
On Generators of Random Quasigroup Problems

Roman Barták

Charles University, Faculty of Mathematics and Physics
Institute for Theoretical Computer Science

Malostranské nám. 2/25, Prague, Czech Republic
roman.bartak@mff.cuni.cz

Abstract. Random problems are a good source of test suites for comparing
quality of constraint satisfaction techniques. Quasigroup problems are
representative of structured random problems that are closer to real-life
problems. In this paper, we study generators for Quasigroup Completion
Problem (QCP) and Quasigroups with Holes (QWH). We propose an
improvement of the generator for QCP that produces a larger number of
consistent problems by using propagation through the all-different constraint.
We also re-formulate the algorithm for generating QWH.

Introduction

Generators of random problems are a useful source of problem instances for testing
constraint satisfaction algorithms. Writing generators for some types of problems, like
Random CSP [6], is not a complicated task but it could be more complicated for other
types of problems, typically for structured problems. The goal of this paper is to give
all necessary information for users that would like to use quasigroup problems to test
their solving algorithms. In particular, we will give a description of the algorithms
generating random problem instances and we will compare the generators both in
terms of quality and time efficiency.

The quasigroup problems have been first proposed as a benchmark domain for
constraint satisfaction algorithms by Gomez and Selman [3]. The basic idea of the
benchmark domain is to find a completion of a partial Latin square representing the
multiplication table of a quasigroup. Hence, they called the problem a Quasigroup
Completion Problem (QCP). The generator for QCP should produce a partial Latin
square that can be completed to a full Latin square. However, the generator proposed
in [3], which fills random values in randomly selected cells of the table, falls short on
this task especially when more values should be filled in. Gomez and Selman
observed a behavior of the generator similar to phase transition with satisfiable
instances on one side, unsatisfiable instances on the other side, and hard instances in
between. In this paper, we propose an improvement of this generator that generates a
larger number of satisfiable instances so more instances are available for the tested
solvers. This generator preserves the phase transition behavior but it generates
satisfiable instances on both sides and it makes the phase transition crispier.

The difficulty of the above described generators is that they do not guarantee
production of satisfiable instances only. This complicates usage of such generators for
testing incomplete solving algorithms because when the solving algorithm did not
find a solution, it is not clear whether the reason is that no solution exists or the
algorithm did not find it. In the first case (no solution exists) the algorithm can be
“glorified” for doing a good job, in the second case, the algorithm can be blamed for
being incomplete. Therefore another benchmark domain based on quasigroups has
been proposed in [1] that guarantees generation of satisfiable instances. This
benchmark domain uses the same idea as QCP, that is completing a partially filled
Latin square, but it differs in the way how the incomplete Latin square is obtained.
The idea is to punch holes into a randomly generated complete Latin square so the
obtained partial Latin square can surely be completed. Hence, this benchmark domain
is called Quasigroups With Holes (QWH). Opposite to the generators for QCP, the
generators for QWH are non-trivial and they are based on strong theoretical results
presented in [5]. Unfortunately, the paper [1] proposing QWH as a benchmark does
not provide all the details on generating QWH problems and the interested reader
must go in [5]. In this paper, we will present the algorithm for generating instances of
QWH problems as described in [1,5] and we will propose its reformulation that, in
our opinion, is more natural for implementation.

The contribution of this paper is twofold. First, we will give all the details on
algorithms for generating random instances of QCP and QWH problems. Second, we
will present empirical comparison of the generators so the readers can select one that
suits best their needs. Together, reading this paper should simplify implementation of
the generators for random quasigroup problems.

The paper is organized as follows. First, we will introduce the basic terminology
on quasigroups and Latin squares. Then, we will describe the Quasigroup Completion
Problem, we will present the generator for QCP, and we will propose some
improvements of this generator. After that, we will describe the Quasigroups With
Holes (QWH) problem, we will formulate the algorithm to generate such problems
according to [5], and we will propose a reformulation of the algorithm that is, in our
opinion, more natural for implementation. The paper is concluded by an experimental
evaluation of the generators where we will compare quality and time efficiency of the
generators and will show some interesting features of the QWH generator.

Quasigroups and Latin Squares

A quasigroup is an ordered pair (Q, •), where Q is a set and • is a binary operation on
Q such that the equations a•x=b and y•a=b are uniquely solvable for every pair of
elements a, b in Q. The cardinality of the set Q is called an order of the quasigroup.
Let N be the order of the quasigroup Q then the multiplication table Q is a table of
size N×N such that the cell at the coordinates (x,y) contains the result of the operation
x•y (for simplicity reasons we expect Q to be a totally ordered discrete set and so the
rows and columns of the multiplication table can be indexed by the elements of Q).
The multiplication table of the quasigroup must satisfy a property that in each row of
the table, each element of the set Q occurs exactly once, and similarly in each column

of the table, each element of Q occurs exactly once (see Figure 1A). Thus, the
multiplication table defines a Latin square.

We say that a Latin square of order N is partial or incomplete if the table of size
N×N is partially filled in such a way that no symbol occurs twice in a row or in a
column (see Figure 1B). If the table is filled completely then we are speaking about a
complete Latin square. Note that it is easy to generate a complete Latin square of any
order. First, we take some permutation of the elements in Q. Second, we fill the first
row of the table with this permutation. Third, in each subsequent row, we shift the
permutation one element to the right and the superfluous element on the right is filled
in the first cell of the row (see Figure 1C). However, note that generating any Latin
square of a given order with a uniform probability is a non-trivial task that we will
discuss later.

Fig. 1. A Latin square (A), a partial Latin square (B), and a process of generating a complete
Latin square (C)

The problem of finding a complete Latin square can be stated as a constraint
satisfaction problem in the following way. Assume, that the cells of a Latin square of
order N are denoted by the variables with the domain {1,…,N}. Then the property of
the Latin square can be described by a set of binary inequality constraints posted
between every pair of variables that are either in the same row or in the same column.
The constraint network for this CSP has N2 nodes representing the variables and
N2(N-1) edges representing the binary constraints (Figure 2). The network is highly
structured – there are 2N interconnected clusters of size N (each cluster connects the
variables from a single row or a single column). Moreover, there exists a path of
maximal length two between any two nodes so the constraint network has a so called
small world topology.

Fig. 2. A constraint network representing a Latin square of order 3

4 1 3 2
3 1 4 2

4 1 2 3
2 1 4 3

4 2
 1 2

 1 3
2 4

A B C

1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4

Quasigroup Completion Problem

As we showed in the previous section, a Latin square can be modeled as a CSP so it
can serve as a benchmark domain for constraint satisfaction algorithms. However, we
also sketched a simple algorithm to find a complete Latin square so such a benchmark
is not very challenging. Gomez and Selman [3] proposed a new benchmark based on
Latin squares called a Quasigroup Completion Problem (QCP). In this problem, a
partial Latin square is given and the task is to determine whether the empty cells can
be filled in such a way that we obtain a complete Latin square. The problem is
parameterized by the order of a Latin square and by the number of filled cells.
Formally, the Quasigroup Completion Problem is described by a pair 〈N,p〉, where N
is an order of the Latin square to be completed and p is a filling ratio, that is a ratio
between the number of pre-filled cells and the total number of cells (N2). Note that by
filling some of the cells in the table, we introduce perturbations into the structure of
constraint network which makes the problem closer to real-world instances. Thus, the
Quasigroup Completion Problem bridges the gap between the purely random
problems like a Random CSP [6] and the highly structured problems.

The question is how to select the cells to be filled for a given QCP 〈N,p〉. One
possible model could be selecting the cell to be filled with the probability p. Let us
call it a model A similarly to the classification used for Random CSPs [6]. Another
possibility is to select exactly ⎣pN2⎦ cells to be filled, where ⎣X⎦ means the closest (to
X) integer between X and 0. Let us call it a model B. In this paper we will study the
model B, where the cells to be filled are selected randomly and uniformly. We use a
random generator that selects uniformly and randomly ⎣pN2⎦ different elements from
the set {0,…,N2-1}. Each such element z represents a position in the Latin square of
order N that can be described by the coordinates 〈1+⎣z/N⎦, 1+(z mod N)〉. Figure 3
shows the encoding used to identify the cell in the table.

Fig. 3. A linear encoding of the positions of cells in a Latin square or order 4

Another open question is how to select a value to be filled in a given cell. The basic
requirement is that the values in cells in each row and in each column must be
different. So, when selecting a value for the cell in the position 〈x,y〉, this value must
be different from the values already filled in the cells of the row x and in the cells of
the column y. We propose the following simple technique based on constraint
propagation through binary inequalities. The Latin square is modeled as a CSP as
described in the previous section, that is there are binary inequalities between the
variables of the same row and of the same column. For a cell to be filled (the cell
selection process is described in the previous paragraph), we select randomly a value

0 1 2 3
7 4 5 6

10 118 9
13 14 1512

from the current domain of respective variable. Then the problem is made arc
consistent which means that the value is removed from the variables of the same row
and of the same column. Consequently, when selecting a value for a next cell, the
domain contains only the values that are different from already filled values in the
same row and in the same column. This technique ensures that only valid Latin
squares are generated, that is no symbol occurs twice in a row or in a column.
However, the constraint formulation of the generator also implies that there is no
guarantee that a Latin square is found. We have a CSP and we are using randomized
backtracking with no backtracks. Arc consistency is not a complete technique so if a
wrong value is selected (randomly) then it is possible to obtain an inconsistent square.
Because there are no backtracks, it is not possible to recover from such a situation so
the generator cannot produce a valid Latin square. Figure 4 shows such a situation.
One may say that this situation occurs only when a generator is based on constraint
propagation but note that if any generator will try to assign a value to the variable
whose domain is made empty via constraint propagation then no such value exists and
so no valid partial Latin square can be generated.

Fig. 4. The problem of simple QCP generators. If the value 1 is randomly selected for the top
left cell then values 2 and 3 are removed from the bottom right cell so the problem is
inconsistent and no complete Latin square exists.

When looking at Figure 4 we can see that if the value 4 is selected for the top left cell
then the above problem does not occur. Therefore, we propose to enhance the
generator by allowing a shallow backtracking that can try another (randomly selected)
value after a failure. This process is repeated until a value is found or the domain is
made empty. It is still possible that no value for the variable is found so this technique
does not guarantee finding a valid Latin square but the hope is that it increases
chances to find one. Unfortunately, as the experiments showed, this technique does
not increase the number of generated valid instances (on average). Note that the
generator should produce the random problems fast so its complexity should not be
exponential. Therefore, we cannot use full backtracking (probably incomplete search
might be used but we did not try it yet).

Another option how to improve chances of finding a value for the variable is
strengthening constraint propagation that will remove more inconsistent values from
the domains. There is a natural way how to strengthen propagation in the constraint
model for Latin squares – using the all-different constraint by Régin [7]. So our
second proposal is to use the same generator as described above but substituting the
cliques of binary inequalities by the all-different constraints. As the experiments
showed this improvement significantly increases the number of generated valid Latin
squares especially for larger filling ratios.

1,4 1,3

2,31,2

Quasigroups with Holes

As we already mentioned, the main problem of QCP is that the generators cannot
guarantee production of satisfiable instances. This could cause problems when
evaluating incomplete solving techniques because if the technique did not find the
solution then it is not clear whether this is because the problem had no solution or the
technique did not find an existing solution. In the previous section we proposed a
method that increases the number of satisfiable instances via strengthening constraint
propagation. However, this method still does not guarantee satisfiability. It would be
possible to accompany the proposed generator by a complete search that filters the
unsatisfiable instances. Still, the problem is that for some parameters the generator
does not produce a valid instance and hence no satisfiable instance is available for
evaluation. This happens typically in the area where the hardest problems settle (see
the section on experiments) so it would be beneficial if the generator produces
satisfiable instances directly. Surprisingly, it is often difficult to develop a direct
generator for satisfiable instances only. The problem with the generators producing
only satisfiable instances is that the generator should not be biased in the sense that
the generator should produce any satisfiable instance with a uniform distribution.
Therefore, the simple generator of complete Latin squares described in the second
section is not appropriate because it produces Latin squares with a specific structure
only (and hence, completing such Latin squares is not a difficult task).

The paper [1] proposes a direct generator for satisfiable quasigroup problems. The
idea is to generate a complete Latin square to which a fraction of holes is punched.
The resulting incomplete Latin square is then guaranteed to be satisfiable. This
problem is called Quasigroups With Holes (QWH).

The problem of generating uniformly distributed Latin squares is non-trivial.
Actually, the generator is not described in [1] and the reader is referenced to the paper
by Jacobson and Matthews [5] which describes the method and gives a theoretical
justification. In the next paragraphs, we will survey the method by Jacobson and
Matthews in an algorithmic form and then we will reformulate the algorithm to work
directly with the Latin squares.

Original generator

Jacobson and Matthews [5] proposed a method for generating uniformly distributed
random Latin squares. The idea is to see the Latin squares as nodes in a graph where
the edges describe transformations between the Latin squares. They proved that the
diameter of the graph is 4(N-1)2 so the minimal distance between two Latin squares is
no greater than 4(N-1)2. Consequently, it is possible to obtain any Latin square from a
given Latin square in 4(N-1)2 moves. Thus a generator can be concieved as follows.
We start with a random Latin square generated for example by the method described
in the second section (Figure 1C) and after performing 4(N-1)2 moves we should
obtain any Latin square with uniform probability.

To simplify the description of moves, Jacobson and Matthews proposed to extend
the graph by nodes describing so called improper Latin squares where the condition of
a Latin square is “little” violated (see below). Then the diameter of the graph and

hence the minimal distance between two (proper or improper) nodes is 2(N-1)3 [5].
They represent the Latin square of order N by a contingency table f of size N×N×N
that contains {0,1} values only. The condition on a Latin square (in each row and in
each column, each element appears exactly once) is then equivalent to the formulas:

{ } ()
{ }

()

{ } ()
{ }

()

{ } ()
{ }

()czyxfNzy

bzyxfNzx

azyxfNyx

Nx

Ny

Nz

1,,,...,1,

1,,,...,1,

1,,,...,1,

,...,1

,...,1

,...,1

=∈∀

=∈∀

=∈∀

∑

∑

∑

∈

∈

∈

Basically, x and y describe the coordinates of the cell and z describes the element in
the cell (x,y) if f(x,y,z)=1. So the formula (a) says that exactly one element is filled to
the cell (x,y), the formula (b) says that the element z appears exactly once in the row
x, and the formula (c) says that the element z appears exactly once in the column y.
We call a Latin square with the above (proper) contingency table a proper Latin
square. An improper Latin square is defined by the (improper) contingency table
satisfying the conditions (a)-(c) but allowing exactly one element of the contingency
table to contain the value -1.

Now, it is easier to formulate the moves as operations over (proper and improper)
contingency tables. Assume that we start with a proper contingency table. We select
randomly a cell of f such that f(x,y,z) = 0 and we will try to increase this value by one
which is equivalent to assigning the value z to the cell (x,y). Each line in f containing
the cell (x,y,z) must hold a cell filled by one according to (a)-(c). Let x’, y’, and z’ be
the indexes of these lines. These coordinates define a sub-cube in the contingency
table with nodes at (x,y,z), (x,y,z’), (x,y’,z), (x’,y,z), (x’,y,z’), (x’,y’,z), (x,y’,z’), and
(x’,y’,z’) (see Figure 5). If we increase the value in f(x,y,z) by one then we need to
decrease the values in f(x,y,z’), f(x,y’,z), f(x’,y,z) by one to keep the conditions (a)-(c)
valid. Next, the values in f(x’,y’,z), f(x,y’,z’), f(x’,y,z’) must be increased by one and
finally the value in f(x’,y’,z’) must be decreased by one. If all these operations are
performed then visibly the conditions (a)-(c) hold again. However, it may happen that
the value in f(x’,y’,z’) will become -1, in the case that f(x’,y’,z’)=0, but this will be the
only cell with a negative value (see Figure 5).

Fig. 5. A plus/minus one move in the proper (left) and improper (right) contingency table

Notice that if we start with a cell such that f(x,y,z) = -1 (so the original contingency
table is improper) then we can perform the same set of operations as above and again

x x’

y

y’

z

z’

0+1 1-1

1-1 1-1

1-1

0+1

0+1

?-1

x x’

y

y’

z

z’

-1+1 1-1

1-1 1-1

1-1

0+1

0+1

?-1

we will obtain either a proper or improper contingency table (Figure 5 right). So the
above described mechanism specifies moves between proper and improper
contingency table. Jacobson and Matthews [5] showed that on average after N such
moves we will obtain a proper contingency table describing a Latin square of order N.
Figure 6 shows the algorithm for a single move. According to [5] we propose to do at
least N3 such moves and stop when a proper contingency table is obtained.

move
 find x,y,z s.t.
 if f is improper then f(x,y,z)=-1
 if f is proper then f(x,y,z)=0
 find x’,y’,z’ s.t. f(x’,y,z)=f(x,y’,z)=f(x,y,z’)=1
 // if f is proper then these points are unique
 // if f is improper then there are two choices
 // for each point, select one point randomly
 f(x,y,z)++
 f(x,y,z’)--
 f(x,y’,z’)++
 f(x,y’,z)--
 f(x’,y,z’)++
 f(x’,y,z)--
 f(x’,y’,z)++
 f(x’,y’,z’)--
end move

Fig. 6. The algorithm for move between proper and improper contingency tables

Reformulated generator

In the previous section we presented the algorithm for moves between proper and
improper contingency tables. Notice that if the contingency table is improper, which
happens when f(x’,y’,z’) becomes -1, then the next move starts with f(x’,y’,z’) which
will be increased by one. The improper contingency table describes a situation when
two values, z and the original value in (x’,y’), are assigned to the cell (x’,y’) at the
same time. According to the above observation, we know that in the next move the
original value in (x’,y’) or z will be unassigned and so we propose to postpone
assignment of z to the cell (x’,y’) to the next move. Before assigning the value we will
check whether the value in (x’,y’) is z’. If this is true then we obtained a proper Latin
square and we can stop the sequence of improper moves (so z is not assigned to the
cell which is equivalent to assigning it and unassigning it in the next step). Otherwise
we assign the value z to the cell (x’,y’), we took the original value in this cell and
“propagate” it further. Figure 7 describes how the values are moved between the cells.

Fig. 7. Shifting values in a Latin square when the value z should be placed to position (x,y)

The above idea can now be encoded using the data structures describing directly a
Latin square instead of its contingency table. Figure 8 shows the algorithm for
moving between the proper Latin squares directly. The move is started with a random
position (x,y) and a random value z to be placed there: proper_move(x,y,z,z).
When the procedure stops, a proper Latin square is obtained and another random
move can be started. According to [5] we propose to call the procedure
proper_move at least N3 times (including the recursive calls inside
proper_move) so every Latin square can be obtained with uniform probability.

proper_move(x,y,z,v)
 z’ ← table(x,y)
 if z’=v then return
 y’ ← a position (column) of cell with v in the row x
 x’ ← a position (row) of cell with v in the column y
 // if z=v then x’ and y’ are unique
 // otherwise there are two such positions,
 // one position is selected randomly
 table(x,y) ← z
 table(x,y’) ← z’
 table(x’,y) ← z’
 proper_move(x’,y’,v,z’)
end proper_move

Fig. 8. The algorithm for move between proper Latin squares

Experimental results

We have implemented the proposed generators using the clpfd library [2] of
SICStus Prolog version 3.11.1. All presented results were accomplished under
Windows XP Professional on 1.7 GHz Mobile Pentium-M 4 with 768 MB RAM. The
running time is measured in milliseconds via the statistics predicate with the
walltime parameter [8]. For each problem we generated 100 random instances, the
average results are presented.

z v

z z’

x x’

y

y’

z

z’ v

z’ z

x x’

y

y’

z

Generator Quality

Generators of random problems are often expected to produce satisfiable instances
because such instances can be solved by the tested algorithms (solvers). In particular,
if the generator is not able to produce a problem instance of given parameters then the
solver cannot be tested for given problem parameters at all. Thus, we propose to
measure the quality of the generator by the number of satisfiable instances that is by
the number of generated instances that have a solution. In our experiments, we
approximated the generator quality by the number of consistent instances which is
faster to count than counting the satisfiable instances. Note that if a problem is not
(locally) consistent then it is not satisfiable. Moreover, the stronger consistency
technique we use, the closer approximation we get. For testing consistency, we used
(generalized) arc consistency with the all-different constraints posted for the variables
in each row and in each column. We used the all-different constraint by Régin [7]
because it achieves better domain pruning than a set of binary inequalities so it can
discover more inconsistencies and so it seems to be a good compromise between the
consistency level and the time complexity. Note also, that sometimes the generator is
not able to produce a valid instance at all. We say that the instance is valid if it
contains a given number of filled cells (⎣pN2⎦, where p is the filling ratio) and no
symbol occurs twice in a row or in a column. If the instance is not valid then we
assume it to be inconsistent. In our first experiment, we measured the number of
consistent instances introduced by the generator for different filling ratios.

0%

20%

40%

60%

80%

100%

120%

50% 55% 60% 65% 70% 75% 80% 85% 90%

filling

co
ns

is
te

nt
 p

ro
bl

em
s

Fig. 9. The relative number of generated consistent problems as a function of the filling ratio
(in percent) for the quasigroup problems of order 30 (♦: QCP-orig, ∆: QCP-alldiff, : QWH)

Figure 9 shows the results for the quasigroup problems of order 30 and different
filling ratios. We focus on the area with hard problems – a so called phase transition.
We can see that the quality of the original generator of the Quasigroup Completion
Problem degrades earlier and since the filling ratio 0.64 the generator is not able to
produce a consistent instance at all. This corresponds to observations in [3] where the

authors measured the number of unsolvable instances (note also that they use a
complement to our filling ration that is a number of holes in the table). However, this
does not mean that solving QCP with a large number of filled cells is a hard problem.
Actually, as our experiments showed the problem is that the original generator is not
able to generate satisfiable instances in the area with a large filling ratio. When we
use a QCP generator with the all-different constraint [7] then we can generate
consistent instances even in this area. The reason is that the all-different constraint
propagates more than a set of binary inequalities so it can prevent selection of a “bad”
value during filling the cells. Notice also, that the QCP generator with the all-different
constraint produces a larger number of consistent instances even for smaller filling
ratios. This feature makes the phase transition area crispier so we can generate harder
problem instances for testing the solving algorithms.

We also accompanied both QCP generators with the shallow backtracking feature
as described in the previous sections. However, we obtained the number of consistent
instances identical to the number of consistent instances produced by the generators
without shallow backtracking (the versions with shallow backtracking are not
included in Figure 9). Thus, shallow backtracking does not seem to contribute to the
generator quality.

Finally, the QWH generator produces consistent instances only. This is not
surprising because the QWH generator produces satisfiable instances.

Time efficiency

The generators of random problems should run fast because the core of the user’s
experiment is usually testing the constraint satisfaction algorithms so the users do not
want to waste time by generating the problems. Note that random problems are not
usually generated off-line so their runtime might be an important factor. In our second
experiment, we compared the runtime of the proposed generators. In particular, we
measured the runtime as a function of the filling ratio (Figure 10) and as a function of
the order of a Latin square (Figure 11). Time spent in the generator for producing
both valid and invalid instances is measured.

Figure 10 shows the results for the quasigroup problems of order 30 and different
filling ratios. Again, we focused on the area with hard problems. The QCP generators
are filling the required number of cells so the runtime is increasing with the larger
filling ratio. The runtime of the QWH generator is (almost) independent of the filling
ratio because the generator spends most of the time exploring complete Latin squares
(which is independent of the filling ratio) and the time to punch the holes in the table
is neglected there. The bad news are that the runtimes for QWH and QCP-alldiff
generators are significantly (7.5-10×) larger than the runtime for the original QCP
generator. Moreover, we can see that the QWH generator has better runtime than the
QCP-alldiff generator and the difference increases with the larger filling ratio.
Because the QWH generator produces satisfiable instances, it will be probably
preferred over the QCP-alldiff generator there.

The runtime for QCP generators with shallow backtracking is identical to the
runtime of generators without shallow backtracking (the versions with shallow
backtracking are not included in Figure 10).

0

100

200

300

400

500

600

700

50% 55% 60% 65% 70% 75% 80% 85% 90%

filling

tim
e

(m
ili

se
co

nd
s)

Fig. 10. The time (in milliseconds) to generate a quasigroup problem of order 30 as a function
of the filling ratio (in percent) (♦: QCP-orig, ∆: QCP-alldiff, : QWH).
A small graph on the right shows a ratio between the running times as a function of the filling
ratio (•: QCP-alldiff/QCP-orig, ◊: QWH/QCP-orig).

Figure 11 compares the runtimes of the generators on problems with a fixed filling
ratio 0.6 and with changing order of a Latin square. We have selected the filing ratio
0.6 because it is close to the phase transition, however, we performed experiments
with other filling ratios (namely 0.5, 0.7, and 0.8) and the results were very similar.

1,00

10,00

100,00

1000,00

10000,00

100000,00

0 10 20 30 40 50 60 70

order of Latin square

tim
e

(m
ili

se
co

nd
s)

Fig. 11. The time (in milliseconds, a logarithmic scale) to generate a quasigroup problem with
the filling ratio 0.6 as a function of the order (♦: QCP-orig, ∆: QCP-alldiff, : QWH).
A small graph on the right shows a ratio between the running times as a function of the order
(•: QCP-alldiff/QCP-orig, ◊: QWH/QCP-orig).

7

7,5

8

8,5

9

9,5

10

10,5

50% 55% 60% 65% 70% 75% 80% 85% 90%

filling

ra
tio

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70

order of Latin square

ra
tio

For all the generators the runtime is increasing significantly with the increased order
of a Latin square but the increase is less than exponential. We know that the
theoretical time complexity for the QWH generator is cubical which is confirmed by
our experiments. From Figure 11, we can deduce that the time complexity of the
QCP-alldiff comparator is close to cubical and that since the order 25, it is more
efficient to use the QWH generator that is slightly faster and, moreover, it produces
satisfiable instances. Position of this border point, a point when QWH becomes more
efficient than QCP-alldiff, depends on the filling ratio. The border point is higher (30
for 0.5, see Figure 10) for smaller ratios. Definitely, for larger problems (the order 30
and more), the QWH generator is more efficient than the QCP-alldiff generator in the
area of phase transition. For smaller problems, the QCP-alldiff might still be useful.
From Figure 11, we can also see that the QCP-alldiff generator is linearly slower than
the QCP-orig generator.

QWH features

Even if the resulting problems are identical for QCP and QWH – filling the cells in
the incomplete Latin square – the generators are based on very different principles.
The goal of our last experiment is to study behavior of the QWH generator. Recall
that the generator starts with a randomly generated Latin square and it performs steps
to modify this initial Latin square. For problems of order N, at least N3 steps are
performed. In each step, some cells are exchanged in the table so the table may
become improper with respect to the features of the Latin square. In particular, it is
possible that some row and column may contain a pair of identical cells. The
algorithm guarantees that this improper table will become proper after few steps so
we measured the average number of steps between two proper tables. We also
measured the average number of generated proper Latin squares during a single run of
the generator.

Table 1. Some numerical features of the QWH generator

order 10 20 30 40 50 60
runtime (miliseconds) 13 118 476 1326 2946 5739
steps between proper squares 9.89 19.90 29.82 39.84 49.92 59.76
explored proper squares 102 403 906 1607 2505 3615

Table 1 shows the results of the QWH generator depending on the order of a Latin
square. We have already mentioned the cubic time complexity of the generator. The
interesting result is that for the problems of order N, the average number of steps
between two proper squares is slightly less than N. This confirms the theoretical
results from [5] where the authors proved that the upper bound on the length of the
shortest sequence of steps between any two (proper or improper) squares is 2(N-1)3
and the upper bound on the length of the shortest sequence of proper moves between
any two Latin squares is 4(N-1)2. From Table 1, we can also see that slightly more
than N2 proper Latin squares are explored during each run of the generator so
according to [5] there is a chance to obtain any Latin square from a given randomly
generated Latin square.

Conclusions

In this paper, we studied the generators for quasigroup problems. We have proposed
an improvement of the generator of the Quasigroup Completion Problem based on the
idea of using all-different constraints to propagate partial assignments. Experimental
results confirmed that this improved generator produces more consistent instances
especially in the area of phase transition. Consequently, this generator is more
appropriate for preparing problem instances to be used for testing solving algorithms.
Unfortunately, the runtime of this improved generator is much larger that the runtime
of the original generator. The open question (for experiments) is how constraint
propagation used by both generators influences the generated instances. In particular,
how many variables are instantiated via constraint propagation so what is the actual
filling ratio. The challenge is to find out a generator that produces a higher number of
satisfiable instances without a big efficiency penalty. One of the possible ways could
be using incomplete search techniques with a guaranteed runtime.

We have also reformulated the algorithm for generating Quasigroups With Holes
in a such a way that it is easier to go from a proper instance to another proper
instance. We believe that this formulation is more natural because it works with 2D
tables describing the Latin squares rather than using a 3D table with {0,1} values like
in [5]. Anyway, as far as we know this is the first paper in the CSP literature giving
the exact description of the generator for QWH. The original paper [1] on QWH did
not describe the algorithm completely and the paper [5] is theoretical and the
algorithm is not given there as well (even if all the details specifying the algorithm are
described there).

We also performed experiments comparing the generators of QWH and QCP. The
results showed that the time efficiency of the QWH generator is comparable to the
time efficiency of the QCP generator with the all-different constraints. We also
experimentally showed that the number of steps of the QWH generator between two
proper instances corresponds to the order of the Latin square. An open question is
how hard instances the generators produce. This can be measured, for example, by the
number of solutions to generated problems.

Acknowledgements

This work is supported by the Czech Science Foundation under the contract no.
201/04/1102 and by the project LN00A056 of the Ministry of Education of the Czech
Republic. The author has been awarded an ECCAI Travel Grant to attend ECAI'04.

References

1. Dimitris Achlioptas, Carla Gomes, Henry Kautz, and Bart Selman. Generating Satisfiable
Problem Instances. In Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI-00). AAAI Press, pp. 256-261, 2000.

2. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint solver.
In Programming Languages: Implementations, Logics, and Programming. Springer-Verlag
LNCS 1292, 1997.

3. Carla Gomez and Bart Selman. Problem Structure in the Presence of Perturbations. In
Proceedings of Fourteenth National Conference on Artificial Intelligence (AAAI-97).
AAAI Press, pp. 221-226, 1997.

4. Carla Gomez and David Shmoys. Completing Quasigroups or Latin Squares: A Structured
Graph Coloring Problem. In Proceedings Computational Symposium on Graph Coloring
and Generalizations, 2002.

5. Mark T. Jacobson and Peter Matthews. Generating uniformly distributed random latin
squares. Journal of Combinatorial Designs 4(6), pp. 405-437, 1996.

6. Ewan MacIntyre, Patrick Prosser, Barbara Smith, and Toby Walsh. Random Constraint
Satisfaction: theory meets practice. In Michael Maher and Jean-Francois Puget (eds.):
Principles and Practice of Constraint Programming - CP98. Springer-Verlag LNCS 1520,
pp. 325-339, 1998.

7. Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. Proceedings
of Twelfth National Conference on Artificial Intelligence (AAAI-94). AAAI Press, pp.
362-367, 1994.

8. SICStus Prolog User's Manual, Release 3.11.1, SICS, 2004.

