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Abstract. Planning problems with durative actions represent one of the hot research topics in the 
area of AI planning. Because durative actions introduce numerical aspects to planning, constraint 
satisfaction technology is becoming more popular in solving this new type of planning problems. 
The paper describes a constraint programming approach for validating and finishing partially 
ordered plans with durative actions. In particular, we propose a Boolean constraint model of the 
planning graph, a numerical constraint model of durative actions and precedence relations, and 
channeling constraints connecting both models. We also briefly discuss solving techniques for 
such integrated model, in particular using binary decision diagrams versus constraint 
propagation. 

 
 
1. Introduction 
 
AI Planning is an area dealing with finding plans that convert some initial state of the world 
into a desired state. Probably the most widely used formulation of the planning problem is a 
STRIPS model [5]. The state of the world is described there as a conjunction of propositions 
that are either valid – positive propositions – or invalid – negative propositions. The state can 
be changed by actions that make some propositions valid – an add effect – and other 
propositions invalid – a delete effect. The action can be applied to a given state only if an 
action precondition is satisfied. The action precondition is expressed as a propositional 
formula over the state propositions. Together, the standard STRIPS formulation of the 
planning problem consists of a finite set of actions, a finite set of propositions describing the 
initial state, and a finite set of propositions describing the desired state. The planning task is to 
find a sequence of actions converting the initial state into a desired state.  
  Sometimes, a set of actions in encapsulated into an abstract task that is often decomposable 
to several sets of actions (and tasks). Then, the planning task is to find the right decomposition 
of given abstract tasks into primitive actions that form a valid plan in terms of the STRIPS 
model. This is called Hierarchical Task Network (HTN) planning [4]. We call the 
decomposition of the abstract task a task network because the actions and tasks in the 
decomposition are often connected, for example they are partially ordered. 
  The above purely logical formulation of the planning problem has been recently updated to 
cover numerical features [6]. In particular, durative actions and numerical preconditions and 
effects modeling resources are assumed. In this paper, we cover durative actions with logical 
preconditions that must be satisfied when the action starts, and the logical effects that become 
valid when the action finishes. Moreover, we allow specifying an invariant condition that must 
be valid during execution of the action. Naturally, when durative actions are assumed then 
overlapping of actions is allowed to obtain shorter plans in terms of time. 
  In this paper, we address the problem of validating task networks with durative actions. 
Such a task network, i.e., a decomposition of the abstract task into actions and other abstract 
tasks, is given by the user. Before using this task network by the planner, it is better to check, 



whether the task network can form a valid plan. If it cannot form a valid plan then the 
decomposition of the abstract task into such task network should be avoided during planning 
because it leads to a dead end. The plan validation consists of finding a time allocation for the 
actions respecting the precedence relations and the logical dependencies between the actions. 
By logical dependencies we understand the relations between the actions expressed in 
preconditions and effects. We can see this problem from a more general perspective as a plan 
validation problem where the plan is given by a partially ordered set of actions. In addition to 
checking validity of the task network, we may require some additional information about the 
task network that can be used during planning. For example, one may ask what the minimal 
makespan of the task network is, which can be used as the minimal duration of the 
corresponding abstract task. Moreover, it is possible to deduce what is the required 
precondition of the task network as well as what is the necessary effect of the task network 
(independently of the particular time allocation and ordering of the actions). Again, this 
information can be encoded in the abstract task to allow better co-ordination of the abstract 
tasks before they are decomposed into actions. Last but not least, the planners producing 
partially ordered plans may use the same tool to finish the plan by allocating the actions to 
time. We propose to use constraint satisfaction technology for the above described plan 
validation because this technology can naturally model logical features via Boolean 
constraints as well as durations and precedence relations via numerical constraints. Moreover, 
the proposed constraint model is flexible enough to allow addition of other features like 
numerical preconditions and effects. 
  The main contribution of the paper is twofold. First, an extended version of the planning 
graph is proposed to handle durative actions. Second, a new constraint model for this extended 
planning graph is designed. We also discuss various constraint satisfaction techniques to solve 
the proposed model, namely binary decision diagrams vs. singleton consistency. 
  The paper is organized as follows. First, we will give more details about the plan validation 
problem. Then, we will survey the models supporting durative actions and constraint-based 
approaches to planning. The main part of the paper will be devoted to a description of the 
constraint model for the extended planning graph that will also be introduced there. After that 
we will briefly discuss the solving techniques and we will conclude with a description of 
possible extensions of the proposed model. 
 
 
2. Plan Validation Problem 
 
In this paper we study the problem of validating partially ordered plans with durative actions. 
We use a propositional representation of the world states there. It means that a finite set of 
propositions is given and we describe the state by specifying which propositions are valid. The 
propositions which are not valid are invalid. The initial state is specified by a propositional 
formula that is built over the propositions using conjunction, disjunction, and negation. In 
planning, the initial state is usually described as a list of valid propositions which is a 
description equivalent to a conjunction of positive (valid) and negative (invalid) propositions. 
We use a more general formula to describe the initial state mainly because of the task 
networks where the initial state is equivalent to the initial precondition of the task network so 
it could be a general formula. The goal state is described using a propositional formula too. In 
case of task networks, the goal is equivalent to the effect of the task network. One of the tasks 
that we are solving is to find out which propositions must or must not hold in the initial state 
and in the goal state. This information may be used to fine tune the description of the 
precondition and effect of the abstract task that is decomposable to a given task network. We 
also allow specification of another propositional formula – a so called invariant condition – 
that must be satisfied by all the states inside the task network. The invariant condition 



substitutes axioms from PDDL. For example, it is possible to describe axioms like “if doors 1 
or doors 2 are open then the room A is accessible”. Notice also that both the initial state and 
the goal state can be specified incompletely meaning that the propositional formula does not 
force validity or invalidity of all the propositions. For example, the formula (1 and (not 2) and 
(3 or 4)) sets the proposition 1 to be valid and the proposition 2 to be invalid but it does not 
force validity of 3 and 4 (one of them must be valid, but the formula does not specify which 
one). The formula also says nothing about validity of propositions other than 1, 2, 3, and 4. 
  The input plan to be validated is given by a finite set of partially ordered actions. Each 
action has assigned a duration that could be either a positive integer or an interval starting with 
a positive integer. Durative actions have a start time and an end time that we call action time 
points. Action duration equals to the difference between the action time points. We expect 
discrete time so time points are represented by integers. Some planning problems are 
formulated over the continuous time but there is always some ε describing the minimal 
resolution of the plan so actually the time is discrete there too. 
  The action has a precondition that is a propositional formula built from the propositions 
using conjunction, disjunction, and negation. The precondition must be satisfied when the 
action starts. Formally, if st is the start time of the action A then the world state at time st must 
satisfy the precondition of A. The action has an effect that is a list of added and deleted 
propositions. If p is an add effect of some action finishing at the time et then p becomes valid 
at time et. If p is a delete effect of some action finishing at the time et then p becomes invalid 
at time et. Finally, it is possible to specify an action invariant condition that is a propositional 
formula that must hold when the action is executed. Formally, if an action A starts at time st 
and finishes at time et then the world states at times 〈st,et-1〉 must satisfy the invariant 
condition of A. The invariant condition of A prevents the actions that interfere with A to 
overlap with A. 
  As we already mentioned, there is a partial order specified among the actions. We allow 
specifying the order of action time points, for example to say that the action A starts before the 
action B finishes or that the action A starts at the same time as the action B. Moreover these 
simple ordering constraints can be connected via disjunction and conjunction (negation is not 
necessary there). Thus, one may specify a shared unary resource using the familiar disjunctive 
relation – either A finishes before B starts or B finishes before A starts. We call all these 
relations precedence constraints. 
  The plan validation problem is to decide whether the plan is feasible. The feasible plan 
means that there exist times for the activity time points in such a way that the precedence 
constraints are satisfied and the plan is valid with respect to all the logical relations. In 
particular, the given plan transfers the initial state into the goal state, all intermediate states 
satisfy the invariant condition, and the actions are applied correctly. For example an action 
deleting some proposition cannot precede directly another action that uses this proposition as 
its precondition. Recall that the activities may overlap in time so it might be useful to find the 
shortest plan in terms of total duration. It might be also interesting to find out which 
propositions must be valid or invalid in the initial and goal states. This information can be 
used to specify better the minimal duration, precondition, and effect of the task network. 
  The plan validation problem differs from the planning problem because the set of actions is 
known in the plan validation problem. The basic task is to find out a proper timing of the 
known actions which is a task closer to the scheduling problem. However, the difference from 
the traditional scheduling problem is that the interaction of actions is more complex via 
preconditions and effects. 
 
 



3. Related Works 
 
Probably the most widely used approach to planning is based on a so called planning graph by 
Blum and Furst [1]. The planning graph is a layered graph starting with a propositional layer, 
continuing with an action layer, followed by another propositional layer and so on until the 
final propositional layer. The propositional layer consists of nodes representing the 
propositions that describe the world state. The action layer consists of nodes representing the 
actions that change the world state. Each action is connected to its preconditions in the 
preceding propositional layer and to add effects in the next propositional layer. The delete 
effects are modeled via a so called mutex that describes activities (and propositions) that 
cannot be active together in the same layer. Planning is done by constructing the planning 
graph of a given size and extracting the plan from the graph. If no plan exists then a longer 
planning graph is constructed until a plan is found. 
  The traditional planning graph expects instantaneous actions which have no duration (or 
unit duration). Smith and Weld [12] proposed a temporal planning graph to handle durative 
actions. They use a directed graph with nodes representing propositions and actions. The arcs 
connect the preconditions with the action and the action with its effects. Moreover a time 
stamp is assigned to each node indicating the first time point at which the proposition or the 
action appears. The plan is constructed by backward-chaining search through the temporal 
planning graph. Note that even if the action appears just once in the graph, it may be added 
several times to the plan because of the cycles in the graph. Moreover, because there are no 
explicit layers in the graph, the actions may have real duration. The difficulty of this approach 
(from a CSP view) is that the plan is built dynamically. 
  Fox and Long [7] proposed a different way of handling durative actions. Their idea was to 
split the durative action into a set of instantaneous actions, in particular to start, invariant, and 
end actions. Instead of attaching duration to the actions, the duration is attached to the 
propositional layers. Then, the duration of the action equals to the sum of durations of the 
propositional layers between the start and end actions. The invariant actions are used to pass 
information between the start and end actions as well as to ensure the possible invariant 
condition of the action. The disadvantage of this approach is that more actions are necessary. 
  A static formulation of constraint satisfaction problems complicates usage of constraints in 
planning because of a dynamic character of planning (the number of planned actions is 
unknown). Nevertheless, as pointed out by Kautz and Selman [8] it is possible to start 
planning with some lower bound on the plan size and to formulate this sub-problem statically. 
They used a SAT formulation but it is possible to use a constraint formulation too. 
  Do and Kambhampati [3] proposed a constraint encoding of the planning graph so the plan 
extraction stage can be done using a constraint satisfaction technology. They used variables 
for propositions in the propositional layers and the domain of these variables was a set of 
actions that have a given proposition among add effects. The constraints were used to model 
mutexes as well as to model preconditions of the actions. The difficulty of this approach is a 
large number of constraints. 
  Lopez and Bacchus [9] proposed a different constraint model of the planning graph that 
uses binary variables both for propositions and for actions. The values of the variables are true 
and false and they indicate whether a given node is active in the layer or not. The constraints 
connect actions with preconditions and effects. It is also possible to specify mutexes as 
constraints. 
  In this paper, we propose an extension of the encoding by Lopez and Bacchus [7] to handle 
durative actions. Actually, we use the same Boolean variables and constraints to model 
preconditions and effect. However, we propose an extension of the planning graph such that 
the action may lie in several layers. In some sense, we also use the idea of Fox and Long [7] of 
splitting the action into start, middle, and end part. However, the action is not really split, there 



will be a timetable indicating in which stage the action is. Keeping the action as a single object 
simplifies modeling of action duration and other relations between the actions like the 
precedence relations. In particular, we use numerical constraints over the actions to model 
these features. Note also that all the above surveyed approaches are used for planning while 
we are solving a plan validation problem. In particular, we expect that the actions are known 
and the task is to find out a proper timing of the actions respecting the logical and precedence 
relations between the actions. 
 
 
4. Constraint Model 
 
To solve the plan validation problem, we use an extended version of the planning graph 
covering durative actions. In this section we will present this extension together with its 
constraint representation. Recall that the constraint representation consists of the set of 
variables, their domains, and the set of constraints. 
  Because the actions may overlap, we do not know the number of propositional layers in the 
planning graph in advance. However, we know the number of actions in the plan, say N. Each 
action requires the state when the action starts and the state when the action ends so we can 
deduce that the maximal number of states in the plan and hence the maximal number of 
propositional layers in the planning graph is 2*N. 
 
 
4.1 Logical constraints 
 
The propositional layer consists of a set of binary variables – one variable per proposition. Let 
us use a 0-1 variable PropL,i to denote the validity of proposition i in the layer L. Recall, that 
the actions may overlap so before an action finishes another action may start. Thus, an action 
may spread through several consecutive layers because we need to capture the states inside the 
duration of the action when another action starts or stops. To model this situation, we use three 
types of the action layers: start, middle, and stop layer. The action layer consists of a set of 
binary variables – one variable per action – that indicate when the action starts, runs, and ends. 
Let us denote these variables StartL,a, MiddleL,a, and EndL,a for the layer L and the action a. 
Figure 1 shows how these variables are used to describe the position of an action. 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Extended planning graph. The numbers in action layers indicate the values of Start, Middle, and End 
variables for actions a, b, and c. 
 
Notice that an action starts in exactly one layer and stops in exactly one layer. This can be 
modeled using the following constraints: 
 

… 
011 
000 
110 
… 

… 
000
000
010
…

… 
000
110
011
…

c 

a b 

action layers 

… 
a 
b 
c 
… 

i i+1 i+2 i+3 
i i+1 i+2 



       ∀a:  (ΣL=1,..,2*N-1 StartL,a = 1) 
       ∀a:  (ΣL=1,..,2*N-1 EndL,a =1) 
 
We can see the 0-1 variables as Boolean variables where 1 indicates true and 0 is false. This 
view simplifies the notation of the following logical constraints. 
  An action is processed in all layers between the start layer and the end layer. It means that 
an action is being processed in a given action layer if it starts here or if it has been processed in 
the previous layer and it did not stop here: 
 

∀a:   Middle1,a = Start1,a 
∀a ∀L∈{2,..,2*N-1}:   MiddleL,a = (StartL,a  ∨ (MiddleL-1,a ∧ ¬ EndL-1,a)) 

 
We use propositional formulas to describe the initial state, the goal state, and the invariant 
condition. These formulas can be directly converted to the constraints over the first 
propositional layer for the initial state, over the final propositional layer for the goal state, and 
over all the layers for the invariant condition. We also use the propositional formulas for the 
action preconditions and for the action invariant conditions. Let us denote PreconditionL,a the 
precondition for the action a defined over the propositions in the layer L and InvariantL,a the 
action invariant condition for the action a over the propositional layer L. Then we can describe 
satisfaction of the action precondition and the action invariant condition using the following 
constraints: 
 

∀a ∀L∈{1,..,2*N-1}:   StartL,a  ⇒ PreconditionL,a 
∀a ∀L∈{1,..,2*N-1}:   MiddleL,a  ⇒ InvariantL,a 

 
The actions have add and delete effects that change validity of propositions. Because the 
validity of propositions is not changing between the propositional layers, the only possibility 
for change is when some action finishes in the preceding action layer. Assume that Add(i) is a 
set of actions that make the proposition i valid – the proposition i is an add effect of these 
actions – and Del(i) is a set of actions that make the proposition i invalid – the proposition i is 
a delete effect of these actions. The proposition is valid in some layer if it is an add effect of 
some action finishing in the preceding action layer or if the proposition is already valid in the 
preceding propositional layer and there is no action deleting it and finishing in the preceding 
action layer. Formally: 
 

∀i ∀L∈{1,..,2*N-1}: PropL+1,i = ((∨a∈Add(i) EndL,a) ∨ ((∧a∈Del(i) ¬ EndL,a) ∧ PropL,i)). 
 
Note that the above constraint allows the proposition to be true if it is added by some action 
and deleted by another action at the same time. Such situation is not valid so we use the 
following constraint to forbid this situation: 
 

∀i ∀L∈{1,..,2*N-1}: PropL+1,i  ⇒ (∧a∈Del(i) ¬ EndL,a). 
 
The above constraint model fully describes the logical relations in the plan. It means that we 
have a valid plan if all the variables are assigned and all the constraints are satisfied. Recall 
that we use the upper estimate on the number of layers so it is possible that some of the layers 
are not necessary because the actions may share some layers. Basically, action layers may 
exist such that no action is starting or finishing in them – let us call them empty action layers. 
These empty action layers may appear anywhere in the planning graph which increases the 
number of valid but equivalent solutions and also increase the size of the search space to be 
explored when solving the problem. We propose to collect these empty layers to the end of the 



planning graph. The following constraint ensures that if there is a non-empty action layer then 
all the preceding action layers are also non-empty: 
 

∀L∈{1,..,2*N-2}:  (∨a (StartL+1,a ∨ EndL+1,a)) ⇒ (∧K=1,..,L (∨a (StartK,a ∨ EndK,a))). 
 
 

4.2 Numerical constraints 
 
The propositional layer models the state at some time so a numerical time variable TimeL is 
attached to each layer L. Assume that we measure time from zero so the initial state is in time 
zero hence Time1 = 0. Moreover, the layers describe how the state evolves in time. We do not 
know the actual time distance between the layers so we can post only the following 
constraints: 
 

∀L∈{1,..,2*N-1}:  TimeL < TimeL+1. 
 
We use only the simple temporal relations between the actions so we can estimate the upper 
bound for the plan length by a sum of durations of all the actions. This upper bound defines 
the upper bound for domains of the variables TL. 
  Each action starts at some time, stops at another time, and has a duration specified by the 
user. All these attributes could be variable so let us denote by StartTimea, EndTimea, and 
Durationa the start time, the end time and the duration of the action a. There is a constraint 
connecting these variables: 
 

StartTimea + Durationa = EndTimea. 
 
The precedence constraints from the problem specification can now be directly expressed as 
equalities or inequalities (=, <,  ≤) over the StartTime and EndTime variables. Note that in a 
constraint satisfaction framework it is possible to use more general constraints, for example to 
specify that the action A finishes 5 time units before the action B starts. 
 
 
4.3 Channeling constraints 
 
To connect the logical and numerical parts of the constraint model we need to identify the 
layers where the action starts and stops. Let us use the following two variables to identify the 
action layers where the action starts – StartLayera – and stops – EndLayera. Visibly, the 
following constraint must hold: 

 
StartLayera ≤ EndLayera. 

 
The connection between the logical variables describing the position of the action in the 
planning graph and StartLayer and EndLayer variables is established using the constraints: 
 

∀a:  StartStartLayera,a = 1 
∀a:  EndEndLayera,a = 1. 

 
Note that such constraints can be easily modeled in existing constraint satisfaction packages 
using the element constraint [11]. The semantics of the element constraint is as follows: 
element(X,List,Y) is true if and only if the X-th element of List is Y. X, Y, and the 
elements of List could be variables with finite domains. 



  Finally, it is necessary to connect the action time points with the times of the propositional 
layers. This connection can be realized in the same way as above. Just note that the end 
propositional layer for the action has a one unit larger index than the index of the end action 
layer (see Figure 1). 
 

∀a:  TimeStartLayera,a = StartTimea 
∀a:  TimeEndLayera+1,a = EndTimea 

 
 
5. Solver 
 
One of the advantages of constraint programming is a specification of the constraint model 
independently of a particular constraint solver. We have implemented the above described 
constraint model using constraint satisfaction packages in SICStus Prolog [11]. First, we tried 
a Boolean constraint solver to implement the logical constraints and a finite domain solver to 
implement the numerical constraints. Note that the integration of the solvers is natural via 
shared variables. The Boolean solver is based on Binary Decision Diagrams (BDDs) [1] and it 
can produce a solution (for the logical constraints) without search. However, this solver 
requires a lot of memory and it crashed even for small problems. Therefore, we decided to use 
a finite domain solver for the logical constraints as well. Instead of logical operations 
corresponding arithmetical operations over the 0-1 variables are used (Table 1). 
 

Table 1. Conversion between logical and arithmetical operations. 
 

logical operation arithmetical 
operation 

A∨B min(1,A+B) 
A∧B A*B 
¬A 1-A 
A⇒B A≤B 

 
The finite domain constraint solver uses the techniques of constraint propagation, in particular 
generalized arc consistency, to remove inconsistent values from variables’ domains. Not 
surprisingly, constraint propagation is weaker than BDDs. To achieve better pruning, we have 
applied singleton arc consistency [10] to the Boolean variables modeling the planning graph. 
There exist some studies comparing the power of BDDs with constraint propagation and 
search [13,14] but we are not aware about any work comparing BDDs to singleton arc 
consistency. Anyway, in our test models, we have achieved the same pruning as BDDs 
without the memory consumption of BDDs. Thus, singleton consistency seems to be an 
appropriate method for initial domain pruning of Boolean variables modeling the planning 
graph. The reason could be that the domains of Boolean variables consist of two elements so if 
a value is removed from the domain due to inconsistency then the remaining value is assigned 
immediately to the variable. Note that after making the problem consistent, it is possible to 
deduce some information for the task network. In particular, the propositions that are known to 
be valid or invalid (the respective variable is instantiated) in the initial layer form a more 
specific precondition of the task network. Similarly, it is possible to deduce add and delete 
effects of the task network from the propositions in the last layer. This additional information 
can then be used during planning. 
  Constraint propagation can prune the domains but it does not guarantee existence of the 
solution. Thus, it is usually combined with search that attempts to assign values to the 



variables – this is often called labeling. We have decided that only the numerical variables will 
participate in labeling, namely StartLayer, EndLayer, StartTime, and EndTime. If these 
variables are assigned, constraint propagation ensures that the relevant Boolean variables in 
the action layers are assigned as well. In our models, we use action preconditions in the form 
of conjunction only (which is the case of most planning problems) so the Boolean variables in 
the proposition layers are decided as well. If this is not the case, these variables should be 
labeled as well. We decided to use numerical variables in labeling because then the generic 
variable ordering heuristics, like first-fail, play a role and they can improve efficiency of 
search. Actually deciding a value for the StartLayer variable is equivalent to finding values for 
2*N-1 Boolean variables Start. We first label the layer variables StartLayer and EndLayer. 
This ensures that the actions are located to layers so all the logical relations between them are 
valid. In the second round, we label the time variables StartTime and EndTime. The labeling 
procedure is wrapped into a branch-and-bound algorithm that minimizes the completion time 
of the last action to obtain a plan with the minimal makespan. 
 
 
6. Example 
 
Assume that the task network consists of three actions A, B, and C such that the actions A and 
B cannot overlap in time (end(A)≤start(B) ∨ end(B)≤start(A)), all actions have duration 1 and 
there are three predicates p, q, and r. Action A has a precondition (p ∧ r) and a delete effect 
{p,r}, action B has a precondition (p) and an add effect {q}, and action C has a precondition (q 
∧ ¬r) and a delete effect {q}. Then the proposed plan validator deduces (using constraint 
propagation combined with singleton consistency, i.e., no search is used) that the ordering of 
actions in the network is B<<A<<C, the precondition of the network is (p ∧ r), the delete effect 
of the network is {p,q,r}, and the minimal duration of the network is 3 (see Figure 2). 
 
 
 
 
 
 
 

Figure 2. A simple task network. 
 
 
 
7. Conclusions 
 
In this paper, we proposed a new constraint-based approach for validating task networks and 
finishing plans with durative actions. Its main advantages are clarity and extendibility. It is 
easy and fast to implement the model in existing constraint packages like SICStus Prolog. 
Moreover, the constraint satisfaction technology allows painless extensions of the model. We 
have already integrated Boolean and numerical constraints there and it is possible to add other 
constraints for example modeling numerical effects of the actions or resource consumption 
and production. Also, the solving technology can be changed without necessity to modify the 
constraint model. We have tried a Boolean solver based on Binary Decision Diagrams (BBDs) 
to solve the Boolean part of the model. It has the advantage of providing solutions without 
search but it consumes a lot of memory (note that search is still necessary to resolve the 
numerical part of the model). Therefore, we have converted the Boolean constraints into 
numerical ones and we used standard generalized arc consistency for the whole model 
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improved by singleton consistency for the original Boolean part. We did only a few 
preliminary experiments that showed that using singleton consistency achieves the same 
domain pruning as BBDs without horrible memory consumption. However, a further 
theoretical study is necessary there which could be based on works [13,14]. Our future 
research will go in the direction of generalizing the proposed approach to do full planning. 
After this generalization we will be able to do comparison with existing approaches for 
temporal modeling. 
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