
Implementing Propagators for Tabular Constraints

Roman Barták, Roman Mecl

Charles University in Prague, Faculty of Mathematics and Physics*
Institute for Theoretical Computer Science

Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic
{bartak,mecl}@kti.mff.cuni.cz

Abstract. Many real-life constraints describing relations between the problem
variables have complex semantics and the constraint domain is defined using a
table of compatible tuples rather than using a formula. In the paper we study the
implementation of filtering algorithms (propagators) for such tabular
constraints. We concentrate on implementation aspects of these algorithms so
the proposed propagators can be naturally integrated into existing constraint
satisfaction packages like SICStus Prolog.

Introduction

Many real-life problems can be naturally modeled as a constraint satisfaction problem
(CSP), i.e. using variables with a set of possible values (domain) and constraints
restricting the allowed combinations of values. Quite often, the semantics of the
constraint is well defined via mathematical or logical formulas, e.g. comparison,
implication etc. However, the intentional description of some constraints is rather
complicated and it is much easier to describe them extensionally as a set of
compatible tuples. The relation between the type of activity and its duration or the
description of next activity in the transition scheme in scheduling applications [1,2]
are typical examples of such constraints. The constraint domain is specified there as a
table (Figure 1) rather than as a formula, thus we are speaking about tabular
constraints.

X Y
1 2..20, 30..50
2 - No compatible value
3 inf..sup No restriction on Y
4 2..20, 30..50

Fig. 1. Example of a tabular constraint: a range of compatible values of Y is specified for each
value of X.

In this paper we study the filtering algorithms (propagators) for binary constraints
where the constraint domain is described as a table. We compare two filtering

* Research is supported by the Grant Agency of the Czech Republic under the contract no.

201/01/0942.

2 Roman Barták, Roman Mecl

algorithms that use a compact representation of the constraint domain. Such compact
representation turned out to be crucial for efficiency of the algorithms applied to real-
problems with non-trivial domains (i.e., the size of the domain is in the range of
thousands or millions of elements). Rather than providing a theoretical study of the
algorithms we concentrate on the practical aspects of the implementation, which are
usually omitted in research papers. Thus the algorithms are proposed in such a way
that they can be easily integrated into mainstream constraint solvers.

The paper is organized as follows. First, we give a motivation for using tabular
constraints and we survey existing approaches to model such constraints. Then we
describe two filtering algorithms for tabular constraints. These algorithms extends our
previous works on tabular constraints [3,4] by using a more compact representation of
the constraint domain and better entailment detection. In some sense, both algorithms
converge by sharing a sweep technique. We conclude the paper by empirical
comparison of the algorithms using large-scale real-life scheduling problems.

Motivation

Our work on filtering algorithms for tabular constraints is motivated by practical
problems where important real-life constraints are expressed in the form of tables. In
particular, this work is motivated by complex planning and scheduling problems
where the user states constraints over the objects like activities and resources. In
complex environments, there could appear pretty complicated relations between the
activities expressing, for example, transitions between the activities allocated to the
same resource like changing a color of the produced item [1]. Typically, the activities
are grouped in such a way that the transitions between arbitrary two activities within
the group are allowed but a special set-up/transition activity is required for the
transition between the activities of different groups. The most natural way to express
such relation is using a table describing the allowed transitions (see Figure 2).

Fig. 2. A transition constraint expressed as a table of compatible transitions (shadow regions).

B→C

A→A

A
→

B

C→C

D→A

D→C

C→D

A

B

C

D

A B C D

F
R

O
M

TO

Implementing Propagators for Tabular Constraints 3

As we showed in [2] there are many other constraints of the above type in real-life
planning and scheduling problems, e.g. description of time windows, duration, and
cost of activity. These constraints can hardly be described using a mathematical
formula because the user specifies the constraint domain (the set of compatible pairs)
using a table. Therefore special filtering algorithms for such constraints are highly
desirable. Efficiency of such filtering algorithms can be improved by exploiting
information about the structure of the constraint domain. For example, we have
noticed that the structure of many tabular constraints is rectangular, i.e., the constraint
domain consists of several (possible overlapping) rectangles of compatible pairs (see
Figure 2). This information can be used to design a special filtering algorithm that is
more efficient if the constraint domain is rectangular and that is still capable to do
filtering on arbitrary other constraint domain.

Related Works

The existing constraint solvers already provide a mechanism to model tabular
constraints without necessity to program a new filtering algorithm. For example, in
SICStus Prolog [10], there is a relation constraint where the user can specify a
binary constraint as a list of compatible pairs. In particular, for each value of the first
(leading) variable, the user describes a range of compatible values of the second
(dependent) variable. Thus the domain for the leading variable must be finite (till the
version 3.8.7 the domain of the dependent variable must be finite as well).

The tabular constraint can also be modeled using a pair of element constraints.
The input of the constraint domain is even less compact there. When the element
constraints are used to model a tabular constraint then every pair of compatible values
must be specified (the constraint domain is completely extensional). Thus, it is
impossible again to represent infinite domains.

In [3] a straightforward filtering algorithm called general relation was proposed.
This algorithm supports infinite domains for the dependent variable and it provides a
mechanism to detect constraint entailment when the reduced constraint domain has a
rectangular structure [2]. However, the general relation technique still uses a less
compact representation identical to the relation constraint. Later in the paper we
describe an extension of this algorithm that allows infinite domains for both leading
and dependent variables and that is more time and memory efficient.

In [5], a new technique called sweep was proposed to explore constraint domains.
This technique was applied to tabular constraints in [3]. The sweep filtering algorithm
represents the constraint domain using a rectilinear rectangular covering (a set of
possibly overlapping rectangles) so the representation is more compact. The
complexity of the filtering algorithm depends on the number of rectangles rather than
on the size of the constraint domain. However, this algorithm has no mechanism to
detect constraint entailment. Later in the paper, we present an extension to this
algorithm that includes a detector of constraint entailment and that uses a more
compact representation of the constraint domain.

4 Roman Barták, Roman Mecl

Preliminaries

Constraint programming is a framework for declarative problem solving by stating
constraints over the problem variables and then finding a value for each variable in
such a way that all the constraints are satisfied. The value for a particular variable can
be chosen only from the variable domain, i.e., from a set of possible values for the
variable. Constraint is an arbitrary relation restricting the possible combinations of
values for constrained variables. The constraint domain is a set of tuples satisfying
the constraint i.e. it is a subset of the Cartesian product of the variables’ domains. For
example, {(0,2), (1,1), (2,0)} is a domain of the constraint X+Y=2 where variables’
domains consist of non-negative integers. If C is a constraint over the set of variables
Xs then we denote a constraint domain C(Xs). We say that the constraint domain has
a rectangular structure, if C(Xs) = ×X∈Xs C(Xs)↓X, where C(Xs)↓X is a projection of
the constraint domain to the variable X (see Figure 3). For example, the above
constraint X+Y=2 does not have a rectangular structure because the projection to both
variables is {0,1,2} and the Cartesian product {0,1,2}×{0,1,2} is larger than the
constraint domain. The notion of a rectangular structure is derived from the structure
of the constraint domain for binary variables.

Assume that C(Xs) is a domain of the constraint C and D(X) is a domain of the
variable X (a set of values). We call the intersection C(Xs) ∩ (×X∈Xs D(X)) a reduced
domain of the constraint. Note, that the reduced domain consists only of the tuples
(v1,…,vn) such that ∀i vi∈D(Xi).

Fig. 3. Projection of the constraint domain (shadow rectangles) to variable Y and reducing the
constraint domain.

Many constraint solvers are based on maintaining consistency of constraints during
enumeration of variables. We say that the constraint is consistent (arc-consistent,
hyper arc-consistent)1 if every value of every variable participating in the constraint is
part of some valuation satisfying the constraint. More precisely, every value of every
variable participating in the constraint must be part of some tuple from the reduced
constraint domain. For example, the constraint X+Y=2, where both the variables X
and Y have domain {0,1,2}, is consistent while the constraint from Figure 3 is not

1 The notion of arc-consistency is used for binary constraints only. For constraints of higher arity, the

notions of hyper arc-consistency or generalised arc-consistency are used. For simplicity reasons we will
use the term consistency there.

C
(X

,Y
)↓

Y

X

Y

D(Y)

D(X)

Reduced
constraint domain

Implementing Propagators for Tabular Constraints 5

consistent. To make the constraint consistent we can reduce the domains of involved
variables by projecting the reduced constraint domain to the variables:

∀Y∈Xs: D(Y) ← (C(Xs) ∩ (×X∈Xs D(X)))↓Y.

The algorithm (procedure) that makes the constraint consistent is called a propagator
[8]. More precisely, the propagator is a function that takes variables’ domains as the
input and that proposes a narrowing of these domains as the output. The propagator is
complete, if it makes the constraint consistent, i.e., all locally incompatible values are
removed. The propagator is sound if it does not remove any value that can be part of
the solution. The propagator is idempotent if it reaches a fix point, i.e., the next
application of the propagator to the narrowed domains does not narrow them more.

We say that the constraint satisfaction problem is (hyper) arc-consistent, if every
constraint is consistent. It is not enough to make every constraint consistent by a
single call to its (complete) propagator because the domain change might influence
consistency of already consistent constraints. Thus the propagators are called
repeatedly in a propagation loop until there is no domain change. In fact, the
particular propagator is called only when domain of any variable involved in the
constraint is changed (AC-8 algorithm). Many constraint systems allow a finer
definition when the propagator is evoked via so called suspensions, for details see
[7,8]. Nevertheless, the existing constraint solvers rarely go beyond the arc-
consistency schema in the propagation loop.

When the domains of involved variables become singletons then it is not necessary
to call the propagator again because it cannot narrow the domains anymore.
Moreover, the propagator may be stopped sooner. Assume that the domain of X is
{1,2,3} and the domain of Y is {5,6,7}. Then the propagator for the constraint X<Y
deduces no domain narrowing. This is because every combination of values from the
variables' domains satisfies the constraints - the constraint is entailed. We say that the
constraint is entailed if the constraint is satisfied for any combination of the values
from variables’ domains. Visibly, the constraint is entailed if and only if the reduced
constraint domain has a rectangular structure and the constraint is consistent.

The rest of the paper deals with propagators for general binary (tabular) constraints
only. We expect the propagator to be evoked when the domain of any involved
variable changes. Our goal is to design efficient, complete, and sound propagators.

Compact General Relation

The general relation (GR) constraint or more precisely the GR propagator was first
described in [4]. This propagator uses a thread representation of the constraint domain
where one variable is selected as the leading variable and the other variable is
dependent. The constraint domain is represented as a list of pairs (x,dy), where x is a
value of the leading variable and dy is a range of compatible values of the dependent
variables (Figure 4). This is a natural representation of the constraints that are
described using a table like in Figure 1. This representation requires a finite projection
of the constraint domain to the leading variable and a finitely representable projection
to the dependent variable (e.g. a finite number of intervals).

6 Roman Barták, Roman Mecl

Fig. 4. Representation of the constraint domain by the GR propagator.

The filtering algorithm [4] simply explores the list and it tests whether xi is part of the
current domain of X and whether the intersection of dyi with the current domain of Y
is non-empty. In such a case xi remains in the domain of X and dyi ∩ D(Y) will be
part of the narrowed domain of Y.

When using this algorithm with real-life constraints in a scheduling application [2],
we have noticed that many dyi are identical. Thus we can compact the domain
representation which reduces memory consumption and it also speeds ups the filtering
algorithm.

Domain Generator

Decomposition of the constraint domain to rectangles is used by sweep pruning
algorithm proposed in [5] and it was applied to tabular constraint in [3]. We decided
to go one step further and we decompose the domain into subsets with a rectangular
structure rather than to individual rectangles. Note that such decomposition is more
compact than a rectilinear rectangular covering because several rectangles can be
represented in a single structure (see Figure 5). Moreover the decomposition
algorithm is rather simply and efficient. We take the original description of the table
using the list of pairs (xi,dyi) like in Figure 4 and we “compact” all the pairs with
identical dy component. Formally, let T = {(xi,dyi) | i=1..n} be the original table then
we get a new table:

CT = {(dxi,dyi) | dxi = {x | (x,dyi)∈T} & j≠k ⇒ dyj≠dyk}

We use a straightforward conversion algorithm with the time complexity O(n.log n)
where n is a number of the elements in the original table. This algorithm decomposes
the constraint domain into a set of non-overlapping sub-domains with rectangular
structure (like in Figure 5). Note that it is possible to design other conversion
algorithms that produce different decompositions.

Fig. 5. A decomposition of the binary constraint domain into a set of non-overlapping sub-
domains with a rectangular structure.

x1-dy1 x2-dy2 x3-dy4 x4-dy4 x5-dy5

nil

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1 1

2 1

3

2

Implementing Propagators for Tabular Constraints 7

Filtering Algorithm

The filtering algorithm for the compacted GR relation mimics the behavior of the
original filtering algorithm from [4]. There are just few changes to respect the new
compact representation of the constraint domain. Figure 6 describes the final compact
GR propagator. This algorithm incrementally constructs the projection of the reduced
constraint domain to both variables. For each area DX-DY of the constraint domain,
the algorithm checks whether it has a non-empty intersection with the reduced
constraint domain (10-13); projections of this intersection become a part of the
narrowed domains of the variables (17-18).

1 procedure GR(Constraint,X,Y)
2 NewDomainOfX ← empty
3 NewDomainOfY ← empty
4 ConstraintDomain ← domain(Constraint)
5 Entailed ← true
6 LastProjectionOfY ← empty
7 NewDomain ← empty
8 while non_empty(ConstraintDomain) do
9 (DX-DY) ← head(ConstraintDomain)
10 CompatibleX ← intersection(domain(X),DX)
11 if non_empty(CompatibleX) then
12 CompatibleY ← intersection(domain(Y),DY)
13 if non_empty(CompatibleY) then
14 if empty(NewDomain) then
15 NewDomain ← ConstraintDomain
16 end if
17 NewDomainOfX ← union(NewDomainOfX,CompatibleX)
18 NewDomainOfY ← union(NewDomainOfY, CompatibleY)
19 if Entailed then
20 if empty(LastProjectionOfY) then
21 LastProjectionOfY ← CompatibleY
22 else
23 Entailed ← LastProjectionOfY == CompatibleY)
24 end if
25 end if
26 end if
27 end if
28 ConstraintDomain ← tail(ConstraintDomain)
29 end while
30 X in NewDomainOfX
31 Y in NewDomainOfY
32 domain(Constraint) ← NewDomain
33 end GR

Fig. 6. The filtering algorithm of the compact GR propagator.

Time complexity of the compact GR propagator depends on the number of areas in
the representation of a constraint domain. Each time the propagator is evoked, every
such area is explored (8-29) and thus having a smaller number of areas in the domain
representation is advantage. That is the reason why the compact GR propagator is
more time and space efficient then the original GR propagator.

Domain
filtering

Entailment
detector

Domain
shift

8 Roman Barták, Roman Mecl

The proposed algorithm can keep only the areas that have a non-empty intersection
with the reduced constraint domain. As we showed in [4] this significantly increases
memory consumption so we decided just to shift the pointer to the start of the domain
representation (14-16). This technique has minimal memory demands and it slightly
decreases the number of areas to be explored when the propagator is evoked next
time.

Usually, the research papers on filtering algorithms omit the implementation
details like the detection of constraint entailment. We have found early detection of
constraint entailment very important for the actual efficiency of the algorithm (see
Experimental Results) and therefore we include the entailment detector in the code of
the propagator (19-24).

Sweep Filtering Algorithm

The GR propagator uses a straightforward decomposition of the constraint domain to
non-overlapping areas with a rectangular structure. Moreover, the projections of these
areas to the leading variable are disjunctive (see Figure 5) which has no effect on the
filtering algorithm but it simplifies detection of constraint entailment. In [9,11] a
different decomposition of the constraint is proposed, in particular a decomposition
into a set of rectangles covering the constraint domain (so called rectilinear
rectangular covering). The filtering algorithm for such decomposition is based on a
technique called sweep that is widely used in computational geometry and that was
first applied to domain filtering in [5]. The sweep algorithm moves a vertical line
(called a sweep line) along the horizontal axis (the leading variable) from left to right.
Each time it encounters or leaves a rectangle (this is called an event) it triggers some
event handler according to the event type. Thus the algorithms sweeps the plane,
hence its name.

In this paper, we propose a generalization of the filtering algorithm from [3]. It is
based on observation that the sweep filtering algorithm can use more general objects
than simple rectangles. The algorithm requires the object to have a rectangular
structure and its projection to the leading variable to be an interval. We call such
object a generalized rectangle (Figure 7).

Fig. 7. Example of a generalized rectangle; it can be described using the term rect(3,6,[2,5..6]).

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1

Implementing Propagators for Tabular Constraints 9

Domain Generator

Each constraint domain must be first decomposed into a set of generalized rectangles
before it can be used by the sweep pruning algorithm. It is easy to get a sequence of
non-overlapping generalized rectangles from the original table T = {(xi,dyi) | i=1..n}
describing the constraint domain. Simply, the neighboring pairs with the identical dy
component are joined so we get a table:

CTsweep = {(min_xi,- max_xi, dyi) | ∀x min_xi ≤ x ≤ min_xi: (x,dyi)∈T}.

Notice the difference from the compact GR model: now the projection of objects in
CTsweep to the leading variable must be an interval and thus |CT|≤|CTsweep|. Because
the efficiency of the filtering algorithm depends on the number of generalized
rectangles, we decided to generate a more compact decomposition from CTsweep. The
decomposition algorithm simply joins the neighboring parts of the rectangles. The
idea is as follows: the algorithm takes the generalized rectangle and it tries to extend it
to the largest possible x. Then this generalized rectangle is removed from the
constraint domain and the process is repeated until the domain is empty (Figure 8).

Fig. 8. Number of generalized rectangles can be decreased by using a different decomposition.

We present here a decomposition algorithm based on the sweep technique (Figure 9).
This algorithm explores the (generalized) rectangles from CTsweep from left to right
and it tries to extend each rectangle to the right. To do this job, the algorithm keeps a
set of active rectangles (ActiveRects), i.e., the rectangles that can still be extended, as
well as an “active” projection of these rectangles to the dependent variable
(ActiveDy). Note that there is an empty intersection of the projections of the active
rectangles to the dependent variable. Thus if the active rectangle is closed then we can
simply remove its projection from the “active” projection (line 12). Each time the
algorithm takes a new rectangle, it tests whether the active rectangles can still be
extended to this new rectangle (line 9). If the rectangle cannot be extended then it is
removed from the set of active rectangles and it is put to the final decomposition - we
call it closing the rectangle (12-13). After extending the active rectangles, the
remaining part of the new rectangle (if any) will be included among the active
rectangles (17-20). When all the rectangles are explored then the remaining active
rectangles are closed (23-25).

In the worst case, the number of rectangles generated by this algorithm will be
|CTsweep| but in many cases, the algorithm decreases the number of rectangles (see
Figure 8). Note also that our decomposition generates non-overlapping rectangles.

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1 5

2 5

3

4

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1 3

2

3

10 Roman Barták, Roman Mecl

1 procedure GenerateRectangles(D)
2 Rects ← empty
3 ActiveRects ← empty
4 ActiveDy ← empty
5 LastX ← inf
6 for each (Xmin..Xmax)-Dy in D (in increasing order of Xmin) do
7 TmpRects ← empty
8 for each r(RXmin,RDy) in ActiveRects do
9 if RDy ⊆ Dy && LastX+1=Xmin then
10 TmpRects ← r(RXmin,RDy) : TmpRects
11 else
12 ActiveDy ← ActiveDy - RDy
13 Rects ← rect(RXmin,LastX,RDy) : Rects
14 end if
15 end for
16 ActiveRects ← TmpRects
17 if not empty_domain(Dy – ActiveDy) then
18 ActiveRects ← r(Xmin, Dy – ActiveDy) : ActiveRects
19 ActiveDy ← Dy
20 end if
21 LastX ← Xmax
22 end for
23 for each r(Xmin,Dy) in ActiveRects do
24 Rects ← rect(Xmin,LastX,Dy) : Rects
25 end for
26 end GenerateRectangles

Fig. 9. The algorithm for domain decomposition

Rectangles LastX ActiveDy ActiveRects Rects
 inf empty empty empty
(2..2)-[2,5..6] 2 [2,5..6] r(2,[2,5..6]) empty
(3..4)-[2..6] 4 [2..6] r(3,[3..4]),

r(2,[2,5..6])
empty

(5..6)-[3..4] 6 [3..4] r(3,[3..4]) rect(2,4,[2,5..6])
(7..7)-[2..6] 7 [2..6] r(7,[2,5..6]),

r(3,[3..4])
rect(2,4,[2,5..6])

(8..9)-[2,5..6] 9 [2,5..6] r(7,[2,5..6]) rect(3,7,[3..4]),
rect(2,4,[2,5..6])

 rect(7,9,[2,5..6]),
rect(3,7,[3..4]),
rect(2,4,[2,5..6])

Fig. 10. Run of GenerateRectangles with the constraint domain from Figure 8.

Filtering Algorithm

The filtering algorithm based on the sweep technique was proposed in [3,9] - using
the generalized rectangles does not require any change of this algorithm. The sweep
algorithm moves a vertical line (called a sweep line) along the horizontal axis from
left to right and each time it encounters or leaves an object (this is called an event), it

Rectangle
extension

New

rectangle

Implementing Propagators for Tabular Constraints 11

triggers some event handler according to the event type. Thus the algorithms sweeps
the plane, hence its name. In case of domain filtering, there are four types of events
used by the sweep algorithm:

rect_start(PosX,NumR,IntY) - indicates the left border (PosX) of the rectangle
identified by NumR with the vertical projection IntY,

rect_end(PosX,NumR) - indicates the right border (PosX) of the rectangle
identified by NumR,

x_start(PosX) - indicates the start of some coherent interval within the current
domain of the leading variable,

x_end(PosX) - indicates the end of some coherent interval within the current
domain of the leading variable.

The list of events can be generated in advance from the constraint domain and the
current domain of the leading variable. We call such a list an event point series. The
events in the event point series are ordered increasingly according to the x-axis
position of the event (PosX). Moreover, we require the start events to precede the end
events with the same x-axis position. This is necessary for the algorithm to capture
"one-point" overlaps between the objects. Figure 11 shows an example of the event
point series for the constraint domain consisting of three generalized rectangles and
the domain of the leading variable consisting of two intervals (3..5 and 8..10).

Fig. 11. Construction of the event point series for the constraint domain.

During the computation, the SP (sweep pruning) algorithm keeps some global data
structures that describe the status of computation:

InDomain - indicates whether the sweep line is within the domain of the
leading variable, i.e., in between x_start and x_end events
corresponding to a single coherent interval,

ActiveRects - describes the set of rectangles that are crossed by the sweep line,
i.e., the rectangles where the rect_start event has been
processed and the corresponding rect_end has not been
reached yet.

Event point series:
rect_start(2,1,[2,5..6]),
rect_start(3,2,[3..4]),
x_start(3),
rect_end(4,1),
x_end(5),
rect_start(7,3,[2,5..6),
rect_end(7,2),
x_start(8),
rect_end(9,3),
x_end(10)

 1 2 3 4 5 6 7 8 9 10 11

 1

2
 3

4

 5

6
 7

1

1 3

2

3

12 Roman Barták, Roman Mecl

1 procedure SP(Constraint,X,Y)
2 EventPointSeries ← make_event_point_series(Constraint,X)
3 ListOfDomY, ActiveRects, ListOfX ← empty
4 DY ← domain(Y)
5 InDomain ← false
6 while non_empty(EventPointSeries) do
7 Event ← select_and_delete_first(EventPointSeries)
8 process_event(Event,DY,ActiveRects,InDomain,ListOfX,ListOfDomY)
9 end while
10 NewDomainOfX ← empty
11 while non_empty(ListOfX) do
12 Max ← select_and_delete_last(ListOfX)
13 Min ← select_and_delete_last(ListOfX)
14 NewDomainOfX ← union(Min..Max,NewDomainOfX)
15 end while
16 X in NewDomainOfX
17 Y in intersection(union(ListOfDomY),DY)
18 Entailed ← all elements in ListOfDomY are identical
19 end SP

Fig. 12. The SP filtering algorithm.

EVENT - ACTION
rect_start(PosX,NumR,IntY)

20 if non_empty(intersection(IntY,DY)) then
21 if InDomain then
22 ListOfDomY ← IntY : ListOfDomY
23 if empty(ActiveRects) then
24 ListOfX ← PosX : ListOfX
25 end if
26 end if
27 ActiveRects ← r(NumR,IntY) : ActiveRects
28 end if

rect_end(PosXx,NumR)
29 if find_and_delete(r(NumR,_),ActiveRects) then
30 if InDomain && empty(ActiveRects) then
31 ListOfX ← PosX : ListOfX
32 end if
33 end if

x_start(PosX)
34 InDomain ← true
35 if non_empty(ActiveRects) then
36 ListOfX ← PosX : ListOfX
37 for each r(NumR,IntY) in ActiveRects do
38 ListOfDomY ← IntY : ListOfDomY
39 end for
40 end if

x_end(PosX)
41 InDomain ← false
42 if non_empty(ActiveRects) then
43 ListOfX ← PosX : ListOfX
44 end if

Fig. 13. Event processing for the SP filtering algorithm.

Implementing Propagators for Tabular Constraints 13

The SP algorithm is more or less self-explanatory (Figures 12, 13). Notice that only
the rectangles having a non-empty projection to the domain of the dependent variable
are processed (lines 20, 29); let us call these rectangles relevant. If the sweep line
enters the relevant rectangle (rec_start event) and it is within the domain of the
leading variable X (line 21), then the projection of the rectangle to y-axis is added to
the new domain of Y (line 22). If it is the first rectangle that has non-empty
intersection with the current interval of X (line 23) then the start of the new interval is
added to the new domain of X (line 24). When entering the relevant rectangle we
make this rectangle active by memorizing it in the ActiveRects structure (line 27). If
we leave the last rectangle (rect_end event) that is active (line 30) then the end of the
new interval is added to the new domain of X (line 31). If we enter a new interval
within the domain of X (x_start event) and there is any active rectangle (line 35) then
the new start of the new domain of X is created (line 36). Also, the new domain of Y
is extended by projections of active rectangles to y-axis (37-39). If we leave some
interval within the domain of X (x_end event) and there is still some active rectangle
then a new end of the interval is added to the new domain of X (line 43).

The algorithm incrementally builds new domains for the leading variable (ListOfX)
and the dependent variable (ListOfDomY). ListOfX keeps a list of "border" points of
intervals in the new domain of the leading variable (in the reverse order) that is then
converted to the domain (10-15). ListOfDomY is a list of projections of the rectangles
to the dependent variable. If all elements in this list are identical then the constraint is
entailed (line 18). This detector is a simple improvement of the algorithm from [3] but
it has a significant impact on the real-time efficiency of the propagator. Nevertheless,
the detector is still not complete, i.e., it does not detect all constraint entailments.

EVENT ListOfX InDom. ActiveRects NewDY
rect_start(2,1,[2,5..6]) empty false r(1,[2.5..6]) empty
rect_start(3,2,[3..4]) empty false r(2,[3..4])

r(1,[2,5..6])
empty

x_start(3) 3 true r(2,[3..4])
r(1,[2,5..6])

[2,5..6]
[3..4]

rect_end(4,1) 3 true r(2,[3..4]) [2,5..6]
[3..4]

x_end(5) 5,3 false r(2,[3..4]) [2,5..6]
[3..4]

rect_start(7,3,[2,5..6]) 5,3 false r(3,[2,5..6])
r(2,[3..4]

[2,5..6]
[3..4]

rect_end(7,2) 5,3 false r(3,[2,5..6]) [2,5..6]
[3..4]

x_start(8) 8,5,3 true r(3,[2,5..6]) [2,5..6]
[3..4]

rect_end(9,3) 9,8,5,3 true empty [2,5..6]
[3..4]

x_end(10) 9,8,5,3 false empty [2,5..6]
[3..4]

Fig. 14. Run of the SP filtering algorithm for the constraint domain from Fig 11. The constraint
is not entailed and the domains are narrowed to DX=[3..5,8..9], DY=[2..6].

14 Roman Barták, Roman Mecl

Experimental Results

Time complexity of both filtering algorithms depends on the number of “rectangles”
in the constraint domain; the complexity study can be found in [3,4]. We concentrate
here on the real-life efficiency of the algorithms studied using several large-scale
scheduling problems containing many tabular constraints. The algorithms are
implemented in SICStus Prolog 3.8.7 [7,10] and the tests are run under Windows XP
Professional on 1.7 GHz Mobile Pentium-M 4 with 768 MB RAM.

Table 1 summarizes the results on six tests problems. For each problem, we
describe the number of tables inputted by the user and the total number of tabular
constraints generated when solving the problem (some constraints share the same
table). For each propagator we describe the total size of the tables, i.e., the total
number of “rectangles” in all tables. This parameter indicates how good domain
compaction the algorithm uses (the theoretical efficiency depends on this parameter).
We also specify how many times the propagator is called. Naturally, this parameter
cannot be included in the theoretical study of the individual propagators because it
depends on the constraint “neighborhood”. However, as the tests show early detection
of constraint entailment influences the total running time. We compare both GR and
SP propagators with and without detection of the constraint entailment.

Table 1. Comparison of GR and SP propagators using real-life scheduling problems (times are
measured in seconds).

constraints GR SP

detect on detect off detect on detect off
tables # rect.

calls time calls time
rect.

calls time calls time

112 7568 117 7958 15 31051 15 356 7958 15 31051 16

135 12095 205 18253 95 242660 98 2112 30436 95 242660 107

244 15172 293 15198 27 51070 28 878 15983 27 51070 27.5

158 5742 367 16394 35 53405 36 6404 18782 42 53405 45

49 1993 151 3517 3 9263 3 1546 3553 4 9263 4,5

401 16985 455 18500 66 221586 72 3532 18500 67 221586 80

Before we start to analyze the results, it is necessary to highlight that the running
times include complete solving of the problem so the actual running time of the
propagator is just a fraction of this time. Therefore even a small improvement of the
total running time actually means a significant improvement of the comparator.

The empirical study shows that even if the GR propagator is based on a rather
straightforward idea it still outperforms the more advanced SP propagator. Time
complexity of both comparators depends on the number of “rectangles” in the domain
representation. As we can see, the decomposition for SP is never smaller then the
decomposition for GR. That is because GR uses more general rectangles than SP so
the results are not really surprising. Note also that both filtering algorithms are
designed more or less independently on the actual decomposition so it is possible to
improve the real-time efficiency by using more advanced decompositions leading to a
smaller number of rectangles in the constraint domain.

Implementing Propagators for Tabular Constraints 15

The empirical study also confirms our claim that early detection of constraint
entailment influences (in the positive way) actual running time. We can see that the
number of calls to the propagator is significantly smaller when the entailment detector
is on; also the running time is smaller. We can also see that the entailment detector for
SP propagator is not complete so the propagator is called more times than for GR
(where the entailment detector is complete).

Conclusions

The paper proposes and compares two approaches to domain filtering for binary
tabular constraints. It also shows that some “implementation” details like detection of
constraint entailment influences significantly real performance. We concentrate on
real-life constraints rather than on artificial constraints over small domains.

The future research can go in the direction of designing better decompositions of
the constraint domain and reducing the number of compatibility checks during
filtering, e.g. using information about the cause of calling the propagator like in [6].

References

1. Barták, R.: Modelling Resource Transitions in Constraint-Based Scheduling. In W.I.
Grosky, F. Plášil (eds.): Proceedings of SOFSEM 2002: Theory and Practice of
Informatics, LNCS 2540, Springer Verlag (2002), pp. 186-194.

2. Barták, R.: Visopt ShopFloor: On the edge of planning and scheduling. In P. van
Hentenryck (ed.) Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming (CP 2002), LNCS 2470, Springer Verlag (2002), pp.
587-602.

3. Barták, R.: Filtering Algorithms for Tabular Constraints. In Proceedings of Colloquium
on Implementation of Constraint and Logic Programming Systems (CICLOPS), Paphos
(2001), pp. 168-182.

4. Barták, R.: A General Relation Constraint: An Implementation. In Proceedings of
CP2000 Post-Workshop on Techniques for Implementing Constraint Programming
Systems (TRICS), Singapore (2000), pp. 30-40.

5. Beldiceanu N.: Sweep as a generic pruning technique. In Proceedings of CP2000
Workshop on Techniques for Implementing Constraint Programming Systems (TRICS),
Singapore (2000), pp. 1-15.

6. Bessière Ch. and Régin J.-Ch.: Refining the Basic Constraint Propagation Algorithm. In
Proceedings of JFPLC‘2001 (2001).

7. Carlsson M., Ottosson G., Carlsson B.: An Open-Ended Finite Domain Constraint Solver.
In Proceedings Programming Languages: Implementations, Logics, and Programs (1997)

8. Carlsson, M., and Schulte, Ch.: Finite-Domain Constraint Programming Systems.
Tutorial at CP 2002.

9. Michalský, R.: Algorithms for Constraint Satisfaction, Master Thesis, Charles University,
Prague (2001).

10. SICStus Prolog 3.8.7 User's Manual.
11. Shearer J.B, Wu, S.Y., and Sahni S.: Covering Rectilinear Polygons by Rectangles. In

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 9
(1990).

