
Visopt ShopFloor: Going Beyond
Traditional Scheduling

Roman Barták

Charles University, Faculty of Mathematics and Physics
Institute for Theoretical Computer Science

Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic
bartak@kti.mff.cuni.cz

Abstract. Visopt ShopFloor is a generic scheduling system for solving complex
scheduling problems. It differentiates from traditional schedulers by offering
some planning capabilities. In particular, the activities to achieve the goal are
planned dynamically during scheduling. In the paper, we give a motivation for
the integration of planning and scheduling and we describe how such
integration is realised in the scheduling engine of the Visopt ShopFloor system.

1 Introduction

Planning and scheduling are closely related areas but usually the problems from these
areas are solved separately using a different technology. The planning task is to
generate activities to achieve some goal while the scheduling task is to allocate the
known activities to available resources and time. When both tasks are included in the
real-life problem then usually the planning component generates the activities in
advance and the separate scheduling component allocates the activities to the
resources and time [18]. As we argued in [2], such separation is not appropriate if the
problem environment is more complex and if the planning decisions are strongly
influenced by the scheduling decisions (like the introduction of set-up activities with
by-products). Our proposal how to solve the problems on the edge of planning and
scheduling is based on the integration of planning and scheduling in a single solver
[3].

In [6] we described our realisation of the integrated planning and scheduling
system called Visopt ShopFloor. In this paper, we present the unique capabilities of
this system using a particular example of the problem going beyond traditional
scheduling.

The paper is organised as follows. First, we highlight the main features of the
problem area and we describe one particular benchmark problem that can be solved
by our system and that the conventional schedulers cannot handle. Then we present
the technology and the basic ideas behind the solver. The paper is concluded with the
results of the benchmark problem and we also show some results of real-life models.

2 Roman Barták

2 The problem

Traditional scheduling deals with the problem of allocating known activities to
available resources and time. Usually, the resources are rather simple; they define a
limited capacity for processing the activities. Either we have a unary resource, where
only one activity can be processed at a time - this is sometimes called disjunctive
scheduling. Or we have a cumulative resource where more activities can be processed
in parallel provided that the resource capacity is not exceeded - this is called
cumulative scheduling. Distinction of unary and cumulative resources is important
because a resource constraint with stronger filtering can be defined for unary
resources [1]. Despite the widespread use of unary and cumulative resources in
traditional scheduling applications, neither one cares about alignment or sequencing
of activities in the resource (we explain these notions later in Section 2.1).

In addition to the resource constraints restricting the allocation of activities, the
traditional schedulers allow the definition of precedence constraints between the
activities. Usually, the activities are grouped into tasks, where a prescribed sequence
of activities must be followed. Therefore we are speaking about the task-centric
models [9,2]. Job-shop scheduling [7] is a typical example of the task-centric view of
the scheduling problem. Constraint-based scheduling [20] is more general by allowing
precedence relations between arbitrary activities but it still requires knowing the
activities in advance.

In the following sub-sections we show that the real-life problems are more
complex than the above pure schema of the scheduling problems. In particular we
give examples of the resources with more complex behaviour going beyond the
unary/cumulative classification. We also explain why a fixed task schema is not
appropriate to model some production processes. The section is concluded by a
description of an example problem that contains some of these features.

2.1 Complex resources

Unary (machine) and cumulative (store) resources are typical representatives of
resources but in some production environments like process industries the behaviour
of resources is more complex. In particular, alignment and sequencing of activities is
important. In Visopt ShopFloor we are modelling batch production with a complex
transition scheme.

Batch production means that the activities can be processed in parallel but if two
activities overlap in time, they must start and finish at the same times. Such
overlapping activities form a batch. In addition to the capacity restriction we also
have a compatibility restriction, i.e., the activities are tagged by a type and only the
activities of the same type can be processed in parallel.

In addition to batch production we can model a complex transition scheme. The
resources are described using states and transitions between the states. At any time, a
resource is in exactly one state and the state can be changed only according to the
transition scheme. Moreover, the number of batches processed at each state can be
limited. We now give some examples how the transition scheme is used to model
behaviour of a real resource.

Visopt ShopFloor: Going Beyond Traditional Scheduling 3

Let us consider a resource with two modes of production, parallel and serial. There
is no restriction about the number of batches processed in the serial mode but exactly
three batches are processed in the parallel mode. The restricted number of batches in
the parallel mode is due to the following technological reason. Some by-product is
outputted during the parallel production and this by-product is temporarily stored
close to the machine. The temporal storage is full after three production batches and
thus a recycling batch must be processed before the production can continue.

To make the transition scheme even more complex, we can consider that from time
to time there must be a cleaning batch inserted. Moreover, cleaning cannot be done
while some by-product is stored in the resource. We discuss the rules about insertion
of the cleaning batch later in the paragraph about batch counters.

The above transition scheme can be easily described via a state transition graph
where each state is tagged by a minimum and a maximum number of batches
processed in this state (Figure 1).

Fig. 1. Behaviour of many resources can be described using states with a minimum and a
maximum number of batches per state (in brackets) and using a transition scheme between the
states (left). This transition scheme must be followed during batch sequencing (right).

The transition scheme with the minimum and the maximum number of batches per
state provides a flexible framework for modelling real-life resources. For example, it
is easy to describe a learning curve of the worker. Let us assume that the worker
needs first four batches to learn how to use the machine, i.e., duration of these batches
is longer than duration of all following batches. We allow tagging the states by
attributes, like duration and time windows, and these attributes are then applied to all
batches of the state. Thus, the above worker can be modelled via a state transition
scheme with two states: beginner and experienced (Figure 2). The batches processed
in the beginner state are longer than the batches processed in the experienced state.

Fig. 2. State transitions can describe evolution of the resource, e.g., after a sequence of batches
of given state, the resource irreversibly changes its state.

The above described transition scheme allows counting the batches of the same state.
However, in many situations the users need to count batches of different states, e.g. to
model insertion of the cleaning batch after a specified number of production batches.
Thus, in Visopt ShopFloor we introduce the concept of a general batch counter that
counts the batches across several states (Figure 3). This counter restricts further the
sequencing of batches.

beginner (4..4) experienced (1..sup)

P P P R S S

S S P P P

S S C P P P

parallel (3..3)

recycle (1..1)

clean (1..1)

serial (1..sup)

R

4 Roman Barták

Fig. 3. Batch counters count batches across more states to model situations like forced cleaning
after eight production (parallel or serial) batches.

It is hard or even impossible to model the above-described resources in the
conventional scheduling. The main difficulty here is the transition scheme with the
batch counters that forbid some transitions while force other transitions. It means that
sequencing of batches is not arbitrary and the appearance of the batch depends on the
allocation of other batches [2,17]. Thus the batches cannot be introduced in advance
and it is more convenient to plan the batches dynamically during scheduling, i.e., to
integrate planning and scheduling as we proposed in [3].

2.2 Resource dependencies

In the conventional scheduling systems, the direct relations between the activities are
described via precedence constraints. These precedence constraints can be seen as an
abstraction of the item flow between the activities - the item must be produced before
it can be consumed. However, a simple precedence relation is not enough to model
many real-life dependencies. The item must be produced before it is consumed but
sometimes the delay between the end of production and the start of consumption
should not be too long. For example, the item is cooling after its production and some
minimal temperature is required when the item is consumed. This can be modelled
easily in constraint-based scheduling where the simple precedence relation is
substituted by tighter constraints:

min_delay ≤ consumer_start - supplier_end ≤ max_delay.

The problem is when we do not know which activities are connected using the above
precedence constraints, e.g., when there are several process routes for a single item.
For example, assume that either the item is produced in a parallel mode when two
machines co-operate and a worker is necessary (Figure 4 left), or the item is produced
in a serial mode when the item flows from the first machine to the second machine
and no worker is necessary (Figure 4 right). The structure of the production route is
different in the above cases, namely different batches are used with different relations
between them. Conventional scheduling requires one production route (task) to be
chosen before scheduling (i.e. during planning). We propose to postpone this decision
to the scheduling stage when more information about the batches is available [3].

ser. par. par. par. ser. ser. ser. ser. clean

parallel (3..3) clean (1..1) serial (1..sup)
count count reset after 8

1 2 3 4 5 6 7 8 0

Visopt ShopFloor: Going Beyond Traditional Scheduling 5

Fig. 4. In the real-life factories, the item can be typically produced using more processing
routes, e.g. via a parallel production when two machines run in parallel and a worker is required
(left) or via a serial production when the item is pre-processed in the first machine and then
finished in the second machine (right).

Another difficulty of the conventional scheduling is modelling many-to-many
relations between the batches, i.e., the batch has more suppliers and/or more
consumers, and modelling recycling. In recycling, the set-up batch produces a by-
product that can be used to satisfy some demands. Because the set-ups are not known
until the production batches are allocated, it is not possible to plan recycling in the
foregoing planning stage.

To address the above issues, we propose to describe supplier-consumer
dependencies between the resources rather than to specify precedence relations
between particular activities. Each supplier-consumer dependency is specified by the
supplying and the consuming resource (and their states) and by the delay between the
end of the supplying batch and the start of the consuming batch. When the
dependency is established between two batches, the dependency describes also the
quantity moved between the batches. Therefore a single supplying batch can be
connected to more consuming batches and vice versa.

The supplier-consumer dependencies model naturally the item flow in the factory
so they provide a declarative description of the processes in the factory. We can see
them as a specimen for the precedence constraints that are posted when the batches of
given type are introduced dynamically during scheduling (see Section 4). Figure 5
shows an example how the user describes the processes, i.e. the supplier-consumer
dependencies using the graphical user interface of Visopt ShopFloor.

Fig. 5. Visopt ShopFloor graphical user interface describing an item flow.

worker

machine

machine

6 Roman Barták

2.3 The task at a glance

The Visopt ShopFloor system concentrates primarily on the problems going beyond
traditional scheduling. Let us now summarise the task solved by the Visopt ShopFloor
by giving a particular benchmark example.

Let us consider a small factory with two machines, r1 (Figure 3) and r2 (Figure 1),
producing a single final item. These machines run either in a parallel mode or in a
serial model (Figure 4). In the parallel mode, the batches of both machines run in
parallel and a worker is required. One final item is outputted from the batch and
duration of this batch depends on the experience of the worker (see below). In the
serial mode, the machine r1 pre-processes the item (3 time units) that is finished in the
machine r2 (3 time units). There is no delay for moving the item from r1 to r2.

During the parallel production, a by-product is produced. This by-product can be
recycled only on the machine r2 and we need three by-products to get a single final
item. Recycling takes 2 time units and it must be done immediately after the three
batches of the parallel processing (Figure 1).

Both machines require cleaning after eight production batches or sooner (Figure 3)
and the cleaning must be done at the same time on both machines. At the beginning,
both machines are clean.

The worker, who is necessary for parallel processing, is a beginner. After four
production batches, the worker becomes experienced (Figure 2). The parallel
production takes 3 time units for the beginner and 2 time units for the experienced
worker. Moreover, the worker is available only in the following time windows (0..10),
(30..40), (60..70).

The task is to plan/schedule production starting from time 0 in such a way that 5
final items are ready in time 20 and additional 25 items are ready in time 100.

As we can see from the above example the goal of the system is to find out the
batches that are necessary to satisfy the demands (planning) and to allocate these
batches to available resources (scheduling). A plan/schedule for a given time period is
returned to the user.

In this paper we discuss only feasibility issues, but the Visopt ShopFloor does
optimisation based on cost as well. The conventional schedulers use some objective
function like makespan, tardiness, or earliness to define quality of the schedule.
However, in real-life environment the schedule quality is usually subjective,
evaluated by the plant persons. To model these subjective criteria we use the cost
parameters attached to batches, transitions, dependencies etc. The total cost is then
used to guide scheduling, for details see [6].

3 The technology

Traditional scheduling technology is either based on special scheduling algorithms [7]
or some general schema like constraint-based scheduling [20] is applied. If the
activities are known in advance then it is quite natural to model the scheduling
problem as a constraint satisfaction problem (CSP). However if the planning
component is present then the static approach is hardly applicable due to variability of

Visopt ShopFloor: Going Beyond Traditional Scheduling 7

possible plans [16]. Some approaches try to fit the planning problem into the static
concept of CSP via dummy activities [8,17] but it works only when the planning
branching does not lead to many different structures of the plan. Other researchers
propose to use some generalised concept of CSP that provide more dynamic features
like Dynamic CSP [14] or Structural CSP [15].

In the Visopt ShopFloor system, we solve the scheduling problems where the
appearance of the activity depends on allocation of other activities. In terms of CSP it
means that the existence of some variables and constraints depends on assigning a
value to another variable. Moreover, the variable/constraint disappears from the
system only when the original assignment is withdrawn, i.e., during backtracking.
Having this in mind we decided to use the existing technology of Constraint Logic
Programming (CLP) in the way this framework was originally defined [10], i.e., the
constraints are used to reduce the search space of the logic program.

Opposite to the standard CSP technique (i.e., define the variables and the
constraints first and then do labelling) we propose to interleave the labelling stage
with the introduction of new variables and constraints. Basically, it means that we
model the planning decisions (branching) using the disjunctive constraints
(constructive disjunction). When some element of the disjunction is selected then the
system automatically introduces other variables and constraints corresponding to the
selected planning branch. This gives us the freedom to define different sets of
variables and constraints in different branches of the search tree, i.e., to explore
different plans. Thus planning decisions are resolved during scheduling.

4 The solver

The Visopt ShopFloor system consists of two independent parts: the ShopFloor
graphical modelling environment and the scheduling engine (see Figure 6).

In the ShopFloor, the user specifies completely the problem to be solved. In
particular he or she describes the available resources, i.e., their states and transitions,
the item flow, i.e., the supplier-consumer dependencies (see Figure 5), and the
customer orders (demands). Data can be entered and modified manually or they can
be extracted automatically from the databases of ERP systems. The ShopFloor
module generates the problem description in the form of a text file called a factory
model that is passed to the solver.

The factory model contains a complete description of the problem (resources,
dependencies, and orders) in a human readable form. It means that the factory model
can be explored, prepared, and modified in an arbitrary text editor. This file is the
only input to the scheduling engine.

The scheduling engine (the solver) first generates a constraint model from data
(from the factory model) and then it searches for the solution. The solver has a
modular architecture so it is possible to add a new module describing a new type of
resource. Also, the search strategy is a separate module so it can be exchanged by a
new strategy. The scheduling engine returns the plan/schedule into the ShopFloor that
displays it in the form of a Gantt chart.

8 Roman Barták

Fig. 6. The Visopt ShopFloor system architecture consists of two independent modules: the
graphical modelling environment (left) and the scheduling engine (right).

4.1 The constraint model

The traditional static constraint models are defined by the set of variables, their
domains, and by the set of constraints restricting possible combinations of values. As
we discussed in Section 3, we need a more dynamic approach to CSP, namely, the
variables and the constraints are introduced as search progresses. There exist some
static approaches to overcome difficulties with the unknown set of
variables/constraints based on dummy variables and deactivated constraints [8,17].
Unfortunately, such approaches lead to huge models so they cannot be used to model
the problem completely statically. Nevertheless, we use the dummy variables partially
to do look-ahead for planning decisions (via constructive disjunction, see Section 3)
and to realise the idea of active decision postponement [11].

The constraint model in the Visopt solver is a piece of code responsible for
introduction of variables and constraints. The basic idea is as follows: at the
beginning we introduce only the objects that are known, i.e., the customer orders. As
these customer orders should be satisfied, we also start dependencies to the resources
that can produce the ordered items. When the actual supplier is found (this is usually
decided during labelling), we need to find suppliers for this supplier etc. To
summarise it: if there is a planning decision, i.e. the decision about what objects
should be part of the plan/schedule, we introduce all of them (via dependencies).
Together with these objects, the relevant constraints are posted so we can exploit the
power of constraint propagation. Let us now describe some details about what
variables and what constraints are used.

The slot representation
Opposite to most scheduling systems that use the task-centric model of the problem,
we decided to apply the resource-centric model because it simplifies modelling of the
complex transition schemes [2]. It means that the batches are grouped per resource
rather than per task. Of course, we do not know the batches in the resource at the
beginning so we use a chain of empty slots to represent the schedule for each
resource. Opposite to the slots used in the timetabling applications, the slots in our

Constraint model
• generating variables
• introducing constraints

Search strategy
• assigning values
• (branching)

resource

Search strategy
• assigning values
• (branching)

Search strategy
• assigning values
• (branching)

resource

GUI Solver

Factory model

Visopt ShopFloor: Going Beyond Traditional Scheduling 9

system may slide in time and they may have variable duration. The only restriction is
that the ordering of slots must be preserved (due to the transition constraints).

Each slot has some attributes like the start time, the end time, and the duration
represented as finite domain variables. Also, there is a special variable describing the
type of the batch (the state) that can be filled in the slot. When this state variable
becomes a singleton we know the batch in the slot - we say that the slot is filled by the
batch. This may introduce other variables that are specific for the particular batch, e.g.
quantities of consumed and produced items. Naturally, all the slot variables are
connected via constraints describing the time windows etc. and these constraints can
be posted even if the batch in the slot is not known yet. Moreover, there can be also
constraints between the neighbouring slots to describe the transition scheme.

To model the minimum and the maximum batches per state we introduce a special
variable called a serial number that "counts" the batches of the same state. This
variable participates in the transition constraints so it may force the state change when
the maximum number of batches is reached or it may forbid the state change when the
minimum number of batches is not reached. Figure 7 illustrates this mechanism, for
technical details see [5]. The same mechanism is used to model the batch counters.

Fig. 7. The transition scheme (top left) is modelled using the serial numbers and the special
transition constraints defined over the transition table (top right).

As we mentioned above the slots are also introduced dynamically which saves some
memory. In fact, a new slot is attached to the end of the slot list when there is a
demand to the resource but there is no free slot to satisfy this demand. Note however,
that it does not mean that the new slot will be filled by the coming batch that caused
its introduction. Perhaps some waiting (not yet allocated) batch or a future batch
overhauls it or the slot will stay empty if we find later that the batch is not necessary.
Still, the ordering of slots is fixed so it is not possible to introduce a new slot in-
between two existing slots. Thus, deciding to which slot the batch is allocated
corresponds to the decision about the absolute ordering of batches in the resource.
This view is similar to the idea of permutation based scheduling presented in [21].
The main difference of our approach is that we can solve problems where the
appearance of the batch depends on allocation of other batches. In particular, the
structure of the batches in the resource depends on the demands from other resources
as well as on the transition scheme for the resource.

Notice that although we do not know the batches in the resource, thanks to the slot
representation we can post many constraints in advance and thus to use the power of
constraint propagation. The main reason for using the slot representation is modelling
complex transition schemes.

parallel (3..3)

serial (1..sup)

State MinBatches MaxBatches NextStates

1 3 3 2
2 1 sup 1

state = 1
serial = 1

1
state = 1
serial = 2

2
state = 1
serial = 3

3
state = 2
serial = 1

4
state = 2
serial = 2

5
state = 1
serial = 1

6

10 Roman Barták

Dependencies
The slots of different resources are connected via dependencies modelling the
supplier-consumer relations. Because the dependency is closely related to the item we
cannot introduce the dependency until we know the item and its quantity. As
described in the previous section, the variable specifying the item quantity is
generated as soon as we know the batch - the state - in the slot. At the same time we
can start the dependencies from the given slot.

Assume that we have an input item defined for the batch in the slot. Dependencies
should connect this batch with all the supplying batches. It is possible to post the
dependency to every slot that can be filled by the supplying batch. However, this
eager method has huge memory consumption when applied to large-scale problems
with hundreds or thousands of slots. Thus, we use a more lazy method that posts a
minimal number of dependencies covering the required quantity. Typically, these
dependencies go to the first "free" slot of every possible supplying resource. If we
find later that the slot cannot be filled by the supplying batch then we move the
dependency to the next slot and so on (see Figure 8). This is realised by setting the
quantity in the dependency to zero (so the constraint connecting the slot times
"evaporates") and by introducing a new dependency going to the next slot. If no
supplying batch is found in the resource then the dependency to the resource is finally
made empty and the supplying batch must be found in another resource. Other
dependencies can be introduced as soon as we find that the dependencies generated so
far are not enough to cover the requested quantity (e.g. because some of them have
been made empty).

Fig. 8. The dependency generator introduces the dependencies to the first possible slot (from
left) of each candidate supplier. If the slot is not dependent (x) then the dependency is moved
to the next free slot etc.

For each slot, the system maintains the links to all non-empty dependencies going to
this slot. These links are used during scheduling for decision about which batch will
be filled in the slot (see Section 4.2). Of course, we also know all the dependencies
going to a particular resource so we can post special ordering constraints between the
dependencies [12]. Because, every dependency defines a demand for one batch, these
constraints decide about the ordering of the batches in the resource. Note finally that
these global constraints must be open to accept incoming batches [4].

4.2 The search strategy

The Visopt constraint model is responsible for introduction of all variables and all
constraints. The scheduling strategy then decides about the batches in the slots and
about the connections between the slots. Recall that the slots are introduced from left

xx Possible supplying batches

Consumer

Visopt ShopFloor: Going Beyond Traditional Scheduling 11

to right and the dependencies are started first from the orders. Thus, the labelling
procedure must be aware of this ordering.

In the Visopt scheduling engine, we are closing the slots (decide about the batch
types in the slots) in slices going from left (past) to right (future). We call processing
the slice a scheduling step. The decision whether the slot belongs to the slice or not is
done using the time variables in the slot. In the slice, the slots are closed in the order-
to-purchase ordering.

When the slot is selected, the second problem is which batch should be filled in the
slot. This decision is naturally based on the dependencies going to the slot. The
labelling strategy first selects the "best" dependencies and then it connects them to the
slot. This is done via setting the quantity variable in the dependency to be greater than
zero (the maximum value is tried first). The relation "better" between the
dependencies is defined using the time of the dependency (the earliest time is
preferred), using the cost information (the smallest cost is preferred), and using other
heuristic criteria. Recall that when some dependencies are fixed to the slot, the
incompatible dependencies are moved automatically to the next possible slot (see
Figure 9). Thus, the decision about the ordering of dependencies is equivalent to the
decision about the ordering of batches in the slots. After selecting the dependencies in
the slot, the labelling strategy assigns a value to the state variable. In the end of each
scheduling step, the time variables in the closed slots are labelled - the earlier times
are preferred.

Fig. 9. The basic decision of the scheduling strategy is which dependencies will go to a
particular slot, i.e., which batch will be filled in the slot (left). Then the incompatible
dependencies are moved automatically to the next slot (right).

As described in the above paragraphs, the scheduling strategy is based on depth-first
search (backtracking). Because the variable ordering is selected carefully, the
scheduling strategy knows nothing about the dynamic character of the constraint
model. Every time the labelling procedure attempts to assign a value to the variable,
the variable is present in the system. Still, notice that the structure of the variables is
different in different branches of the search tree (because different dependencies are
introduced). This dynamic character complicates the usage of more advanced search
techniques like the limited discrepancy search.

So far we have enhanced the base backtracking mechanism by user defined
backjumping. We have developed this new search algorithm using the following idea.
If we cannot satisfy the demand in a given scheduling step then we leave this demand
open (no batches for the demand are closed) and we try to satisfy it in the next step.
This is realised by jumping to a pre-selected variable after failure, unassigning this
variable and continuing with labelling of the other variables. This unassigned variable
will be tried in the next scheduling step again. This algorithm is similar to graph-

KK--11 KK--11 KK

12 Roman Barták

directed backjumping, the main difference is that the back jump is realised only for
some pre-selected variables.

5 The results

The Visopt ShopFloor scheduling engine is completely implemented in SICStus
Prolog (currently we use the version 3.8.7). It has been tested in several pilot projects
in one of the biggest chemical enterprises in Europe, in one of the biggest and famous
candy producers in The Netherlands, and in one of the biggest dairies in Israel among
others. We are not aware of any other scheduling system that can model and solve the
problems described in this paper, so we cannot compare our solver to existing
schedulers. In this section we first show the plans produced by our solver for the
problem from Section 2.3 and then we summarise the results of some real-life models.

The problem from Section 2.3 requires both planning, i.e., deciding which batches
are necessary to satisfy the demands, and scheduling, i.e., allocating the batches to
available resources. Recall, that there are three different ways of producing the final
item, namely parallel production, serial production, and recycling. Moreover, there is
a complex transition scheme describing the resource including insertion of a cleaning
batch after a specified number of the production batches. Last but not least, there is a
worker that influences the timing of the parallel production.

Figure 10 shows a Gantt chart of the plan produced by our solver (3 seconds on
1.7 GHz Mobile Pentium 4). We can see that this plan satisfies all the production
rules, in particular using the recycling and the cleaning batches. Also the duration of
the parallel batches decreases when the worker became experienced (roughly at time
35).

Fig. 10. The Gantt chart of the plan for the problem from Section 2.3

We have relaxed the restriction about parallel cleaning for both machines to see if the
production can be more efficient. Figure 11 shows that the resulting plan is shorter
because the cleaning batches can be scheduled asynchronously (planning took 3
seconds on 1.7 GHz Mobile Pentium 4).

cleaning

parallel with recycling

Visopt ShopFloor: Going Beyond Traditional Scheduling 13

Fig. 11. The Gantt chart of the plan for the problem from Section 2.3 where the cleaning is
asynchronous.

To show the size and the complexity of the real-life problems we have prepared a
summary of some pilot problems solved by the Visopt ShopFloor system. These test
problems are based on the real-life production lines so the actual models and the plans
are confidential. Thus we can present only some global parameters of the models. In
particular, Table 1 shows the model size and the runtime results. For each model we
include the number of resources, the total number of states in the resources, the
number of orders together with the ordered quantity, the number of items, and
duration of the scheduled period. The ordered quantity corresponds roughly to the size
of domains of the quantity variables - we track every quantity unit in the production.
The schedule duration corresponds to the size of the domains for the time variables -
it shows the resolution of scheduling (e.g. 10.080 time units means a one week
production with a minute resolution). The solution is characterised by the runtime and
by the solution size measured in the number of batches and in the number of
dependencies.

Table 1. Model and solution size for some test problems. Runtime is measured in seconds on a
Mobile Pentium 4 1.7 GHz.

model solution
res. states orders

/ quantity
items duration

time units
runtime

sec.
batches dependencies

1 19 334 1 / 144000 47 10080 105 1000 1441
2 28 115 1 / 50 34 8640 79 256 310
3 22 677 9 / 7600 56 3168 40 651 898
4 57 704 256 /196748 45 840 77 990 1428
5 34 574 45 / 88485 294 11520 2339 5807 10175

For comparison, the state of the art schedulers handle about 20.000 batches [personal
communication to Wim Nuijten from ILOG] but all these batches are known in
advance. In planning, the size of plans is measured in tens of actions [13]. As Table 2
shows we can handle problems with hundreds to thousands batches. However, when
the number of batches increases, the large memory consumption becomes a limitation.
Thus in the model 5 there is a trade off between the memory consumption and the
runtime. This observation confirms our claim that such problems cannot be handled in
a fully static way using the dummy activities because then the memory consumption
becomes critical.

To summarise the results, we can handle problems much larger than the traditional
planning problems and close to the size of the problems in conventional static

cleaning

14 Roman Barták

scheduling. Recall that the input to the Visopt engine consists of the model of the
factory and the list of demands. All the batches are introduced (planned) during the
problem solving and allocated to the resources (scheduling). Thus, we are basically
solving a (limited) planning problem under time and resource constraints. Moreover,
our system can handle more complex resource constraints (a transition scheme) and
resource dependencies (recycling, many-to-many relations etc.) than the conventional
schedulers can.

6 Conclusion

In this paper we described the heart of the Visopt ShopFloor system - the scheduling
engine. The integrated planning component is the main difference of our system from
the conventional schedulers. We are not aware of any other system doing such deep
integration so it is hard to compare Visopt to existing systems. As we showed in
Section 2, the planning component provides flexibility that cannot be reached by
conventional scheduling software. The unique features of Visopt, which the other
scheduling systems cannot cover, include modelling of complex transition schemes
for resources, modelling of an arbitrary dependency structure of the factory,
modelling of set-ups, cleaning, and maintenance including by-products, and
modelling of process and item alternatives. Moreover, Visopt ShopFloor attempts to
be a general scheduler where the customer describes the problem in a declarative way
and the system generates schedules automatically. Other scheduling software is either
provided as a toolkit (e.g. ILOG Scheduler), so the particular scheduler must be
programmed using this toolkit, or the software solves a particular scheduling problem
but it cannot be extended to other problem areas. Opposite to these systems, Visopt
ShopFloor [22] provides intuitive graphical modelling environment independent of
the solver, generality covering many scheduling problems, and extendibility via
adding new types of resources.

Acknowledgements

The research is supported by the Grant Agency of the Czech Republic under the
contract 201/01/0942 and by Visopt B.V. I would like to thank the reviewers of the
paper for useful comments and to Petr Štepánek and Ondrej Cepek for proofreading.

References

1. Baptiste, P. and Le Pape, C.: Edge-finding constraint propagation algorithms for
disjunctive and cumulative scheduling, in Proceedings of the Fifteenth Workshop of the
U.K. Planning Special Interest Group (1996).

2. Barták, R.: Conceptual Models for Combined Planning and Scheduling. Electronic Notes
in Discrete Mathematics, Volume 4, Elsevier (1999).

Visopt ShopFloor: Going Beyond Traditional Scheduling 15

3. Barták, R.: Dynamic Constraint Models for Planning and Scheduling Problems.
Proceedings of the ERCIM/CompulogNet Workshop on Constraint Programming, LNAI
Series, Springer Verlag (2000).

4. Barták, R.: Dynamic Global Constraints in Backtracking Based Environments, in Annals
of Operations Research 118, Kluwer (2003) 101-119. Forthcoming.

5. Barták, R.: Modelling Resource Transitions in Constraint-based Scheduling. In. W.I.
Grosky, F. Plášil (eds.): Proceedings of SOFSEM 2002: Theory and Practice of
Informatics, LNCS 2540, Springer Verlag (2002) 186-194.

6. Barták, R.: Visopt ShopFloor: On the Edge of Planing and Scheduling. In P. van
Hentenryck (ed.): Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming (CP 2002), LNCS 2470, Springer Verlag, Ithaca,
(2002) 587-602.

7. Brucker P. Scheduling Algorithms. Springer Verlag (2001).
8. Beck, J.Ch. and Fox, M.S.: Scheduling Alternative Activities. Proceedings of AAAI-99,

USA (1999) 680-687.
9. Brusoni, V., Console, L., Lamma. E., Mello, P., Milano, M., Terenziani, P.: Resource-

based vs. Task-based Approaches for Scheduling Problems. Proceedings of the 9th
ISMIS96, LNCS Series, Springer Verlag (1996).

10. Gallaire, H.: Logic Programming: Further Developments, in: IEEE Symposium on Logic
Programming, Boston, IEEE (1985).

11. Joslin, D. and Pollack M.E.: Passive and Active Decision Postponement in Plan
Generation. Proceedings of the Third European Conference on Planning (1995).

12. Laborie P.: Algorithms for Propagating Resource Constraints in AI Planning and
Scheduling: Existing Approaches and New Results. In Proceedings of 6th European
Conference on Planning, Toledo, Spain (2001), 205-216.

13. Long D. and Fox. M. International Planning Competition 2002. Toulouse, France (2002).
http://www.dur.ac.uk/d.p.long/competition.html

14. Mittal, S. and Falkenhainer, B.: Dynamic Constraint Satisfaction Problems. Proceedings
of AAAI-90, USA (1990), 25-32.

15. Nareyek, A.: Structural Constraint Satisfaction. Proceedings of AAAI-99 Workshop on
Configuration (1999).

16. Nareyek, A.: AI Planning in a Constraint Programming Framework. Proceedings of the
Third International Workshop on Communication-Based Systems (2000).

17. Pegman, M.: Short Term Liquid Metal Scheduling. Proceedings of PAPPACT98
Conference, London (1998), 91-99.

18. Srivastava B. and Kambhampati S.: Scaling up Planning by teasing out Resource
Scheduling. Technical Report ASU CSE TR 99-005, Arizona State University (1999).

19. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming, The MIT Press,
Cambridge, Mass. (1989).

20. Wallace, M.: Applying Constraints for Scheduling, in: Constraint Programming, Mayoh
B. and Penjaak J. (eds.), NATO ASI Series, Springer Verlag (1994).

21. Zhou, J.: A Permutation-Based Approach for Solving the Job-Shop Problem. Constraints,
vol. 2 no. 2 (1997), 185-213.

22. Visopt B.V. http://www.visopt.com

