
An Improved Algorithm for Maintaining Arc Consistency
in Dynamic Constraint Satisfaction Problems

 Roman Barták Pavel Surynek

 Charles University in Prague Czech Technical University
 Malostranské nám. 2/25, Praha 1, Czech Republic Technická 2, Praha 6, Czech Republic

 roman.bartak@mff.cuni.cz pavel.surynek@seznam.cz

Abstract
Real world is dynamic in its nature, so techniques
attempting to model the real world should take this
dynamicity in consideration. A well known Constraint
Satisfaction Problem (CSP) can be extended this way to a
so called Dynamic Constraint Satisfaction Problem
(DynCSP) that supports adding and removing constraints in
runtime. As Arc Consistency is one of the major techniques
in solving CSPs, its dynamic version is of a particular
interest for DynCSPs. This paper presents an improved
version of AC|DC-2 algorithm for maintaining maximal arc
consistency after constraint retraction. This improvement
leads to runtimes better than the so far fastest dynamic arc
consistency algorithm DnAC-6 while keeping low memory
consumption. Moreover, the proposed algorithm is open in
the sense of using either non-optimal AC-3 algorithm
keeping a minimal memory consumption or optimal AC-
3.1 algorithm improving runtime for constraint addition but
increasing a memory consumption.

Introduction
Constraint programming is a successful A.I. technology for
solving combinatorial problems modeled as constraint
satisfaction problems (CSP). Dynamic Constraint
Satisfaction Problem proposed by Decher and Dechter
(1988) is an extension to a static CSP that models addition
and retraction of constraints and hence it is more
appropriate for handling dynamic real-world problems.
 Several techniques have been proposed to solve
Dynamic CSPs, including searching for robust solutions
that are valid after small problem changes (Wallace and
Freuder, 1998), searching for a new solution that
minimizes the number of changes from the original
solution (El Sakkout, Richards, Wallace, 1998), reusing
the original solution to produce a new solution (Verfaillie
and Schiex, 1994), or reusing the reasoning process. A
typical representative of the last method – reusing the
reasoning process – is maintaining dynamic arc
consistency. The goal of maintaining dynamic arc
consistency is keeping the problem arc consistent after

Copyright © 2005, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

constraint addition or constraint retraction. Adding a new
constraint is a monotonic process which means that
domains of variables can only be pruned. Existing arc
consistency algorithms are usually ready for such
incremental constraint addition so they can be applied
when a new constraint is added to the problem. When a
constraint is retracted from the problem then the problem
remains arc consistent. However, some solutions of the
new problem might be lost because the values from the
original problem that were directly or indirectly
inconsistent with the retracted constraint are missing in the
domains. Consequently, such values should be returned to
the domains after constraint retraction. Then we are
speaking about maximal arc consistency.
 Existing algorithms for restoring maximal arc
consistency after constraint retraction are usually working
in three stages: recovery of values deleted due to the
retracted constraint, propagation of these recovered values
to other variables, and removal of inconsistent values that
were wrongly restored in the precedent stages. DnAC-4
(Bessière, 1991) was one of the first dynamic arc-
consistency algorithms. As the name indicates, the
algorithm is based on AC-4 (Mohr and Henderson, 1986)
and, actually, it uses all data structures proposed for AC-4.
In addition to them, a new data structure justification was
added to improve the efficiency of constraint retraction, in
particular to minimize the number of wrongly restored
values. This data structure keeps a link to the variable that
caused deletion of the value from the variable domain
during the AC domain pruning. DnAC-4 inherits the
disadvantages of AC-4 and therefore DnAC-6 (Debruyne,
1996) has been proposed to improve space complexity and
average time complexity. DnAC-6 uses the same principles
as DnAC-4 but it is integrated with AC-6 (Bessière, 1994)
rather than using AC-4. DnAC-6 is currently the fastest
dynamic arc consistency algorithm but it has the
disadvantage of fine grained consistency algorithms which
is a large space complexity. To keep low memory
consumption, AC|DC algorithm has been designed by
Berlandier and Neveu (1994). AC|DC is built around AC-3
(Mackworth, 1977) algorithm and it does not use the
supporting data structures. As a consequence, more
inconsistent values are restored in the second stage and
these values must be removed in the third stage by non-
optimal AC-3 algorithm. Mouhoub (2003) proposed an

improvement of the time complexity for AC|DC by using
optimal AC-3.1 algorithm (Zhang and Yap, 2001). The
resulting algorithm AC-3.1|DC has time and space
complexity comparable to DnAC-6. Recently, Surynek and
Barták (2004) proposed an improvement of AC|DC called
AC|DC-2 that uses AC-3 algorithm to preserve low
memory consumption but improves the propagation stage
by re-introducing justifications and new timestamps. Table
1 summarizes the worst-case time and space complexities
of the existing dynamic AC algorithms.

 DnAC-4 DnAC-6
AC-3.1|DC

AC|DC
AC|DC-2

Space O(ed2+nd) O(ed+nd) O(e+nd)
Time O(ed2) O(ed2) O(ed3)

Table 1. Complexity of existing dynamic AC algorithms.

In this paper we propose improvements to AC|DC-2 based
on smarter usage of AC filtering and better exploitation of
the timestamps. We will show experimentally that the
resulting algorithm AC|DC-2i is practically faster than the
so far fastest DnAC-6 and AC-3.1|DC algorithms.
Moreover, the algorithm still keeps low memory
consumption of AC|DC. To further improve time
efficiency of the proposed algorithm it is possible to use
optimal AC-3.1 algorithm resulting in AC3.1|DC-2i. This
algorithm is slightly faster than AC|DC-2i when retracting
a constraint and much faster when adding a constraint but
it has the disadvantage of larger memory consumption.

Formal Background
A constraint satisfaction problem (CSP) P is a triple
(X,D,C), where X is a finite set of variables, for each
xi∈X, Di∈D is a finite set of possible values for the
variable xi (the domain), and C is a finite set of constraints.
In this paper we expect all the constraints to be binary, that
is the constraint cij∈C defined over variables xi and xj is a
subset of the Cartesian product Di×Dj. Value a of variable
xi is arc consistent (AC) if and only if for each variable xj
connected to xi by constraint cij, there exists a value b∈Dj
such that (a,b)∈cij. A CSP is arc consistent if and only if
every value of every variable is arc consistent. A CSP is
maximally arc consistent if it is the largest (according to
inclusion) arc consistent problem. Arc consistency
algorithms make the problems maximally arc consistent by
removing only the values that are not arc consistent from
respective domains.
 Dynamic constraint satisfaction problem (DCSP) is a
sequence P0, P1,…, Pn, where each Pi is a CSP resulting
from addition or retraction of a constraint in Pi-1. For
simplicity reasons, we expect that P0 contains no
constraints; hence it is maximally arc consistent. The task
of dynamic arc consistency is to make problem Pi
maximally arc consistent using the information that
problems P0, P1,…, Pi-1 are maximally arc consistent.

Improved Algorithm AC|DC-2i
As we already noted, the existing dynamic arc consistency
algorithms including AC|DC are working in three stages:
recovery of values deleted due to the retracted constraint
(initialization stage), propagation of these recovered values
to other variables (propagation stage), and removal of
wrongly restored inconsistent values (filtration stage).
AC|DC loses efficiency due to restoration of many values
that are not arc consistent and hence deleted afterwards
(Debruyne, 1996). Therefore Surynek and Barták (2004)
proposed to extend AC|DC with additional data structures
that record a justification and a timestamp for every value
eliminated from the variable domain. Justification is the
first neighboring variable in which the eliminated value
lost all supports. Timestamp is a time when the value has
been eliminated. Time is modeled using a global counter
that is incremented after every manipulation of variable
domains. By using justifications and timestamps AC|DC-2
determines more accurately the set of values to be restored
and hence it improves a lot over AC|DC.
 We propose three extensions to AC|DC-2 that improve
further the runtime. First, we suggest handling constraints
in a directional way (like in standard AC-3; do not
interchange it with directional AC) rather than the less
efficient non-directional way from AC|DC-2. Second, we
propose to apply the AC procedure only to newly restored
values rather than to all values. Finally, we propose to use
the timestamp in a finer way to further decrease the
number of wrongly restored values.
 Figure 1 shows an abstract code for constraint addition.
It is basically the original AC-3 algorithm extended to
compute justifications (justif_var) and timestamps
(justif_time) and to update the global time counter
(gtime). Moreover, only the values that are restored after
the given time are checked for consistency (line 2 in
filter-arc-ac3'). The CSP is represented by variables’
domains D and by a set of arcs C describing the constraints.

function propagate-ac3'(revise, time)
1 queue := revise
2 while queue not empty do
3 select and remove an arc (u,v) from queue
4 queue := queue ∪ filter-arc-ac3'((u,v), time)

function filter-arc-ac3'((u,v), time)
1 modified := false
2 for each d∈D[u] s.t. restore_time[u,d]>time do
3 if d has no support in D[v] wrt (u,v) then
4 D[u] := D[u] - {d}
5 justif_var[u,d] := v
6 justif_time[u,d] := gtime
7 gtime := gtime + 1
8 modified := true
9 if not modified then return (Ø)
10 return ({(w,u)|(w,u)∈C, w≠u, w≠v)})

function add-constraint-ac|dc2i(c)
1 {u,v} := the variables constrained by c
2 C := C ∪ {(u,v),(v,u)}
3 propagate-ac3'({(u,v),(v,u)}, 0)

Figure 1. Constraint addition in AC|DC-2i.

 As we mentioned, constraint retraction is done in three
stages: initialization (initialize-ac|dc2i), propagation
(propagate-ac|dc2i), and filtration (propagate-ac3').
We already explained filtration using AC-3. Just notice
how the time is set in line 2 of retract-constraint-
ac|dc2i so only the restored values will be checked for
consistency during filtration.
 During the initialization stage (initialize-ac|dc2i),
the values that were removed due to the retracted
constraint (line 3) are restored (the values for restoration
are taken from the original domain D0). The restored values
are kept in a queue for the subsequent stage. Notice also,
that this is the place where the restoration time is set (line
5).
 During the propagation stage (propagate-ac|dc2i) we
are restoring other values in the direct neighborhood of the
variable whose domain has been extended. Assume that
domain of variable u was extended and v is connected to u
using a constraint. Then, we restore values dv in v that:
• were removed due to the constraint between u and v

(found using the justification, line 7),
• have a supporter among the restored values of u (line 9),
• and this supporter has been deleted before dv (line 10).

function retract-constraint-ac|dc2i(c)
1 {u,v} := the variables constrained by c
2 retract_start := gtime
3 restored_u := initialize-ac|dc2i(u,v)
4 restored_v := initialize-ac|dc2i(v,u)
5 C := C - {(u,v),(v,u)}
6 revise:= propagate-ac|dc2i({restored_u,restored_v})
7 propagate-ac3'(revise, retract_start)

function initialize-ac|dc2i(u,v)
1 restored_u := Ø
2 for each d∈(D0[u]-D[u]) do
3 if justif_var[u,d] = v then
4 D[u] := D[u] ∪ {d}
5 restore_time[u,d] := gtime
6 gtime := gtime + 1
7 justif_var[u,d] := NIL
8 restored_u := restored_u ∪ {d}
9 return ((u,restored_u))

function propagate-ac|dc2i(restore)
1 revise := Ø
2 while restore not empty do
3 select and remove (u,restored_u) from restore
4 for each (u,v)∈C do
5 restored_v := Ø
6 for each dv∈(D0[v]-D[v]) do
7 if justif_var[v,dv] = u and
8 exists du∈restored_u s.t.
9 du is a support for dv wrt (u,v) and
10 justif_time[v,dv]>justif_time[u,du] then
11 D[v] := D[v] ∪ {dv}
12 restore_time[v,dv] := gtime
13 gtime := gtime + 1
14 justif_var[v,dv] := NIL
15 restored_v := restored_v ∪ {dv}
16 if restored_v ≠ Ø then
17 restore := restore ∪ {(v,restored_v)}
18 revise := revise ∪ {(v,w)|(v,w)∈C})
19 return (revise)

Figure 2. Constraint retraction in AC|DC-2i.

The last condition above is fine tuning the condition from
AC|DC-2 – now the deletion time of individual values is
assumed rather than a minimum among the deletion times
of all restored values in the variable. Because the new
condition is stronger than the former one, fewer values are
restored (but all values that are arc consistent with respect
to the new problem are restored, see the next section). The
propagation loop is repeated as long as any domain
changes. Figure 3 presents a simplified example of three
stages of constraint retraction (restoration time not shown
– it is used within stage 3 only).
 Note finally, that AC|DC-2i uses AC-3 as it is, only the
justifications and timestamps should be updated upon
value removal. Hence, AC-3 can be substituted by other
arc consistency procedures, for example by using optimal
algorithm AC-3.1 (Zhang and Yap, 2001) to get
AC3.1|DC-2i. This change further improves time
efficiency of the algorithm but it also increases space
complexity due to additional structures required by AC-3.1
(and other optimal AC algorithms).

Figure 3. Example of constraint retraction.

STAGE 1: constraint A<C is removed

INITIAL SITUATION

A: 2 3 4

B: 2/D6 3/D9 4

C: 1 2 3/E7 4

D: 1/B1 2/C5 3/C8 4

E: 3

B=D (1)

C=D (3)

C≠E (4)

These values are returned to domains
because they were deleted when
propagating via the retracted constraint

STAGE 2: propagation of domain extensions

A: 2 3 4

B: 2 3/D9 4

C: 1 2 3/E7 4

D: 1/B1 2 3/C8 4
B=D

C=D

C≠E

E: 3

A: 2 3 4/C2

B: 2/D6 3/D9 4

C: 1/A3 2/A4 3/E7 4

D: 1/B1 2/C5 3/C8 4

E: 3

B=D (1)

C=D (3)

A<C (2) C≠E (4)

order number when the
constraint is added

justification for
value removal

VariableTime

A: 2 3 4

B: 2 3/D9 4 B=D D: 1/B1 2 3/C8 4

C≠E

E: 3

C: 1/D10 2 3/E7 4

STAGE 3: re-establishing AC

Theoretical Analysis
In this section we will prove formally the correctness of
AC|DC-2i algorithm and we will also describe time and
space complexity of AC|DC-2i and AC3.1|DC-2i.

Soundness and Completeness
The correctness of the operation of constraint addition
follows directly from the correctness of AC-3, thus extra
argumentation is not necessary.
 Assume now that constraint ci is retracted from the
problem P = (X, D, {c1,c2,…,cn}). We say that the
operation of constraint retraction is correct if we obtain the
maximally arc consistent problem for the problem P’ = (X,
D, {c1,c2,…,c(i-1),c(i+1),…,cn}).

Proposition 1. Algorithm AC|DC-2i performs a correct
retraction of a constraint with respect to maximal arc
consistency.

Proof. To prove the proposition it is sufficient to verify
that the algorithm restores all values that are necessary to
be restored, that is the values that have to be present in the
maximum arc consistent state of the new problem. If the
algorithm restores some extra values, it does not matter
because the final filtration stage will remove them. This
fact directly follows from the correctness of AC-3.
 Consider the following situation. We have a problem P,
which is the result of addition of the constraints from the
set {c1,c2,…,cn}, and we are retracting a constraint ci, that
restricts the variables u and v. As a reference we will use
an auxiliary maximally arc consistent problem Q, which
consists of the constraints {c1,c2,…,c(i-1),c(i+1),…,cn}. Our
task is to show that all the values that are present in the
current domains of the variables of problem Q and are not
present in the current domains of the variables of problem
P will be restored by AC|DC-2i.
 We will proceed by mathematical induction according to
the removal time of the values. Let constraint ci be added
to problem P at time t0. Next, let t0+t1 be the time when a
value from a variable different from u or v has been
removed for the first time (after time t0). Thus the values
removed from the problem in the time interval 〈t0, t0+t1〉
came only from the current domains of the variables u and
v. The reason for elimination of these values has been
directly the constraint ci together with the current state of
given domains. All these values are restored within the
initialization stage, because they have the opposite variable
as their justification and so they satisfy the condition of
restoration (line 3 in initialize-ac|dc2i).
 Now, let us suppose that we need to restore a value d in
the current domain of a variable x such that value d has
been removed at time t2, where t2>t0+t1. It means that value
d is present in the current domain of variable x in problem
Q while this is not true in problem P. By induction
hypothesis we can assume that all the values removed
before time t2 have already been tested for restoration. If
these values were present in the current domains of

problem Q they had been correctly restored in problem P.
Before value d was removed from the current domain of
variable x it must have lost all supports in some of the
neighboring variables first. Suppose that y is such a
variable with no support for d. It is clear that all supports
for d were eliminated before time t2 from the current
domain of y. Value d is present in problem Q, thus there
must be present also some support for d in the current
domain of y in problem Q. By induction hypothesis such a
support has been already restored and the restoration of
their neighbors has been scheduled. Of course, variable x
and its value d belong among these neighbors and
therefore it is also scheduled for restoration. When the
propagation process reaches the restoration of variable x,
value d will be put back into the current domain of x since
it satisfies all the conditions for restoration (lines 7-10 in
propagate-ac|dc2i).
 AC|DC-2i algorithm correctly restores the maximum arc
consistency in the problem after constraint retraction.

Proposition 2. Algorithm AC|DC-2i performs at most as
many steps as algorithms AC|DC and AC|DC-2.

Proof. The proposition directly follows from the
correctness of AC|DC-2i and from the fact that a value has
to fulfill more conditions in the AC|DC-2i algorithm than
in AC|DC and AC|DC-2 before it is put back into the
current domain of a variable. This theoretically shows that
a propagation chain of the restoration stage is not longer in
AC|DC-2i than in AC|DC and AC|DC-2.

Time and Space Complexity
The space complexity of AC|DC is O(nd+e) where n is a
number of variables, d is a size of domains of the
variables, and e is a number of constraints (Berlandier and
Neveu, 1994). The additional data structures
(justifications, removal times, and restoration times)
require additional space O(nd) (O(1) for every value) so
the overall worst-case space complexity of AC|DC-2i is
O(nd+e), same as AC|DC and AC|DC-2. If we use AC-3.1
instead of AC-3’ then we need to keep additional data
structures for AC-3.1 so we obtain the worst-case space
complexity O(ed+nd) for AC3.1|DC-2i.
 The worst-case time complexity of AC-3 (Mackworth,
1977) and hence AC-3’ is O(ed3) which is the complexity
of the filtration stage of AC|DC-2i. The worst-case time
complexity of the initialization and the propagation stages
together is O(ed2) because every pair of values in the
domains of different variables constrained by a constraint
is tested at most once there. Thus the overall worst-case
time complexity of AC|DC-2i is O(ed3), same as AC|DC
and AC|DC-2. If AC-3.1 is used instead of AC-3 then we
get better worst-case time complexity of the filtration stage
O(ed2) and hence the overall worst-case time complexity
of AC3.1|DC-2i is O(ed2).

Experimental Results
We have implemented the proposed algorithms AC|DC-2i
and AC3.1|DC-2i in C++ and compared them with existing
dynamic arc consistency algorithms AC|DC, AC|DC-2,
AC3.1|DC, and DnAC-6 on Random CSPs.
 A Random Constraint Satisfaction Problem (RCSP)
(MacIntyre et al, 1998) represents probably the most
frequently used benchmark set in the area of constraint
satisfaction. Each problem instance is characterized by a 4-
tuple 〈n, d, p1, p2〉, where n is a number of variables, d is a
uniform domain size, p1 is a measure of the density of the
constraint graph, and p2 is a measure of the tightness of the
constraints. We use a so called model B of a Random CSP
where p1.n.(n-1)/2 random pairs of variables are selected to
form binary constraints and p2.d2 pairs of values are picked
randomly as incompatible in each constraint.
 We did the experiments with RCSP 〈100, 50, 0.5, p2〉,
where p2 was selected within the phase transition area
(0.87–0.89). In each experiment, the best algorithm among
AC|DC, AC|DC-2, AC3.1|DC, and DnAC-6 was chosen
first and AC|DC-2i and AC3.1|DC-2i were compared to
this best algorithm then. Note that AC|DC-2i always
performed better than AC|DC-2. The experiments run on
2.4 GHz Pentium 4 with 512 MB RAM under Mandrake
Linux 10 in the following way.

Figure 4. Number of constraint checks as a function of tightness
in RCSP 〈100, 50, 0.5, p2〉.

First, the constraints were added to the problem one by one
until a given density (0.5) has been reached (part A in
graphs). If an inconsistent state has been reached during
constraint addition then the constraint responsible for
inconsistency has been removed (part B in graphs). When
a consistent state has been reached (or after removing the
constraint that caused inconsistency), we removed 10% of
randomly selected constraints (part C in graphs). For each
value of tightness we generated ten random problems.
Mean values of the runtime (Figure 5) and the number of
constraints checks (Figure 4) are presented here.
 The experiments showed that for constraint retraction
the proposed algorithm AC|DC-2i beats the so far fastest
dynamic AC algorithms both in the number of constraint
checks and in the runtime. The reason is that AC|DC-2i
restores less wrong (inconsistent) values and it applies the
AC procedure only to newly restored values. In case of
constraint addition AC|DC-2i suffers from non-optimality
of AC-3. As the experiments showed, this can be easily
improved by using AC-3.1 instead of AC-3 resulting in
AC3.1|DC-2i.
 To compare further AC|DC-2i and AC3.1|DC-2i
algorithms we made another experiment where the
memory consumption of the algorithms was measured.
Again, we used Random CSP 〈100, d, 0.5, p2〉, but we
varied the size of the variables’ domains as well as
tightness.

Figure 5. Runtime (in seconds) as a function of tightness in RCSP
〈100, 50, 0.5, p2〉.

A: Additions of constraints

0

2

4

6

8

10

12

14

16

18

20

87 87,2 87,4 87,6 87,8 88 88,2 88,4 88,6 88,8 89

AC|DC-2i
AC3.1|DC-2i
DnAC-6

A: Additions of constraints

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

87 87,2 87,4 87,6 87,8 88 88,2 88,4 88,6 88,8 89

AC|DC-2i
AC3.1|DC-2i
DnAC-6

C: Retraction from a consistent state

0

50000

100000

150000

200000

250000

300000

350000

87 87,2 87,4 87,6 87,8 88 88,2 88,4 88,6 88,8 89

DnAC-6
AC|DC-2i
AC3.1|DC-2i

B: Retraction from an inconsistent state

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

87 87,2 87,4 87,6 87,8 88 88,2 88,4 88,6 88,8 89

AC3.1|DC
AC|DC-2i
AC3.1|DC-2i

B: Retraction from an inconsistent state

0

0,5

1

1,5

2

2,5

3

3,5

4

87 87,2 87,4 87,6 87,8 88 88,2 88,4 88,6 88,8 89

AC3.1|DC
AC|DC-2i
AC3.1|DC-2i

C: Retraction from a consistent state

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

87 87,2 87,4 87,6 87,8 88 88,2 88,4 88,6 88,8 89

DnAC-6
AC|DC-2i
AC3.1|DC-2i

We were adding randomly generated constraints until we
reached the inconsistent state when some of the domains
became empty. We measured the memory consumption
just before the constraint causing inconsistency was added.
At that point the data structures stored the maximum
number of records and so the memory consumption was
the largest. Table 2 presents the memory consumption of
data structures used by the compared algorithms
(excluding the extensional representation of the
constraints). As we can see, the memory consumption of
AC|DC-2i is identical to AC|DC while AC3.1|DC-2i
requires more memory comparable to AC-3.1|DC but still
less than DnAC-6.

Domain size
(d) 20 30 40 50 60 70 80 90

100*p2 71 79 84 87 89 90 91 92
AC|DC <1 <1 <1 <1 <1 <1 <1 <1
AC|DC-2 <1 <1 <1 <1 <1 <1 <1 <1
AC-3.1|DC 2 3 5 5 7 7 9 10
DnAC-6 2 4 6 7 9 10 12 13
AC|DC-2i <1 <1 <1 <1 <1 <1 <1 <1
AC3.1|DC-2i 2 3 5 5 7 7 9 10

Table 2. Memory consumption (in MB) depending on the size of
variable domains for RCSP 〈100, d, 0.5, p2〉.

Conclusions
The paper presents an improved algorithm for maintaining
arc consistency after constraint retracting and constraint
addition. The algorithm builds on AC|DC-2 which the
proposed improvements make the so far fastest dynamic
arc consistency algorithm. Two versions of the algorithm
are presented: the first one with AC-3 procedure that keeps
low memory consumption, the second one with optimal
AC-3.1 procedure that improves further the time
complexity (especially for constraint addition) but also
increases the memory consumption. As a consequence, the
user may choose having either decent memory
consumption (AC|DC-2i) or a better runtime (AC3.1|DC-
2i). Note finally, that the proposed algorithm is not tightly
integrated with the AC procedure so it can be easily
extended to intentionally defined constraints as well as to
n-ary constraints, provided that the underlying propagators
give functionally similar to filter-arc-ac3' procedure
namely updating the justifications and timestamps.

Acknowledgements
The research is supported by the Czech Science
Foundation under the contract No. 201/04/1102. We would
like to thank anonymous reviewers for their valuable
comments and corrections.

References
Berlandier P. and Neveu B., 1994. Arc-Consistency for
Dynamic Constraint Satisfaction Problems: a RMS free
approach. In Proceedings of the ECAI-94 Workshop on
”Constraint Satisfaction Issues Raised by Practical
Applications”, Amsterdam, The Netherlands.
Bessière Ch., 1991. Arc-Consistency in Dynamic
Constraint Satisfaction Problems. In Proc. of the 9th
National Conference on Artificial Intelligence (AAAI-91),
221-226. Anaheim, CA, USA: AAAI Press.
Bessière Ch., 1994. Arc-consistency and arc-consistency
again. Artificial Intelligence 65:179-190.
Debruyne R., 1996. Arc-Consistency in Dynamic CSPs is
no more prohibitive. In Proc. of the 8th IEEE International
Conference on Tools with Artificial Intelligence (ICTAI-
96), 239-267. Toulouse, France.
Dechter R. and Dechter A., 1988. Belief Maintenance in
Dynamic Constraint Networks. In Proc. of the 7th National
Conference on Artificial Intelligence (AAAI-88), 37-42. St.
Paul, MN, USA: AAAI Press.
MacIntyre E., Prosser P., Smith B., and Walsh T., 1998.
Random Constraint Satisfaction: theory meets practice. In
Michael Maher and Jean-Francois Puget (eds.): Principles
and Practice of Constraint Programming (CP98), 325-
339. Pisa, Italy: Springer-Verlag LNCS 1520.
Mackworth A.K., 1977. Consistency in Networks of
Relations. Artificial Intelligence 8: 99–118.
Mohr R. and Henderson T.C., 1986. Arc and Path
Consistency Revised. Artificial Intelligence 28: 225–233.
Mouhoub M., 2003. Arc Consistency for Dynamic CSPs.
In Vasile Palade, Robert J. Howlett, Lakhmi C. Jain (Eds.):
Proceedings of the 7th International Conference on
Knowledge-Based Intelligent Information and Engineering
Systems – Part I (KES 2003), 393-400. Oxford, UK:
Springer Verlag LNCS 2773.
Surynek P. and Barták R., 2004. A New Algorithm for
Maintaining Arc Consistency After Constraint Retraction.
In Mark Wallace (ed.): Principles and Practice of
Constraint Programming (CP 2004), 767-771. Toronto,
Canada: Springer-Verlag LNCS 3258.
Verfaillie G. and Schiex T., 1994. Solution Reuse in
Dynamic Constraint Satisfaction Problems. In Proceedings
of the 12th National Conference on Artificial Intelligence
(AAAI-94), 307-312. Seattle, WA, USA: AAAI Press.
Wallace R. and Freuder E., 1998. Stable Solutions for
Dynamic Constraint Satisfaction Problems. In Michael
Maher and Jean-Francois Puget (eds.): Principles and
Practice of Constraint Programming (CP98), 447-461.
Pisa, Italy: Springer-Verlag LNCS 1520.
Zhang Y. and Yap R., 2001. Making AC-3 an Optimal
Algorithm. In Proceedings of International Joint
Conference in Artificial Intelligence (IJCAI-01), 316-321.

