊆ {X | A « X ∧ ValidX = 1}} 
Notice that only valid activities influence time windows of 
other (non invalid) activities. This corresponds to our 
requirement that undecided activities should not influence 
other activities but they can be influenced. Hence, it may 
happen that a time window for some undecided activity 
becomes empty (or too small for the activity) which will 
lead to invalidation of the activity. 
 The above two rules are special cases of the energy 
precedence constraint (Laborie 2003) for unary resources. 
We will now show how to compute these bounds in time 
O(n.log n), where n is the number of activities. Let Ω’ be 
the subset of the set {X | X « A ∧ ValidX = 1} with the 
maximal estΩ’ + pΩ’ (the set Ω’ defines the new bound for 
estA). Then Ω’ ⊇ {X | X « A ∧ ValidX = 1 ∧ estΩ’ ≤ estX}, 
because otherwise adding such X to Ω’ will increase pΩ’ 
and hence also estΩ’ + pΩ’. Consequently, it is enough to 
explore sets Ω〈X,A〉 = {Y | Y « A ∧ ValidY = 1 ∧ 
estX ≤ estY} for each valid X that must be before A. In 
particular, the new bound estA is computed using the 
formula: 
 max{ estΩ〈X,A〉 + pΩ〈X,A〉

 | X « A ∧ ValidX = 1 }. 
This computation can be realised in time O(n.log n) using 
the following algorithm. The new bound for estA is 
computed in the variable end. 

dur ← 0 
end ← inf 
for each Y∈{X | X « A ∧ ValidX = 1} in the non-
increasing order of estY do 
  dur ← dur + pY 
  end ← max(end, estY + dur) 

We need time O(n.log n), where n is the number of 
activities, to sort the activities and time O(n) for the loop. 
The bound for lctA can be computed in a symmetrical way 
in time O(n.log n). 

If there is any change in the precedence graph like adding 
a new arc or making some activity valid then the bounds of 
time windows may be influenced because the sets Ω〈X,A〉 
are changed. Also, if bounds of the time window for some 
activity are changed then the above filtering rules should 
also be recomputed. We will now present the propagation 
rules realising the above-described incremental updates. To 
prove soundness of these rules it is enough to verify that 
all sets Ω〈X,A〉 that might be influenced by the change in the 
precedence graph or in the time windows are explored. 

Propagating Changes of Time Windows 
Let us first describe propagation rules that are evoked 
when the time window of some activity shrinks. If bounds 
of a time window change then we can deduce several 
conclusions. First, if the time window becomes too small 
for the activity, formally estA + pA > lctA, then either 
failure is detected, if activity A is valid, or undecided 
activity A is made invalid. Second, time windows can be 
used to deduce a new precedence between activities. In 
particular, if estA + pA + pB > lctB then activity A cannot be 
processed before activity B and hence we can deduce 
B « A. This is called a detectable precedence in (Vilím 
2002). Third, if the time window of valid activity A 
changes then it influences time windows of activities 
whose relative position to a given activity is known (they 
are before or after the given activity). 
 Let us now focus on changes of time windows enforced 
by an increase of the earliest start time of valid activity A 
(a symmetrical deduction can be done for a decrease of the 
latest completion time). Clearly, this increase may 
influence earliest start time of all valid or undecided 
activities B that must be after A. Recall that 
estB ← max{ estΩ〈X,B〉 + pΩ〈X,B〉

 | X « B ∧ ValidX = 1 } and 
Ω〈X,B〉 = {Y | Y « B ∧ ValidY = 1 ∧ estX ≤ estY}. If estA 
increases then estΩ〈A,B〉

 increases as well and hence it may 
define a new bound for estB. Moreover, if estA increases 
then A may become a new member of some set Ω〈C,B〉, such 
that estC ≤ estA and estA < estC, where estA  is the original 
value of estA. Hence pΩ〈C,B〉

 will increase by pA and so it 
may define a new bound for estB. Together, we need to 
explore all sets Ω〈X,B〉 such that estX ≤ estA and estA < estX. 
Note that it also includes the set Ω〈A,B〉. Also if estC = estA 
and estA < estC then Ω〈C,B〉 = Ω〈A,B〉 so it is not necessary to 
explore Ω〈C,B〉 separately. Finally, there is no other set 
Ω〈X,B〉 that is influenced by the increase of the earliest start 
time of activity A. 
 The following propagation rule /1/ reacts to increase of 
the earliest start time. “estA is increased” is its trigger 
meaning that the rule is invoked any time when estA is 
increased. The part after  is a propagator describing 
pruning of domains. “exit” means that the constraint 
represented by the propagation rule is entailed so the 
propagator is not further invoked (its invocation does not 
cause further domain pruning). “fail” means a failure so no 
solution satisfying the constraints exists. We will use the 
same notation in all propagation rules. 
 



estA is increased  /1/ 
  if ValidA = 0 then exit 
 else if estA + pA > lctA then 
   if  ValidA = 1 then fail 

   else ValidA ← 0; exit 
  else 
   for each B∈Unknown(A) do 
    if estA + pA + pB > lctB then 
     add B«A     /* detectable precedence */ 
   if ValidA = 1 then 

    ectA ← estA + pA 
    for each B∈MustBeAfter(A) do 

    dur ← ∑{pX | X « B ∧ estA ≤ estX  ∧ ValidX = 1} 
   end ← estA + dur 
   for each Y∈{X | X « B ∧ ValidX = 1 ∧ 
      estA < estX ∧ estX < estA  }  
     in the non-increasing order of estY do 
     dur ← dur + pY 
     end ← max(end, estY + dur) 

    estB ← max(end, estB) 
 
 
Symmetrically, rule /2/ updates lctB for activities B such 
that B « A, if necessary. Recall, that lctA is the value of lctA 
before the decrease. Together, the propagation rules /1/ and 
/2/ incrementally maintain the energy precedence 
constraint after changes of time windows. 
 

lctA is decreased  /2/ 
  if ValidA = 0 then exit 
 else if estA + pA > lctA then 
  if  ValidA = 1 then fail 

  else ValidA ← 0; exit 
  else 
   for each B∈Unknown(A) do 
    if estB + pB + pA > lctA then 
     add A«B     /* detectable precedence */ 
   if ValidA = 1 then 
   lstA ← lctA – pA 
    for each B∈MustBeBefore(A) do 

    dur ← ∑{pX | B « X ∧ lctX ≤ lctA ∧ ValidX = 1} 
   start ← lctA – dur 
   for each Y∈{X | B « X  ∧ ValidX = 1 ∧ 
     lctX < lctA ∧ lctA < lctX }  
     in the non-decreasing order of lctY do 
     dur ← dur + pY 
     start ← min(start, lctY – dur) 

    lctB ← min(start, lctB) 
 
Time complexity of rules /1/ and /2/ is O(n2), where n is a 
number of activities. We need time O(n.log n) to sort the 
activities and time O(n2) to process the nested loops. Note 
finally, that if the propagation rules change est or lct of 
some activity then the propagation rules for these changes 
are also invoked and so on (the above time complexity is 
for a single run of the rule). This ensures that any change is 
propagated through the precedence graph. The open 
question is whether it is necessary to update all successors 

and predecessors of a given activity or whether it is enough 
to update just the direct predecessors and direct successors 
and propagate the change through them. This will not 
decrease the worst-case time complexity but, if possible, it 
may improve practical time efficiency. 

Propagating Changes in the Precedence Graph 
The second group of propagation rules realises the energy 
precedence constraint in an incremental way by reacting to 
changes in the precedence graph. The rules are invoked by 
making the activity valid or by adding a new precedence 
relation. 
 Assume that some activity A becomes valid. Then, this 
activity may influence other activities in the precedence 
graph if their relative position to activity A is known. In 
particular, if there is an activity B such that A « B then A 
will become a member of sets Ω〈X,B〉 such that X « B, 
ValidX = 1 and estX ≤ estA (this also includes a new set 
Ω〈A,B〉). These sets are used to compute the earliest start 
time of B and hence they should be re-explored. The other 
sets Ω〈X,B〉 used to update estB have already been explored 
or will be explored when calling the rules for some valid 
activity in Ω〈X,B〉. A symmetrical analysis can be done for 
activities B before A. The propagation rule /3/ realises the 
above deduction. 
 

ValidA is instantiated  /3/ 
  if ValidA = 1 then 
  ectA ← estA + pA 
  lstA ← lctA – pA 
  for each B∈MustBeAfter(A) do 
   dur ← ∑{pX | X « B ∧ estA ≤ estX  ∧ ValidX = 1} 

  end ← estA + dur 
  for each Y∈{X | X « B ∧ estX < estA  ∧ ValidX = 1}  
    in the non-increasing order of estY do 
    dur ← dur + pY 
    end ← max(end, estY + dur) 

   estB ← max(end, estB) 
  for each B∈MustBeBefore(A) do 
   dur ← ∑{pX | B « X ∧ lctX ≤ lctA ∧ ValidX = 1} 

  start ← lctA – dur 
  for each Y∈{X | B « X ∧ lctA < lctX  ∧ ValidX = 1}  
    in the non-decreasing order of lctY do 
    dur ← dur + pY 
    start ← min(start, lctY – dur) 

   lctB ← min(start, lctB) 
 exit 

 
Deduction similar to making an activity valid can be used 
if a new arc, say A « B, is added to the precedence graph. 
Note, than in such a case activities A and B are either valid 
or undecided (neither A nor B is invalid). If A is valid 
when A « B is added then A will become a member of sets 
Ω〈X,B〉 such that X « B, ValidX = 1 and estX ≤ estA 
(including a new set Ω〈A,B〉) and these sets must be re-
explored to find out whether they lead to change of estB or 
not. Note, that we are exploring only the influence of A to 
B rather than exploring influence to all successors of B. 



This is because any successor C of B that is not yet a 
successor of A will be explored when the arc A « C is 
added to the graph by incremental maintenance of the 
transitive closure as described in (Barták and Čepek 2005). 
Similarly, if B is valid when arc A « B is added then we 
must explore its possible influence on lctA. The above 
deductions are realised by the propagation rule /4/. 
 

A«B is added  /4/ 
 if ValidA = 1 then 
  dur ← ∑{pX | X « B ∧ estA ≤ estX  ∧ ValidX = 1} 
  end ← estA + dur 
  for each Y∈{X | X « B ∧ estX < estA  ∧ ValidX = 1}  
    in the non-increasing order of estY do 
    dur ← dur + pY 
    end ← max(end, estY + dur) 
  estB ← max(end, estB) 
  if ValidB = 1 then 
  dur ← ∑{pX | A « X ∧ lctX ≤ lctB ∧ ValidX = 1} 

 start ← lctB – dur 
 for each Y∈{X | A « X ∧ lctB < lctX  ∧ ValidX = 1}  
   in the non-decreasing order of lctY do 
  dur ← dur + pY 
  start ← min(start, lctY – dur) 

  lctA ← min(start, lctA) 
 exit 
 

Let us now analyze the worst-case time complexity of the 
above propagation rules. Time complexity of the 
propagation rule /3/ is O(n2), where n is a number of 
activities. We need time O(n.log n) to sort the activities 
and time O(n2) to process the nested loops. Again, this 
time complexity does not include invocation of rules /1/ 
and /2/ after changes of estB or lstB. Time complexity of the 
propagation rule /4/ is O(n.log n), where n is a number of 
activities. We need time O(n.log n) to sort the activities 
and time O(n) to process the loops. 

Conclusions 
The main contribution of the paper is description of 
filtering algorithms for incremental maintenance of energy 
precedence constraint from (Laborie 2003) applied to a 
disjunctive resource with optional activities. Rather than 
proposing a monolithic algorithm, we focused on 
incremental propagation of changes and on description of  
rules in the form trigger-propagator that is used in existing 
constraint solvers. We extended Laborie’s work by using 
optional activities, we proved soundness of the proposed 
propagation rules and we described their theoretical worst-
case time complexity. We assumed fix duration of 
activities but the propagation rules can be easily extended 
to variable duration by assuming a minimal duration in the 
presented rules and by adding a new rule reacting to the 
increase of the minimal duration. There are still some open 
questions concerning incrementality of the rules, namely, 
whether it is possible to propagate some information only 

to direct predecessors and successors of the activity while 
still keeping the same filtering power. 
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