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Abstract. Many real-life constraints describing relations between the problem 
variables have complex semantics. It means that the constraint domain is 
defined using a table of compatible tuples rather than using a formula. In the 
paper we study the implementation of filtering algorithms (propagators) for 
such constraints that we call tabular constraints. In particular, we propose 
compact representations of extensionally defined binary constraints and we 
describe filtering algorithms for them. We concentrate on the implementation 
aspects of these algorithms so the proposed propagators can be naturally 
integrated into existing constraint satisfaction packages like SICStus Prolog. 

Introduction 

Many real-life problems can be naturally modeled as a constraint satisfaction problem 
(CSP) using variables with a set of possible values (domain) and constraints 
restricting the allowed combinations of values. Quite often, the semantics of the 
constraint is well defined via mathematical and logical formulas like comparison or 
implication. However, the intentional description of some constraints is rather 
complicated and it is more convenient to describe them extensionally as a set of 
compatible tuples. A relation between the type of activity and its duration or the 
allowed transitions between the activities are typical examples of such constraints in 
the scheduling applications [1,2]. The constraint domain is specified there as a table 
of compatible tuples rather than as a formula, thus we are speaking about tabular 
constraints. Figure 1 shows an example of such a tabular constraint. 
 
 

X Y  
1 2..20, 30..50  
2 - No compatible value 
3 inf..sup No restriction on Y 
4 2..20, 30..50  

Fig. 1. Example of a tabular constraint: a range of compatible values of Y is specified for each 
value of X. 
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In this paper we study the filtering algorithms (propagators) for binary constraints 
where the constraint domain is described as a table. We propose two new filtering 
algorithms that use a compact representation of the constraint domain. Such a 
compact representation turned out to be crucial for the efficiency of algorithms 
applied to real problems with non-trivial domains containing thousands or millions of 
values. Rather than providing a full theoretical study of the algorithms we concentrate 
on the practical aspects of the implementation, which are usually omitted in research 
papers. In particular, the algorithms are proposed in such a way that they can be easily 
integrated into existing constraint solvers.  

The paper is organized as follows. First, we give a motivation for using tabular 
constraints and we survey existing approaches to model such constraints. Then we 
describe two new filtering algorithms for tabular constraints. These algorithms extend 
our previous works on tabular constraints [3,4] by including better entailment 
detection and by using a more compact representation of the constraint domain. We 
also propose the algorithms for converting tables to the compact representation. We 
conclude the paper by an empirical study of the algorithms. 

Motivation 

Our work on filtering algorithms for tabular constraints is motivated by practical 
problems where important real-life constraints are defined in the form of tables. In 
particular, this work is motivated by complex planning and scheduling problems 
where the user states constraints over the objects like activities and resources. In 
complex environments, there could appear rather complicated relations between the 
activities expressing, for example, transitions between two activities allocated to the 
same resource like changing a color of the produced item [1]. Typically, the activities 
are grouped in such a way that the transitions between arbitrary two activities within 
the group are allowed but a special set-up activity is required for the transition 
between two activities of different groups. The most natural way to express such a 
relation is using a table describing the allowed transitions (Figure 2). 

 
 
 
 
 
 
 
 
 
 

Fig. 2. A transition constraint expressed as a table of compatible transitions (shadow regions) 
between eight activities grouped into four groups A, B, C, and D. 

As we showed in [2], there are many other constraints of the above type in real-life 
planning and scheduling problems, for example a description of the time windows, 
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duration, and the cost of the activity. The users often define such constraints in the 
form of a table describing the set of compatible pairs. Therefore, we are speaking 
about tabular constraints. Because it is rather complicated to convert such a table into 
a mathematical formula defining a constraint with efficient propagation, it is more 
convenient to use special filtering algorithms handling the tabular constraints directly. 
Efficiency of such filtering algorithms can be improved by exploiting information 
about the typical structure of the constraint domain in a given application. For 
example, we have noticed that the structure of many above mentioned binary tabular 
constraints consists of several possible overlapping rectangles (see Figure 2) and the 
number of such rectangles is much smaller than the number of compatible pairs. 

Related Works 

Arc consistency (AC) or, in other words, propagation over binary constraints is 
studied for a long time and many AC algorithms have been proposed. Since 1986, we 
have the AC-4 algorithm [16] with an optimal worst-case time complexity. The 
average time complexity of this algorithm has been improved in its followers like  
AC-6 [6] and AC-7 [7]. All these algorithms are fine grained in the sense that they are 
working with individual pairs of compatible values – they use so called value based 
constraint graphs. Moreover, these algorithms need “heavy” data structures to 
minimize the number of consistency checks. These features complicate 
implementation and make the algorithms impractical due to a space complexity when 
large domains of variables are used. Therefore, an older but a simpler algorithm AC-3 
[14] is used more widely in the constraint packages like SICStus Prolog, ECLiPSe, 
ILOG Solver, CHIP, Mozart etc. Actually, a variant of this algorithm that is called 
AC-8 [12] is used by these systems. AC-8 uses a list of variables with the changed 
domain instead of the list of constraints to be revised that is used by AC-3. 

Recently, the new algorithms AC-3.1 [20] and AC-2000/2001 [8] based on the  
AC-3 schema have been proposed. AC-3.1 and AC-2001 achieve an optimal worst-
case time complexity without using heavy data structures. However, they still require 
the data structures for individual values in the variables’ domains which could 
complicate their usage for very large domains due to a space complexity. 

In this paper, we concentrate on filtering algorithms for extensionally defined 
binary constraints over large domains. The proposed filtering algorithms are intended 
for existing constraint solvers so these algorithms must fit in the AC-3 (AC-8) 
schema. To achieve a good time and space complexity of the algorithms, we are 
exploiting the structure of the constraint domain. There exist several works about AC 
algorithms exploiting the structure of the constraint domain. For example, the generic 
AC-5 algorithm [19] achieves better time efficiency for functional, monotonic, and 
anti-functional constraints. The paper [11] describes a technique for converting the 
extensionally represented constraints into a set of simple constraints. 

The existing constraint solvers usually provide a mechanism to model 
extensionally defined constraints without necessity to program a new filtering 
algorithm. For example, the element constraint is often included in the constraint 
solvers. N such element constraints can model arbitrary N-ary constraint. However, 



because every consistent tuple must be specified there, it is not possible to represent 
the constraints with infinite domains like the constraint from Figure 1. 

In SICStus Prolog [17], there is a relation constraint where the user may 
specify a binary constraint as a list of compatible pairs similar to the table from Figure 
1. In particular, for each value of the first (leading) variable, the user describes a 
range of compatible values of the second (dependent) variable. The range is a finite 
set of disjoint intervals. The domain for the leading variable must be finite and till the 
version 3.8.7 the range for the dependent variable must consist of finite intervals only. 

The latest versions of SICStus Prolog (since 3.10.0) provide a generalization of the 
relation constraint. This new constraint called case allows compact modeling of 
arbitrary N-ary relations similar to our models. We compare empirically our filtering 
algorithms both to relation and case constraints later in the paper. 
Unfortunately, the filtering algorithms behind the relation and case constraints 
are not published which prevents a deeper comparison of the techniques. 

In [4] a straightforward filtering algorithm called general relation was proposed. 
This algorithm supports infinite domains for the dependent variable and it provides a 
mechanism to detect constraint entailment when the reduced constraint domain has a 
rectangular structure [3]. Later in the paper we describe an efficient extension to this 
algorithm that uses a more compact representation of the constraint domain. 

In [5], a new technique called sweep was proposed to explore constraint domains. 
This technique was applied to tabular constraints in [3]. The sweep filtering algorithm 
represents the constraint domain using a rectilinear rectangular covering – a set of 
possibly overlapping rectangles – so the representation is more compact. However, 
this algorithm has no mechanism to detect constraint entailment. Later in the paper, 
we present an extension to this algorithm that includes a detector of constraint 
entailment and that uses a more compact representation of the constraint domain. 

Preliminaries 

Constraint programming is a framework for declarative problem solving by stating 
constraints over the problem variables and then finding a value for each variable in 
such a way that all the constraints are satisfied. The value for a particular variable can 
be chosen only from the variable domain that is from a set of possible values for the 
variable. Constraint is an arbitrary relation restricting the possible combinations of 
values for the constrained variables. The constraint domain is a set of value tuples 
satisfying the constraint. For example, {(0,2), (1,1), (2,0)} is a domain of the 
constraint X+Y=2 where variables’ domains consist of non-negative integers. If C is a 
constraint over the ordered set of variables Xs then we denote the constraint domain 
C(Xs). We say that the constraint domain has a rectangular structure if C(Xs) = ×X∈Xs 
C(Xs)↓X, where C(Xs)↓X is a projection of the constraint domain to the variable X 
(Figure 3). For example, the above constraint X+Y=2 does not have a rectangular 
structure because the projection to both variables is {0,1,2} and the Cartesian product 
{0,1,2}×{0,1,2} is larger than the constraint domain. The notion of a rectangular 
structure is derived from the domain structure of binary constraints where the 
constraint domain forms a rectangle with possible vertical and horizontal gaps. 



       

Assume that C(Xs) is a domain of the constraint C and D(X) is a domain of the 
variable X – a set of values. We call the intersection C(Xs) ∩ (×X∈Xs D(X)) a reduced 
domain of the constraint. Note, that the reduced domain consists only of the tuples 
(v1,…,vn) such that ∀i vi∈D(Xi). 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Example of a constraint domain (shadow rectangles), its projection to the variable Y 
(C(X,Y)↓Y), and a reduced constraint domain (the striped rectangle). 

Many constraint solvers are based on maintaining consistency of constraints during 
enumeration of variables. We say that the constraint is consistent (arc-consistent, 
hyper arc-consistent)1 if every value of every variable participating in the constraint is 
part of some assignment satisfying the constraint. More precisely, every value of 
every variable participating in the constraint must be part of some tuple from the 
reduced constraint domain. For example, the constraint X+Y=2, where both the 
variables X and Y have domain {0,1,2}, is consistent while the constraint from Figure 
3 is not consistent. To make the constraint consistent we can reduce the domains of 
involved variables by projecting the reduced constraint domain to the variables: 

∀Y∈Xs: D(Y) ← (C(Xs) ∩ (×X∈Xs D(X)))↓Y. 

The algorithm that makes the constraint consistent is called a propagator [10]. More 
precisely, the propagator is a function that takes variables’ domains as the input and 
that proposes a narrowing of these domains as the output. The propagator is complete 
if it makes the constraint consistent that is all locally incompatible values are 
removed. The propagator is sound if it does not remove any value that can be part of 
the solution. The propagator is idempotent if it reaches a fix point that is the next 
application of the propagator to the narrowed domains does not narrow them more. 

We say that the constraint satisfaction problem is (hyper) arc-consistent, if every 
constraint is consistent. It is not enough to make every constraint consistent by a 
single call to its complete propagator because the domain change might influence 
consistency of already consistent constraints. Thus the propagators are called 
repeatedly in a propagation loop until there is no domain change. In fact, the 
particular propagator is called only when the domain of any variable involved in the 
constraint is changed. Many constraint systems allow a finer definition when the 
propagator should be evoked via so called suspensions, for details see [9,10]. 

                                                           
1 The notion of arc-consistency is used for binary constraints only. For constraints of higher arity, the 

notions of hyper arc-consistency or generalised arc-consistency are used. For simplicity reasons we will 
use the term consistency there. 
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Nevertheless, the existing constraint solvers rarely go beyond the arc-consistency 
schema in the propagation loop. 

When the domains of all variables in the constraint contain exactly one value then 
it is not necessary to call the propagator again because it will not narrow the domains 
anymore. However, the propagator may be stopped even sooner. Assume that the 
domain of X is {1,2,3} and the domain of Y is {5,6,7}. Then the propagator for the 
constraint X<Y deduces no domain narrowing. This is because every combination of 
values from the variables’ domains satisfies the constraints - the constraint is entailed. 
We say that the constraint is entailed if the constraint is satisfied for any combination 
of values from variables’ domains. Visibly, the constraint is entailed if and only if the 
reduced constraint domain has a rectangular structure. 

The rest of the paper deals with the propagators for extensionally defined binary 
constraints over totally ordered domains. We expect the propagator to be evoked 
when the domain of any variable involved in the constraint is changed. Our goal is to 
design efficient, complete, idempotent, and sound propagators. 

Compact General Relation 

The general relation (GR) constraint or more precisely the GR propagator was first 
described in [4]. This propagator uses a set representation of the constraint domain 
where one variable is selected as the leading variable and the other variable is 
dependent. The constraint domain is represented as a set of pairs (x,dy), where x is a 
value of the leading variable and dy is a set of compatible values of the dependent 
variables (Figure 4). The values of the leading variable are pair-wise different. This is 
a natural representation of the constraints that are described using a table like in 
Figure 1. This representation requires a finite projection of the constraint domain to 
the leading variable and a finitely representable projection to the dependent variable, 
for example a finite set of disjoint intervals that we call a range. Notice that this 
representation also covers some infinite constraint domains. 
 
 
 
 
 

Fig. 4. Representation of the constraint domain by the GR propagator. 

The filtering algorithm proposed in [4] simply explores the set representing the 
constraint domain and tests whether xi is a part of the current domain of X and 
whether the intersection of dyi with the current domain of Y is non-empty. In such a 
case xi remains in the domain of X and dyi ∩ D(Y) will be a part of the narrowed 
domain of Y. 

When using the above algorithm with real-life constraints in a scheduling 
application [2], we have noticed that many dyi are identical. Thus, we can compact the 
domain representation to reduce memory consumption and to speed-up the filtering 
algorithm. 

(x1,dy1) (x2,dy2) (x3,dy3) (x4,dy4) (x5,dy5) 
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Domain Generator 

Let T = {(xi,dyi) | i=1..n} be a representation of the binary constraint domain where xi 
are pair-wise different values of the leading variable and dyi is a range of values of the 
dependent variable that are compatible with the value xi. Such representation can be 
derived directly from the table defining the constraint. Because the time complexity of 
the above sketched GR propagator depends on the size of T, it could be beneficial to 
compact the representation and to upgrade the GR propagator for such a compact 
representation. In particular, it is possible to compact all pairs (xi,dyi) with identical 
dyi component. Formally, for the original set T we get a new compacted set: 

CT = {(dxi,dyi)  | dxi = { x | (x,dyi)∈T } & dxi ≠ ∅ } 

We use a straightforward algorithm that converts T into CT with the time complexity 
O(n.log n), where n is a number of the elements in the set T. First, the algorithm 
orders lexicographically the set T according to dyiThen, the pairs (dxi,dyi) with the 
identical component dyi form continuous sub-sequences in the ordered set and thus it 
is easy to collect them in a linear time. Figure 5 shows an example of such a compact 
representation. 
 
 
 
 
 
 
 
 
 

Fig. 5. A decomposition of the constraint domain (shadow rectangles) into a set of non-
overlapping sub-domains with the rectangular structure. 

Notice that the pair (dx,dy) in CT describes an area with a rectangular structure in 
the constraint domain and all these areas are pair-wise disjoint. Actually, the 
constraint domain is decomposed into a set of areas with a rectangular structure. This 
simplifies the filtering algorithm that can handle each such area independently as we 
will show in the next section. In general, the proposed filtering algorithm requires the 
areas to have a rectangular structure but it does not require them to be disjoint. Thus, 
we can see there a possibility to design other decompositions of the constraint domain 
that are perhaps even more compact. 

On the other hand, the proposed filtering algorithm includes an entailment detector 
that requires the dx components to be disjoint (CT has this feature). Consequently, the 
areas are disjoint as well. Thus, if this particular entailment detector is used (and we 
will show later that it brings some speed-up) then CT is the optimal decomposition2. 
The open question is whether it is possible to design efficient entailment detectors that 
do not require the above feature. 

                                                           
2  CT has the smallest number of rectangular areas such that their union equals to the constraint 

domain and their projections to the leading variable are disjoint. 

 1   2   3   4   5   6   7   8   9   10  11 

  1
   

2 
  3

   
4 

  5
   

6 
  7

  

1 

1 1 

2 1 

3 

2 



Filtering Algorithm 

The filtering algorithm for the compacted GR relation mimics the behavior of the 
original filtering algorithm from [4] that we described above. There are just few 
changes to respect the new compact representation of the constraint domain. Figure 6 
describes the new compact GR propagator. 

The compact GR propagator incrementally constructs the projection of the reduced 
constraint domain to both variables by exploring the areas in the compact 
representation of the constraint domain. For each area (DX,DY), the propagator 
checks whether the area has a non-empty intersection with the reduced constraint 
domain (rows 10-13). Actually, the propagator constructs a reduced area 
(CompatibleX,CompatibleY) and the projections of this reduced area to both 
variables become parts of the narrowed domains of the variables (rows 17-18, 30-31). 

 
1 procedure GR(Constraint,X,Y) 
2   NewDomainOfX ← empty 
3   NewDomainOfY ← empty 
4   ConstraintDomain ← domain(Constraint) 
5   Entailed ← true 
6   LastProjectionOfY ← empty 
7   NewDomain ← empty 
8   while non_empty(ConstraintDomain) do 
9   (DX,DY) ← head(ConstraintDomain) 
10 CompatibleX ← intersection(domain(X),DX) 
11  if non_empty(CompatibleX) then 
12     CompatibleY ← intersection(domain(Y),DY) 
13     if non_empty(CompatibleY) then 
14      if empty(NewDomain) then 
15       NewDomain ← ConstraintDomain 
16     end if 
17     NewDomainOfX ← union(NewDomainOfX, CompatibleX) 
18      NewDomainOfY ← union(NewDomainOfY, CompatibleY) 
19      if Entailed then 
20       if empty(LastProjectionOfY) then 
21        LastProjectionOfY ← CompatibleY 
22       else 
23        Entailed ← (LastProjectionOfY == CompatibleY) 
24       end if 
25      end if 
26     end if 
27    end if 
28   ConstraintDomain ← tail(ConstraintDomain) 
29   end while 
30   X in NewDomainOfX 
31   Y in NewDomainOfY 
32   domain(Constraint) ← NewDomain 
33 end GR 

Fig. 6. The filtering algorithm of the compact GR propagator. 

The propagator might change the representation of the constraint domain to keep 
only the reduced constraint domain. This would help when the propagator is called 
next time because a smaller number of smaller areas will be explored which would 
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speed-up the propagator. However, many constraint solvers including the solvers in 
Prolog keep the domains in memory after any change to allow fast recovery of the 
domain upon backtracking [10]. The paper [4] showed that it significantly increases 
memory consumption for a simple GR propagator that updates the constraint domain. 
So instead of keeping the reduced constraint domain, a technique called domain shift 
has been proposed in [4] to keep only a part of the reduced constraint domain. The set 
modeling the constraint domain is represented as a list there and domain shift means 
skipping the areas at the beginning of the list that are not part of the reduced 
constraint domain. This reduces a bit the size of the constraint domain (the number of 
areas to be explored when the propagator is called next time) while keeping low 
memory consumption. The compact GR propagator uses the same technique (rows 
14-16, 32). 

Last but not least, we have accompanied the compact GR propagator by an 
entailment detector. The entailment detector checks whether the reduced constraint 
domain has a rectangular structure. Because the projections of the areas to the leading 
variable are disjoint (this is a feature of CT), the entailment detection is done simply 
by comparing the projections of the non-empty reduced areas to the dependent 
variable (rows 19-24). If all these projections are identical then the constraint is 
entailed so it is not necessary to evoke the propagator again because it will not deduce 
any domain pruning. Note, that the research papers usually omit the implementation 
details like entailment detection. However, entailment detection may improve the 
time efficiency as we will show later. 

Time complexity of the compact GR propagator depends on the number of areas in 
the representation of a constraint domain. Each time the propagator is evoked, every 
such area is explored (rows 8-29) and thus having a smaller number of areas in the 
domain representation is an advantage. That is the reason why the compact GR 
propagator is more time and space efficient then the original GR propagator. 

Sweep Filtering Algorithm 

The GR propagator uses a straightforward decomposition of the constraint domain to 
non-overlapping areas with a rectangular structure. Moreover, the projections of these 
areas to the leading variable are disjoint (Figure 5) which has no effect on the filtering 
algorithm but it simplifies detection of constraint entailment. In [15] a different 
decomposition of the constraint is proposed, in particular the decomposition into a set 
of rectangles covering the constraint domain, so called rectilinear rectangular 
covering [18]. The filtering algorithm for such decomposition is based on the 
technique called sweep that is widely used in computational geometry and that was 
first applied to domain filtering in [5]. The sweep algorithm moves a vertical line 
called a sweep line along the axis of the leading variable. Each time it encounters or 
leaves a rectangle – this is called an event – it triggers some event handler according 
to the event type. Thus the algorithm sweeps the plane, hence its name. 

In this paper, we propose a generalization of the filtering algorithm from [3]. It is 
based on observation that the sweep filtering algorithm can use more general objects 
than simple rectangles. The algorithm requires the object to have a rectangular 



structure and its projection to the leading variable to be an interval. We call such an 
object a generalized rectangle (Figure 7). In the next section, we will present a new 
algorithm constructing the domain representation with generalized rectangles from the 
original table modeling the constraint domain. 

 
 
 
 
 
 
 
 

 

Fig. 7. Example of a generalized rectangle. This rectangle can be represented using the term 
rect(3,7,[2,5..6]). 

Domain Generator 

Before the constraint domain can be used by a sweep pruning algorithm, it must be 
first decomposed into a set of generalized rectangles. It is easy to get a sequence of 
non-overlapping generalized rectangles from the original set T = {(xi,dyi) | i=1..n} 
describing the constraint domain. Simply, the neighboring (in the sense of values of 
the leading variable) pairs with the identical dy component are joined so we get a set: 

CTsweep = {(mini .. maxi, dyi)  | mini ≤ maxi & ∀x mini ≤ x ≤ maxi: (x,dyi)∈T}. 

Notice the difference from the compact GR model; now the projection of an object in 
CTsweep to the leading variable is an interval and thus |CT|≤|CTsweep|. Because the 
efficiency of the filtering algorithm depends on the number of generalized rectangles, 
we decided to generate a more compact decomposition from CTsweep. The 
decomposition algorithm simply joins the neighboring parts of the rectangles. The 
idea is as follows: the algorithm takes the generalized rectangle and it tries to extend it 
to the largest possible x. Then this generalized rectangle is removed from the 
constraint domain and the process is repeated until the domain is empty (Figure 8). 

 
 
 
 
 
 
 
 

 

Fig. 8. The number of generalized rectangles covering the constraint domain can be decreased 
by using a different decomposition of the constraint domain. 
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We present here a decomposition algorithm based on the sweep technique (Figure 9). 
The set CTsweep is ordered increasingly in the values mini. Then, the decomposition 
algorithm explores the generalized rectangles from the ordered set CTsweep and it tries 
to extend each rectangle to the right. To do this job, the algorithm keeps a set of the 
rectangles that can be extended, so called active rectangles (ActiveRects), as well as 
an “active” projection of these rectangles to the dependent variable (ActiveDy). The 
projections of the currently active rectangles to the dependent variable are disjoint. 
Thus, if an active rectangle is closed (see below) then we can simply remove its 
projection from the “active” projection (row 12). Each time the algorithm takes a new 
rectangle, it tests whether the active rectangles can still be extended to this new 
rectangle (row 9). If an active rectangle cannot be extended then it is removed from 
the set of active rectangles and it is put to the final decomposition (Rects) - we call it 
closing the rectangle (rows 12-13). After extending all the active rectangles, the 
remaining part of the new rectangle (if any) will be included among the active 
rectangles (rows 17-20). When all the rectangles are explored then the remaining 
active rectangles are closed (rows 23-25). 
 

1 procedure GenerateRectangles(D) 
2  Rects ← empty 
3  ActiveRects ← empty 
4  ActiveDy ← empty 
5  LastX ← inf 
6  for each (Xmin..Xmax,Dy) in D (in increasing order of Xmin) do 
7    TmpRects ← empty 
8    for each r(RXmin,RDy) in ActiveRects do 
9      if RDy ⊆ Dy && LastX+1=Xmin then 
10           TmpRects ← r(RXmin,RDy) : TmpRects 
11      else 
12           ActiveDy ← ActiveDy - RDy 
13           Rects ← rect(RXmin,LastX,RDy) : Rects 
14      end if 
15    end for 
16    ActiveRects ← TmpRects 
17    if non_empty(Dy – ActiveDy) then 
18      ActiveRects ← r(Xmin, Dy – ActiveDy) : ActiveRects 
19      ActiveDy ← Dy 
20    end if 
21    LastX ← Xmax 
22  end for 
23  for each r(Xmin,Dy) in ActiveRects do 
24    Rects ← rect(Xmin,LastX,Dy) : Rects 
25  end for 
26 end GenerateRectangles 

Fig. 9. The algorithm for domain decomposition. 

In the worst case, the number of rectangles generated by the above algorithm will 
be |CTsweep|. However, the algorithm decreases the number of rectangles in many 
cases (see Figure 8). Note also that the presented decomposition algorithm generates 
non-overlapping rectangles. Figure 10 demonstrates the run of the algorithm. 
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Rectangles LastX ActiveDy ActiveRects Rects 
 inf empty empty empty 
(2..2)-[2,5..6] 2 [2,5..6] r(2,[2,5..6]) empty 
(3..4)-[2..6] 4 [2..6] r(3,[3..4]), 

r(2,[2,5..6]) 
empty 

(5..6)-[3..4] 6 [3..4] r(3,[3..4]) rect(2,4,[2,5..6]) 
(7..7)-[2..6] 7 [2..6] r(7,[2,5..6]), 

r(3,[3..4]) 
rect(2,4,[2,5..6]) 

(8..9)-[2,5..6] 9 [2,5..6] r(7,[2,5..6]) rect(3,7,[3..4]), 
rect(2,4,[2,5..6]) 

    rect(7,9,[2,5..6]), 
rect(3,7,[3..4]), 
rect(2,4,[2,5..6]) 

Fig. 10. Example run of GenerateRectangles with the constraint domain from Figure 8. 

Filtering Algorithm 

The filtering algorithm based on the sweep technique was proposed in [15, 3] and the 
same sweep pruning algorithm can be used for generalized rectangles without any 
modification. The sweep pruning (SP) algorithm moves a vertical line called a sweep 
line along the horizontal axis from left to right. Each time it encounters or leaves an 
object – this is called an event – it triggers a relevant event handler. In case of domain 
filtering, there are four types of events used by the sweep algorithm: 

rect_start(PosX,NumR,IntY) - indicates the left border (PosX) of the rectangle 
identified by NumR with the vertical projection IntY, 

rect_end(PosX,NumR) - indicates the right border (PosX) of the rectangle 
identified by NumR, 

x_start(PosX) - indicates the start of some continuous interval within the 
current domain of the leading variable, 

x_end(PosX) - indicates the end of some continuous interval within the current 
domain of the leading variable. 

The list of events can be generated in advance from the constraint domain and from 
the current domain of the leading variable. We call such a list an event point series. 
The events in the event point series are ordered increasingly according to the x-
coordinate of the event (PosX). Moreover, we require the start events to precede the 
end events with the same x-coordinate. This is necessary for the algorithm to capture 
“one-point” overlaps between the objects. Figure 11 shows an example of the event 
point series for the constraint domain consisting of three generalized rectangles and 
the domain of the leading variable consisting of two intervals. 

The SP algorithm incrementally builds the new domains for both variables by 
exploring the generalized rectangles (Figure 12). ListOfX keeps a list of bounds of the 
intervals in the new domain of the leading variable (in the reverse order). This list is 
then converted to the domain of the dependent variable (rows 10-15). ListOfDomY is 
a list of projections of the rectangles, which have non-empty intersection with the 
reduced constraint domain, to the dependent variable. 



       

 
 
 
 
 
 
 
 
 
 

Fig. 11. A constraint domain (left) and its corresponding event point series (right), 

During the computation, the SP algorithm keeps some global data structures that 
describe the status of computation: 

InDomain: indicates whether the sweep line is within the domain of the 
leading variable that is between x_start and x_end events 
corresponding to a single continuous interval, 

ActiveRects: describes the set of rectangles that are currently crossed by the 
sweep line that is the rectangles where the rect_start event has been 
processed and the corresponding rect_end has not been reached yet. 

We have added a simple entailment detector (row 18) to the SP algorithm. If all the 
rectangle projections in ListOfDomY are identical then the constraint is entailed. 
Visibly, this entailment detector is not complete because it does not detect all 
constraint entailments. For example, assume the constraint domain from Figure 11, 
the domain of the leading variable to be {4,7}, and the domain of the dependent 
variable to be (3..5). Then the constraint is entailed but the algorithm does not detect 
it because the projections of the rectangles 1 and 2 are not identical. 

 
1 procedure SP(Constraint,X,Y) 
2   EventPointSeries ← make_event_point_series(Constraint,X) 
3   ListOfDomY, ActiveRects, ListOfX ← empty 
4   DY ← domain(Y) 
5   InDomain ← false 
6  while non_empty(EventPointSeries) do 
7     Event ← select_and_delete_first(EventPointSeries) 
8     process_event(Event,DY,ActiveRects,InDomain,ListOfX,ListOfDomY) 
9   end while 
10   NewDomainOfX ← empty 
11   while non_empty(ListOfX) do 
12     Max ← select_and_delete_last(ListOfX) 
13     Min ← select_and_delete_last(ListOfX) 
14     NewDomainOfX ← union(Min..Max,NewDomainOfX) 
15   end while 
16   X in NewDomainOfX 
17   Y in intersection(union(ListOfDomY),DY) 
18   Entailed ← all elements in ListOfDomY are identical 
19 end SP 

Fig. 12. The filtering algorithm of the SP propagator. 

Event point series: 
rect_start(2,1,[2,5..6]), 
rect_start(3,2,[3..4]), 
x_start(3), 
rect_end(4,1), 
x_end(5), 
rect_start(7,3,[2,5..6), 
rect_end(7,2), 
x_start(8), 
rect_end(9,3), 
x_end(10) 
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The power behind the SP algorithm is hidden in the procedures for event processing 
(Figure 13). Notice that only the rectangles having a non-empty projection to the 
domain of the dependent variable are processed (rows 20, 29). Let us call these 
rectangles relevant. 

If the sweep line enters a relevant rectangle (rec_start event) and it is within the 
domain of the leading variable X (row 21), then the projection of the rectangle to y-
axis is added to the new domain of Y (row 22). If it is the first rectangle that has a 
non-empty intersection with the current interval of X (row 23) then the start of the 
new interval is added to ListOfX (row 24). When entering the relevant rectangle we 
make this rectangle active by memorizing it in the ActiveRects structure (row 27). 

If we leave a rectangle (rect_end event) that is the last active rectangle and the 
sweep line is within the domain of X (row 30) then the end of a new interval is added 
to ListOfX (row 31). 

If we enter a new interval within the domain of X (x_start event) and there is any 
active rectangle (row 35) then the start of a new interval is added to ListOfX (row 36). 
Also, the new domain of Y is extended by the projections of the active rectangles to 
y-axis (rows 37-39). 

If we leave an interval within the domain of X (x_end event) and there is still some 
active rectangle then the end of a new interval is added to ListOfX (row 43). 

 
EVENT - ACTION 
rect_start(PosX,NumR,IntY) 

20 if non_empty(intersection(IntY,DY)) then 
21   if InDomain then 
22    ListOfDomY ← IntY : ListOfDomY 
23     if empty(ActiveRects) then 
24        ListOfX ← PosX : ListOfX 
25     end if 
26    end if 
27    ActiveRects ← r(NumR,IntY) : ActiveRects 
28 end if 

rect_end(PosXx,NumR) 
29 if find_and_delete(r(NumR,_),ActiveRects) then 
30   if InDomain && empty(ActiveRects) then 
31    ListOfX ← PosX : ListOfX 
32   end if 
33 end if 

x_start(PosX) 
34 InDomain ← true 
35 if non_empty(ActiveRects) then 
36   ListOfX ← PosX : ListOfX 
37   for each r(NumR,IntY) in ActiveRects do 
38     ListOfDomY ← IntY : ListOfDomY 
39   end for 
40 end if 

x_end(PosX) 
41 InDomain ← false 
42 if non_empty(ActiveRects) then 
43   ListOfX ← PosX : ListOfX 
44 end if 

Fig. 13. The algorithms for event processing for the SP propagator. 



       

Figure 14 gives an example of event processing. It describes how the data are changed 
after processing the events from the event point series. 

 
EVENT ListOfX InDom. ActiveRects NewDY 
rect_start(2,1,[2,5..6]) empty false r(1,[2.5..6]) empty 
rect_start(3,2,[3..4]) empty false r(2,[3..4]) 

r(1,[2,5..6]) 
empty 

x_start(3) 3 true r(2,[3..4]) 
r(1,[2,5..6]) 

[2,5..6] 
[3..4] 

rect_end(4,1) 3 true r(2,[3..4]) [2,5..6] 
[3..4] 

x_end(5) 5,3 false r(2,[3..4]) [2,5..6] 
[3..4] 

rect_start(7,3,[2,5..6]) 5,3 false r(3,[2,5..6]) 
r(2,[3..4] 

[2,5..6] 
[3..4] 

rect_end(7,2) 5,3 false r(3,[2,5..6]) [2,5..6] 
[3..4] 

x_start(8) 8,5,3 true r(3,[2,5..6]) [2,5..6] 
[3..4] 

rect_end(9,3) 9,8,5,3 true empty [2,5..6] 
[3..4] 

x_end(10) 9,8,5,3 false empty [2,5..6] 
[3..4] 

Fig. 14. Example run of the SP filtering algorithm for the constraint domain from Figure 11. 
The constraint is not entailed and the domains are narrowed to DX=[3..5,8..9], DY=[2..6]. 

Experiments and Comparison 

We have compared the GR and SP propagators to existing relation and case 
constraints in SICStus Prolog 3.11.0 [9, 17]. The comparison was done using real-life 
scheduling problems solved by the Visopt ShopFloor system [2] and using a new 
artificial benchmark. The tests run under Windows XP Professional on 1.7 GHz 
Mobile Pentium-M 4 with 768 MB RAM and the running time is measured via the 
statistics predicate with the walltime parameter [17]. 

The GR and SP propagators are compared to relation and case constraints. 
The propagators behind these constraints maintain full arc consistency like the GR 
and SP propagators. The constraint domain in the relation constraint is described 
using a simple table T = {(xi,dyi) | i=1..n}, where xi are pair-wise different values of 
the leading variable and dyi is a range of values of the dependent variable compatible 
with the value xi. Since the version 3.10.0 of SICStus Prolog, the relation 
constraint is implemented using a more general case constraint which, like our 
approach, allows more compact representation of the constraint domain. We use a 
table CT = {(dxi,dyi) | dxi = {x | (x,dyi)∈T } & dxi ≠ ∅ } to describe the constraint 
domain for the case constraint – the actual representation contains one more element 
in the list representing CT, for details of syntax see [17]. This is exactly the same 
table used by the GR propagator. Note finally, that the case constraint is 
implemented in C while our propagators are implemented in Prolog. 



Real-life experiments in Visopt ShopFloor 

Visopt ShopFloor [2] is a scheduling system where the user describes declaratively 
the resources, item flows, and the demands and the system generates a schedule of 
production. Because of its generic character, the system uses many tabular constraints 
to describe the real-life relations like the time windows and the resource state 
transitions [1]. Originally, the GR propagator was designed for this system to capture 
a typical structure of constraint domains that appear there. 

We have selected five different problems based on real-life factories to 
demonstrate capabilities of the proposed propagators. These problems vary in the size 
and the structure of the factories – the actual data are confidential so it is not possible 
to publish them. Table 1 describes the size of the problems as a number of different 
constraint domains (tables), a number of tabular constraints using these domains, and 
an average size of the constraint domain representation. The size of the representation 
is measured as an average number of rectangles per table for GR and SP propagators 
and as an average length of the lists describing the domains in the relation and 
case constraints. 

Table 1. The size of the test problems and constraint representations. 

constraints average representation size per table problem 
no. 

tables 
total per table GR SP relation case 

1 401 16977 42 1.13 4.40 20.76 2.13 
2 49 1921 39 3.08 15.78 39.57 4.08 
3 158 5734 36 2.32 20.27 44.82 3.32 
4 244 82804 339 1.20 1.80 3.60 2.10 
5 112 7624 68 1.04 1.59 3.65 2.04 

 
Notice, that many constraints share the same domain, for example more than three 
hundred constraints share the domain (in average) in the problem no 4. This domain 
sharing decreases memory consumption. Moreover, the domain generator for both GR 
and SP propagators runs once per table which decreases running time. Notice also that 
the domain representation is very compact for GR and SP propagators. The only 
exception is the domain representation for the SP propagator in problems 2 and 3. 
A compact representation further reduces the running time because the time 
complexity of GR and SP propagators depends on the number of rectangles in the 
representation [3,4]. As expected, the representation for the GR propagator is more 
compact than the representation for the SP propagator. 

Table 2 compares the number of calls to GR and SP propagators with and without 
the entailment detector (this information is not available for the built-in relation 
and case constraints). When the entailment detector is not used (off) then the 
number of calls is identical for both GR and SP because this number is influenced by 
the environment, where the algorithm sits, not by the algorithm itself. When the 
entailment detector is used (on) then the number of calls is much smaller. Notice also 
that for the problems 2, 3, and 4, the number of calls to SP is larger than the number 
of calls to GR. This indicates that the entailment detector for SP is not complete. 



       

Table 2. The number of calls to the propagators. The number in brackets indicates the number 
of calls relative to the number of calls when the entailment detector is used (on). 

GR SP problem 
no. on off on off 
1 18515 117328 (634%) 18515 117328 (634%) 
2 3372 9062 (269%) 3436 9062 (264%) 
3 16688 56413 (338%) 19072 56413 (296%) 
4 82830 145654 (176%) 86265 145654 (169%) 
5 8014 32301 (403%) 8014 32301 (403%) 

 
Finally, Table 3 compares the running times of the algorithms. The average time of 
five runs for each problem is indicated in the table. Note also, that we compare a total 
running time to solve the problem including propagation in all constraints as well as 
search. Thus, the actual running time of the compared algorithms is just a fraction of 
the presented time. Still, only the compared algorithms are responsible for the 
difference in the running time so the relative time difference between the algorithms 
is higher than it might seem from Table 3. We decided for this test because it shows 
better what speed-up/slow-down one may expect in a complex system. 

Table 3. The running time (in seconds) of the propagators. The numbers in brackets show time 
relative to the GR propagator with entailment detector (in percent). 

GR SP problem 
no. on off on off 

relation case 

1 82,0 81,7 (100%) 81,5 (99%) 88,8 (108%) 91,5 (112%) 89,0 (108%) 
2 3,6 3,7 (102%) 4,6 (127%) 5,0 (138%) 4,2 (117%) 4,1 (114%) 
3 48,6 53,8 (111%) 57,8 (119%) 66,6 (137%) 66,6 (137%) 62,2 (128%) 
4 86,1 87,8 (102%) 88,4 (103%) 90,4 (105%) 96,2 (112%) 94,6 (110%) 
5 26,5 26,3 (99%) 26,4 (100%) 27,7 (105%) 35,0 (132%) 37,9 (143%) 

 
The GR propagator with entailment detector achieved the best results in the tests. It 
has the smallest running time for the problems 2, 3, and 4 and its running time is very 
close to the best results in tests 1 (SP on) and 5 (GR off). 

The behavior of the SP propagator with entailment detector was less stable. In 
particular, it achieved much worse running time than GR in tests 2 and 3. However, 
recall that the representation of the constraint domain is less compact for SP than for 
GR (Table 1) and better domain generator may further improve time efficiency of SP. 
Moreover, the SP propagator uses simpler elementary operations than GR which is 
the reason why SP is better in some tests despite the fact that it has a larger domain 
representation than GR. 

The tests also show that entailment detection pays off especially for the SP 
propagator where entailment detection brings almost no overheads. The entailment 
detector for GR is more complex and it adds more overhead to computation. That is 
the reason why the GR propagator without entailment detection may get slightly 
better results in some problems. 

Notice finally, that the built-in relation and case constraints implemented in 
C achieved worse results than GR and SP (with the exception of problem 2 for SP) 
implemented in Prolog. The reason could be that GR is designed for tabular 



constraints which have almost rectangular structure. However, note that we use the 
same compact representation for the case constraint. 

The real-life tests justified the choice of the GR propagator with entailment 
detector in the Visopt ShopFloor system. However, they did not uncover the general 
features of the new propagators like the relation between the compaction factor and 
the running time. Therefore, we proposed an artificial benchmark to test the 
comparators independently of a particular application. 

Artificial benchmarks 

Artificial benchmarks help to understand general features of the algorithms without a 
direct relation to a particular application. Random CSP [13] is a widely accepted set 
of benchmarks for testing constraint satisfaction algorithms. However, the 
disadvantage of Random CSP is that there is no direct relation between the parameters 
of the random problem, like density and tightness, and the structure of the constraint 
domain. Because time and space complexity of the propagators studied in this paper 
depends strongly on the structure of the constraint domain, we decided to design a 
new random benchmark where the number of rectangles in the constraint domain can 
be controlled by a parameter. 

The basic idea of the proposed benchmark is to use a single binary constraint with 
a randomly generated domain. The size of domains for the variables is a parameter of 
the benchmark; we decided for the size 10 000 because we studied propagators for 
large domains. For each value of the leading variable, we randomly generate an 
interval of the compatible values for the dependent variable. The length of this 
interval is another parameter of the benchmark; we tested lengths from 1000 to 9000 
with the step 1000. Note, that the length of the interval is identical for each value of 
the leading variable, only the position of the interval is generated randomly. Thus, the 
larger interval implies a smaller number of possible positions which further implies a 
smaller number of rectangles in the constraint domain. Figure 15 shows the relation 
between the length of the interval and the size of the domain representation – the 
number of rectangles. For each length we randomly generated ten constraint domains 
and we present the average results over these constraint domains. 
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Fig. 15. A size of the domain representation for GR and SP propagators. 



       

As we can see from Figure 15, the number of rectangles for the GR propagator is 
continuously decreasing with the increasing length of the interval. Unfortunately, the 
domain generator for the SP propagator does not compact the domain at all so we 
cannot expect good efficiency of the SP propagator in the following tests. 

When the constraint domain is generated, the question is how to evoke the 
propagator. In the AC-3 (AC-8) schema, the propagator is evoked when the domain of 
any variable in the constraint is changed. So, we randomly prune the domains of the 
variables until one of these domains contains exactly one value. Then the constraint is 
entailed. The leading and dependent variables alternate in this process to suppress the 
role of the variable. By using this technique, we can measure the time spent only in 
the filtering algorithm. In particular, such benchmark abstracts from the complexity of 
the constraint satisfaction problem and the size of the search space is irrelevant here. 
Still, the question how to prune the variables’ domains remains unanswered. We have 
tested three different schemas of domain pruning: domain splitting, arbitrary 
deletions, and shaving. 

Domain splitting. In domain splitting, the variable’s domain is randomly split into 
two parts and one of these parts is pruned. In particular, we generate a random value 
called a cutting point between the lower and upper bound of the variable domain and 
we randomly decide whether to cut the lower or upper part of the domain with respect 
to the cutting point. Figure 16 shows the running time (in milliseconds) as a function 
of the length of the compatible interval. 
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Fig. 16. The running time (a logarithmic scale in milliseconds) as a function of the length of the 
compatible interval for domain splitting. 

For domain splitting, the GR propagator is the fastest propagator among the tested 
algorithms. It is about two times faster than the relation constraint (note, that we 
use a logarithmic scale in Figure 16). We can also see that entailment detection for 
GR pays off when the domain is more compacted. Surprisingly, the case constraint 
is not as good, even if it uses the same domain representation as the GR propagator. 
Nevertheless, the case constraint is becoming more efficient when the domain 
representation is more compact. The SP propagator does not behave well, probably 
because of the large domain representation. 



Arbitrary deletions. In many constraint satisfaction problems, the values are deleted 
from all over the domain. To capture this situation, we randomly generate a given 
number of values in the variable’s domain and, then, we remove these values together 
from the domain. The number of values for deletion is given in percent of the current 
size of the domain. We tested four scenarios with 5%, 10%, 20%, and 40% of values 
deleted together from the domain. Figure 17 shows the running time (in milliseconds) 
as a function of the length of the compatible interval for all these scenarios. 
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Fig. 17. The running time (a logarithmic scale in milliseconds) as a function of the length of the 
compatible interval for arbitrary deletions. A given percent of randomly selected values is 
deleted from the domain. 

For arbitrary deletions, the relation constraint is the best followed by the case 
constraint. Again, for more compacted representation, the case constraint is closer to 
the relation constraint. The GR propagator did not behave very well in these tests. 
The reason could be that the compact representation of the GR propagator works 
better when intervals of values are pruned rather than when individual values are 
deleted from domains. Notice also that the more values are removed together, the 
closer the GR propagator is to the relation and case constraints. Entailment 
detection has almost no effect here. 

Shaving. In some applications, like scheduling, the domains of variables are pruned 
in a specific way. In particular, upper or lower parts of the domains are pruned which 
we call shaving. This technique is close to domain splitting but we can now control 
better the number of deleted values. In particular, we shave a given percent of the 
domain, namely 5%, 10%, 20%, and 40%. The choice whether to shave upper or 
lower part of the domain is done randomly. Figure 18 shows the running time (in 
milliseconds) as a function of the length of the compatible interval. 
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Fig. 18. The running time (a logarithmic scale in milliseconds) as a function of the length of the 
compatible interval for shaving. A given percent of values is shaved from the domain. 

The power of the GR propagator is visible in the tests with shaving. Actually, the GR 
propagator outperforms the relation constraint when the constraint domain is 
more compacted and when more values are shaved. This trend is even stronger when 
we compare the GR propagator with the case constraint. Finally, notice that the 
entailment detector for GR also pays off significantly in these cases. 

Conclusions 

The paper proposed and compared two approaches to domain filtering for 
extensionally defined binary constraints, namely GR and SP propagators. Both 
approaches are based on the idea of compact representation of the constraint domain 
as a set of rectangles. They differ in the structure of these rectangles and in the way 
how this structure is explored during filtering. We presented the filtering algorithms 
as well as the algorithms for constructing a domain representation. We also described 
entailment detection mechanism and we showed that it improves real performance of 
the propagators. The experimental comparison showed that efficiency of the proposed 
propagators depends strongly on the size of domain representation. Thus, the future 
research may go in the direction of designing smaller decompositions of the constraint 
domain especially for the SP propagator. Also, both propagators explore the 
constraint domain completely after variable’s domain change which penalizes them 
when just a few values are deleted. It could be interesting to reduce the number of 
compatibility checks during filtering, for example using information about the cause 
of calling the propagator like in [8, 20]. 
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