
A Theoretical Framework
for Constraint Hierarchy Solvers

Roman Barták1

Abstract.1 In the paper we propose a framework describing
constraint hierarchy solvers and thus providing a theoretical
foundation for construction of such solvers. The framework
is based on the decomposition of the constraint hierarchy
into constraint cells, i.e., chunks of constraints that are
solved together. Using various decompositions we can
describe a scale of constraint hierarchy solvers from the
refining method to the local propagation methods. We
highlight important features of the decompositions that form
sufficient conditions in soundness and completeness
theorems.

1 INTRODUCTION

Constraint hierarchies were introduced in [4] for description
and solving of over-constrained problems. An over-
constraint problem is described by a set of constraints that
cannot be satisfied together unless some of the constraints
are relaxed. In the constraint hierarchy each constraint c has
assigned a label l describing a user preference for
satisfaction of the constraint - we are speaking about a
labelled constraint c@l. The stronger a constraint is, the
more it influences the solution of the hierarchy, i.e. the more
we prefer the constraint to be satisfied. Additionally, the
constraint hierarchy allows “relaxing” of constraints with
the same strength via weighted sum, least squares, or similar
methods.

Formally, a constraint hierarchy is a set of labelled
constraints. The hierarchy can be decomposed into
hierarchy levels, i.e. the sets of equally preferred constraints
from the hierarchy. A solution to the constraint hierarchy is
a valuation of variables in the constraints such that there is
no better valuation. The relation "better" is called a
comparator and its main feature is respecting the hierarchy,
i.e. the comparator prefers the valuations satisfying the
stronger constraints. It is possible to define various
comparators like locally-better or globally-better
comparators, for details and precise definitions see [4,6,16].

An important aspect of constraint hierarchies is the
existence of efficient satisfaction algorithms - constraint
hierarchy solvers. In this paper, we are interested in two
groups of these solvers: algorithms based on refining
method and local propagation algorithms.

The refining algorithms satisfy first all the constraints at
the strongest level and then they try to satisfy as many as
possible constraints at weaker levels successively (the
solution of the strongest constraints is being refined by
adding weaker constraints). The refining method was first
used in a simple interpreter for HCLP (Hierarchical

1 Charles University, Faculty of Mathematics and Physics,

Malostranské námestí 2/25, Praha, Czech Republic.
bartak@kti.mff.cuni.cz.
Supported by GACR grant 201/99/D057.

Constraint Logic Programming) programs [6] and it is also
employed in the DeltaStar algorithm [16] and in the HCLP
language CHAL [14]. The refining method is general - it
can be applied to any constraint hierarchy using any
comparator. However, this method requires the solution to
be recomputed from scratch after every change (e.g. after
adding or removing a constraint).

The local propagation algorithms were designed to allow
incremental changes of the constraint hierarchy and, in
particular, to support fast re-computation of the solution
after change of the value of a selected variable. This feature
is desirable in interactive graphical applications where we
need to re-compute fast the position of objects after moving
the mouse. The local propagation algorithms order the
constraints first (this is called planning) and then they
propagate values through the constraints according to the
ordering (this is called executing). Unfortunately, the local
propagation algorithms lost generality so they can only be
applied to special sets of constraints and comparators. The
local propagation algorithms DeltaBlue [13], SkyBlue [12],
QuickPlan [15], DETAIL [10], Houria [8] can solve only
equality constraints, e.g., linear equations over reals. The
exception is the Indigo algorithm [3] for solving inequalities
that combines local propagation and refining method. We
borrowed the main idea behind the Indigo algorithm, i.e.,
the propagation of the set of values, to our framework. The
local propagation algorithms also use the locally-predicate
comparator or its variant only. Only Houria III and DETAIL

can use globally comparators and Indigo uses a metric
comparator. Finally, local propagation is not designed to
find multiple solutions easily due to the uniqueness of the
propagation step (backtracking-based techniques can be
used to find alternative solutions, though).

To suppress the disadvantages of both refining and local-
propagation methods we generalised the local propagation
algorithms or, in other words, we refined further the refining
method. Instead of working with individual constraints or
working with the whole hierarchy level we propose to use a
decomposition of the constraint hierarchy into constraint
cells and then to propagate values through the cells. In the
paper, we formalise the decomposition of the constraint
hierarchy into the cells and we show how to find a solution
of the hierarchy using the propagation through the cells. We
highlight some important features of the decompositions
and we give sufficient conditions for soundness and
completeness theorems. Note finally, that the proposed
framework is applicable to refining algorithms (cell = a
hierarchy level) as well as to local propagation algorithms
(cell = a constraint). Consequently, the proposed framework
provides a theoretical background for many current
constraint hierarchy solvers as well as it provides a base for
construction of new solvers - in [1] we described several
new solvers based on this framework.

The basic structure of our framework and terminology is
derived from the generalised local propagation by Hosobe,
Matsuoka, and Yonezava [11]. Nevertheless, motivation
behind our research is different from [11]. We intend to
generalise local propagation in such a way that it supports
arbitrary constraints (in particular, inequalities and
comparisons) and comparators (including global
comparators). Moreover, in addition to the soundness
theorem we also prove the completeness theorem.

2 A REFORMULATION OF
CONSTRAINT HIERARCHIES

To formally grasp the algorithms for solving constraint
hierarchies we reformulate the definitions of constraint
hierarchies while still keeping the original meaning [4]. We
believe that such reformulation provides better tools for the
design of effective constraint hierarchy solvers.

The basic idea behind our framework follows the concept
of local propagation that is seen as the way of refining the
set of valuations by satisfying the sets of constraints. In
particular, rather than propagating the values through the
individual constraints, we propose to propagate the
valuations through the groups of constraints called
constraint cells. This generalisation allows us to overcome
the problems of the traditional local propagation, in
particular, it is possible to solve arbitrary constraint
hierarchies (including non-functional constraints like
comparisons) using a wider set of comparators (including
globally-better comparators). Moreover, the algorithms
based on our framework can find all the solutions (for total
comparators). We formulate sufficient conditions for
soundness and completeness of the algorithms there.

2.1 Hierarchy comparators and hierarchy
satisfiers

The notion of the comparator is crucial for the definition of
the solution of the constraint hierarchy. We impose
additional restrictions to the comparator so some traditional
comparators cannot be used in our framework (e.g. the
worst-case-better comparator). Nevertheless, all the widely
used comparators are still covered by our definition. To
distinguish from the original definition we are using the
notion of a hierarchy comparator. The hierarchy comparator
is made of level comparators that compare two valuations at
a hierarchy level (or more generally, at a set of constraints
without the strength annotations). We use a standard error
function e to compare two valuations at a constraint [6,16].

Definition 1 Given a (labelled) constraint c and a valuation
σ, the error function e indicates how nearly the constraint c
is satisfied by the valuation σ via mapping to a non-
negative real number. Moreover, the error function must
have the following property:

e(c,σ)=0 ⇔ cσ holds.

Definition 2 Given the sets C, C1, and C2 of constraints, the
valuations σ, θ, and π, and an error function e, we call the
relation ≤

C
 over the set of valuations a level comparator if

the following conditions hold:

a) π≤σ⇒π≤θ∧θ≤σ
CCC

b) θ≤σ⇒θ≤σ∈∀
C

ceceCc)),(),((

c) σ≤θ⇒θ≤σ∧σ≤θ
∪ 2121 CCCC

d) θ≤σ⇒θ≤σ∧θ≤σ
∪ 2121 CCCC

.

The conditions a) and b) of the definition describe the
transitivity and “well behaviour” of the level comparator.
The conditions c) and d) of the definition characterise
behaviour of the level comparator when we decompose the
set of constraints into two sets.

Note also, that the level comparator is defined for a
particular error function e so we can get different level
comparators for different error functions.

Now, we can define relations
C
< and

C
~ using the level

comparator
C
≤ in an obvious way:

σ≤θ¬∧θ≤σ≡θ<σ
CC

def

C
σ≤θ∧θ≤σ≡θσ

CC

def

C
~ .

The hierarchy comparator, whose definition follows,
compares two valuations according to the constraint
hierarchy. The operational semantics of the hierarchy
comparator is following. We first decompose the constraint
hierarchy into the hierarchy levels and then we compare the
valuations at individual hierarchy levels. Finally, we
combine results of the level comparison successively
(lexicographically) from the stronger to the weaker levels.
Thus, the hierarchy comparator expresses explicitly the idea
of respecting the hierarchy [6,16].

Definition 3 Given a constraint hierarchy H, its hierarchy

levels Hi, and valuations σ, θ, we call the relation
H
< over

the set of valuations a hierarchy comparator if it is defined
in the following way:

{ } θ<σ∧θσ−∈∀>∃≡θ<σ
kl HH

def

H
klk ~ ,..., 110 .

It is also possible to define relations
H
~ and

H
≤ in an

obvious way.

When the hierarchy comparator is defined we can use it to
select the valuations that satisfy best the constraint
hierarchy. We call such operation a hierarchy satisfier - it
selects the valuations from a given set of valuations to
satisfy best a given constraint hierarchy.

Definition 4 Given a set Θ of valuations and a constraint
hierarchy H, the function S selecting a subset from Θ in the
following way:

} |{),(σ<θΘ∈θ¬∃Θ∈σ=Θ
H

HS

is called a hierarchy satisfier.

We identified some interesting properties of the hierarchy
satisfier, the proof of them can be found in [2].

Lemma 1 Given a hierarchy satisfier S defined using an
error function e, constraint hierarchies H and H', and a set
Θ of valuations, the following properties hold:

a)))',()),('((),(HHSceHcHS ∪Θ∈σ⇒=σ∈∀Θ∈σ∀ 0

b))),()~),(((, HSHS
H

Θ∈θ⇒θσ∧Θ∈σΘ∈θσ∀ .

The first feature concerns the behaviour of the hierarchy
satisfier when enlarging the set of labelled constraints. It
says: if the satisfier selects a valuation σ for the hierarchy H
and this valuation satisfies all the constraints from the
hierarchy H' then the satisfier selects this valuation for the
enlarged constraint hierarchy H∪H' as well. In particular, if
σ is a solution of the hierarchy H and we add a new
constraint to H which is satisfied by σ then σ is still a
solution of the extended constraint hierarchy.

The second feature describes the connection between the
hierarchy satisfier and equivalence of valuations. It says: if
we have two equally good valuations (the hierarchy
comparator measures the quality) and the hierarchy satisfier
selects one of these valuations then the second valuation is
selected as well. In particular, if we have a solution σ of the
hierarchy and any valuation θ is equally good to σ then the
valuation θ is a solution too.

Now, if the set to which we apply the hierarchy satisfier
contains all the valuations satisfying all the required
constraints then we get exactly the solution of the constraint
hierarchy. This is formally described by the following
definition.

Definition 5 Given a constraint hierarchy H and a set Θ of
all valuations which satisfy all the required constraints in H
(i.e. all the constraints in H0), we define the solution S(H) of
the hierarchy H in the following way:

S(H)=S(Θ,H).

2.2 Decompositions of the constraint
hierarchy

The original definition of the solution of the constraint
hierarchy from [6] corresponds to a combination of
Definition 4 and 5. We only extracted the solution step and
give it a name - a hierarchy satisfier. We can apply the
hierarchy satisfier to a complete constraint hierarchy to get
the solution but this corresponds to solving the hierarchy as
a single entity. There exist algorithms that solve the
constraint hierarchy in one step, like the projection
algorithm from [9], but these algorithms can hardly provide
incremental behaviour similar to local propagation
algorithms. Therefore it seems more desirable to decompose
the constraint hierarchy into smaller sets of labelled
constraints - we call them cells - and then apply the
hierarchy satisfier gradually to these sets. If the constraint
hierarchy is changed then we can find a new solution
starting from the first changed cell instead of re-computing
the solution from scratch.

Definition 6 Given a constraint hierarchy H and a natural
number n≥1, we call the sequence B1,…,Bn a decomposition
of H with the cells Bi if the following properties hold:

∀i∈{1,..,n} Bi⊆H
∀i,j∈{1,..,n}, i≠j Bi∩Bj=∅

B1∪…∪ Bn =H

Our solution method is based on applying gradually the
operator of hierarchical satisfier to this sequence. In fact, we
apply this operator starting from the set of all valuations that
satisfy all the required constraints in the hierarchy. First, we
define what soundness of the decomposition means.

Definition 7 Given a hierarchy satisfier S and a constraint
hierarchy H, we call its decomposition B1,…,Bn sound, if the
following property holds for all sets Θ of valuations:

),()...,()),...),,((...(HSBBSBBSSS nn Θ=∪∪Θ⊆Θ 11

Typically, we will use the set Θ of valuations satisfying the
required constraints from the hierarchy. Then the above
definition says that all the valuations "computed" by gradual
application of the hierarchy satisfier to the sound
decomposition belong to the solution set of the constraint
hierarchy. It is easy to show that there exists a
decomposition that is not sound.

Lemma 2 There exists a constraint hierarchy H that has a
non-sound decomposition.

Proof Let A={x=1@weak} and B={x=2@strong} and A,B
is a decomposition of H. Then visibly:

{ }{ }2/)(xBAS =∪

{ }{ } { }{ }11 /),/()),((xBxSBASS == o

The problem highlighted in the proof of Lemma 2 is that
there is a constraint in the first cell (x=1@weak) whose
satisfaction causes relaxation of a stronger constraint
(x=2@strong) in the subsequent cell. We should ensure that
this situation never occurs in the sequence of the cells,
otherwise we cannot guarantee soundness of the method.
Using the above observation, we formulate a sufficient
condition - a gradual weakening property - for the sequence
of cells that guarantees soundness of the decomposition. It
says the following: if some valuation is selected by the
hierarchy satisfier and any constraint is violated by this
valuation then all the constraints in the previous cells must
be stronger than the strongest constraint in the cell where
the violated constraint is located.

Definition 8 We say that the sequence of cells B1,…,Bn

satisfies the gradual weakening property if the following
implication holds for every i∈{1,…,n-1} and for every set Θ
of valuations:

)'''''@'''@'(

)),(@

)...,()),...),,((...((

kkBkcBkcij

ceBlc

BBSBBSSS

ij

i

ii

<∈∀∈∀≤∀⇒

>σ∈∃

∪∪Θ∪Θ∈σ∃

+

+

++

0
1

1

1111

The above definition of the gradual weakening property
describes formally the idea behind the constraint
hierarchies. We prefer satisfaction of a stronger constraint to
satisfaction of an arbitrary number of weaker constraints, or,
in other words, dissatisfaction of the constraint is not caused
by satisfaction of a weaker constraint.

There exists a trivial sound decomposition of the
constraint hierarchy into hierarchy levels, i.e., Bi = Hi.
Visibly, this decomposition satisfies the gradual weakening
property because if i<j then all the constraints in Bi are
stronger than the constraints in Bj. The refining algorithms
use such decomposition, so our approach covers the refining
method for solving constraint hierarchies (and the theory
proves that the refining method is sound). Basically, the
solving algorithm is more efficient and incremental if it uses
a finer decomposition, i.e., the decomposition into smaller
cells. In [1] we showed some algorithms for construction of

decompositions finer than the decomposition into hierarchy
levels.

The following auxiliary lemma shows some features of
the gradual weakening property. This lemma can be seen as
an extension of Lemma 1 to a sequence of cells. In
particular, if the method of solving constraint hierarchy (by
decomposition into cells and application of the hierarchy
satisfier) is sound and it provides some valuation σ which is
equally good to another valuation θ then this second
valuation θ is computed by the method as well.

Lemma 3 Let θ be a valuation in Θ and B1,…,Bn be a
sequence of cells that satisfies the gradual weakening
property.

If θσΘ∈σ
∪∪ nBB

nBBSSS
...
~)),...),,((...(

1

 such that 1 and

{ })...,()),...),,((...(,..., ii BBSBBSSSni ∪∪Θ⊆Θ∈∀ 11 1 then

the following formulas hold:

a) { } θσ∈∀
∪∪ iBB ...

~
1

 n1,...,i

b) { })),...),,((...(iBBSSS 1 n1,...,i Θ∈θ∈∀ .

The gradual weakening property is a sufficient condition
that guarantees the soundness of algorithms for solving
constraint hierarchies based on the decomposition of the
hierarchy into cells and gradual application of the hierarchy
satisfier.

Theorem 4 Let B1,…,Bn be a sequence of cells satisfying the
gradual weakening property. Then the following formula
holds:

)...,()),...),,((...(nn BBSBBSSS ∪∪Θ⊆Θ 11 .

Proof: By induction of the length of the sequence of cells.

Base: S(Θ,B1)⊆S(Θ,B1)

Induction step: assume that the following formula holds
 ∀i ∈{1,…n} S(…S(Θ, B1),…, Bi) ⊆ S(Θ,B1 ∪…∪Bi)

Assume for contradiction
)),...,,((... 11 +Θ∈∃ nBBSSσ s.t.)...,(11 +∪∪Θ∉ nBBSσ

(1)
From the induction assumption and (1):

σ ∈S(Θ, B
1∪…∪B

n
) (2)

Case ∀c@l∈Bn+1 e(c,σ)=0
From (2) and Lemma 1 a): σ ∈S(Θ, B1∪…∪Bn+1) , which is

a contradiction with (1)

Case ∃c@l∈ Bn+1 e(c,σ)>0
From the gradual weakening property: Bn+1 contains
constraints weaker than the constraints in the set B1∪…∪Bn ;
let m = min{l | c@l ∈Bn+1}, i.e., m is the strongest label
among the constraints in Bn+1

from (1), Definition 2, and Definition 3:

σππ
11 ...

+∪∪

<Θ∈∃
nBB

 i.e.

σπσπ
k

n
l

n BBBB

klk
)...()...(1111

 ~ }1,...1{ 0
++ ∪∪∪∪

<∧−∈∀>∃ (3)

Case k<m, i.e., the valuations σ and π are distinguished at
the level stronger than the strongest constraint in Bn+1

thus

∀j ≤ k (B1∪…∪Bn+1) j = (B1∪…∪Bn) j

 because ∅=+1n
jB

together with (3): σπ
nBB ∪∪

<
...1

 i.e.,

)...,(1 nBBS ∪∪Θ∉σ , which is a contradiction with (2)

Case k≥m
From the gradual weakening property:

j
n

j
n BBBBmj)...()...(111 ∪∪=∪∪<∀ + and

∅=∪∪≥∀ j
nBBmj)...(1

together with (3): π ~
B1∪…∪Bn

σ
from Lemma 3 b): π ∈S(…S(Θ,B1),…, Bn)

from the gradual weakening property and (3): π <
Bn+1

σ
thus σ ∉S(…S(Θ, B1),…, Bn+1) which is a contradiction with

(1)

We showed that the assumption (1) leads to a contradiction
so the following formula holds:

 ∀σ (σ ∈S(…S(Θ, B1),…,Bn+1) ⇒ σ ∈S(Θ, B1∪…∪ Bn+1)) , i.e.,

S(…S(Θ,B1),…, Bn+1) ⊆ S(Θ,B1 ∪…∪Bn+1) .

o

Theorem 4 guarantees soundness of the proposed method
for solving constraint hierarchies, i.e., all the valuations
found by applying gradually the hierarchy satisfier into the
sequence of cells satisfying the gradual weakening property
(GWP) belong to the solution set of the constraint hierarchy.
Note also, that GWP is a feature of the decomposition into
cells so it is independent of the problem. It means that any
constraint hierarchy (any problem) can be solved using the
above described method.

Sometimes, one needs to find all the valuations from the
solution set. Hence, we looked for an additional condition(s)
that guarantees the completeness of the algorithm. We
found that such a condition is linearity of the hierarchy
comparator, i.e., the hierarchy comparator totally orders all
the valuations according to a given constraint hierarchy. We
call such a comparator a total comparator.

Definition 9 We say that the level comparator
C
≤ is a total

level comparator if the following condition holds:

σ≤θ∨θ≤σθσ∀
CC

 , .

Definition 10 We say that the hierarchy comparator
H
≤ is a

total hierarchy comparator if it is defined using a total level
comparator.

Notice that any globally-better comparator, that is a
hierarchy comparator, is a total hierarchy comparator.
However, the locally-better comparators are not total
hierarchy comparators in general because two valuations
might be incomparable (e.g. H = {x=1@weak, x=2@weak},
σ = {x/1}, θ = {x/2}).

We prove below that our solving method may provide all
the solutions if the comparator is total. Opposite to GWP
(the soundness condition) which impose no restriction to the
problem, using the total comparator is a stronger condition
that is not satisfied by some problems/hierarchies.
Nevertheless, when the user requires all the solutions then
he or she may use global comparators and in such a case the
method guarantees completeness.

The following lemma shows the completeness of a single
propagation step. It is a simplified version of the full

completeness theorem restricted to the decomposition
consisting of two cells.

Lemma 5 Let B1, B2 be two cells satisfying the gradual
weakening property, S be a hierarchy satisfier that is
defined using a total hierarchy comparator
and ∅≠Θ)),,((21 BBSS . Then the following formula holds:

),()),,((2121 BBSBBSS ∪Θ=Θ .

Theorem 6 Let B1,…,Bn be a sequence of cells satisfying the
gradual weakening property, S be a hierarchy satisfier that
is defined using a total hierarchy comparator and

∅≠Θ)),...),,((...(nBBSSS 1 . Then the following formula

holds:
)...,()),...),,((...(nn BBSBBSSS ∪∪Θ=Θ 11 .

Proof: By induction of the length of the sequence of cells.
Base:),(),(11 BSBS Θ=Θ

Induction step: Assume that the following equality holds:
)...,()),...),,((...(nn BBSBBSSS ∪∪Θ=Θ 11

Thus
∅≠∪∪Θ=Θ ++)),...,(()),),...,,((...(1111 nnnn BBBSSBBBSSS

By Lemma 5
)...,()),...,((1111 ++ ∪∪∪Θ=∪∪Θ nnnn BBBSBBBSS

Together:
)...,()),),...,,((...(1111 ++ ∪∪∪Θ=Θ nnnn BBBSBBBSSS

o

Note that the completeness theorem requires one more
condition to be satisfied, in particular

∅≠Θ)),...),,((...(nBBSSS 1 , i.e., the proposed solution

method has to find at least one valuation.

3 CONCLUSIONS

In the paper we propose a theoretical framework for solving
constraint hierarchies by decomposition into constraint
cells. We also suggest sufficient conditions for soundness
and completeness of the solving methods based on this
framework (see [2] for proofs of all the lemmas).

The solvers based on our framework first decompose the
hierarchy into cells in such a way that this decomposition
satisfies the gradual weakening property. Then they
propagate valuations through these cells. In the worst case,
the decomposition into hierarchy levels might be used.
However, better behaviour of the solver can be achieved by
using finer decomposition. Current local propagation
algorithms can decompose some hierarchies into single
constraints but these algorithms have many limitations (see
Introduction). In [1], we propose a general decomposition
algorithm that can be applied to any constraint hierarchy.

The major contribution of this paper is providing a
theoretical framework for description of existing solvers as
well as for design of new solvers based on decomposition
into cells. We expect that these upcoming constraint
hierarchy solvers will handle non-functional constraints as
well as global comparators while still preserving advantages
of local propagation like incremental updates of the
constraint hierarchy or fast re-computing of the solution
after change of the value of some variable.

REFERENCES

[1] Barták R.: Constraint Hierarchy Networks, in Proceedings of
3rd ERCIM/CompulogNet Workshop on Constraints,
Amsterdam, 1998.

[2] Barták, R.: Expert Systems Based on Constraints, PhD.
Thesis, Charles University, 1997
(http://kti.mff.cuni.cz/~bartak).

[3] Borning, A., Anderson, R., Freeman-Benson, B., Indigo: A
Local Propagation Algorithm for Inequality Constraints, in:
Proceedings of the 1996 ACM Symposium on User Interface
Software and Technology, pp. 129-136, 1996.

[4] Borning, A., Duisberg, R., Freeman-Benson, B., Kramer, A.,
Woolf, M., Constraint Hierarchies, in: Proceedings of the
1987 ACM Conference on Object Oriented Programming
Systems, Languages, and Applications, pp.48-60, 1987.

[5] Borning, A., Freeman-Benson, B., The OTI Constraint
Solver: A Constraint Library for Constructing Interactive
Graphical User Interfaces, in: Principles and Practice of
Constraint Programming - CP95 (U.Montanari, F.Rossi
eds.), pp. 624-628, Cassis, France, 1995.

[6] Borning, A., Maher, M., Martindale, A., Wilson, M.,
Constraint Hierarchies and Logic Programming, in:
Proceedings of the Sixth International Conference on Logic
Programming, pp. 149-164, Lisbon, 1989.

[7] Borning A., Marriott K., Stuckey P., and Xiao Y., Solving
Linear Arithmetic Constraints for User Interface
Applications, in Proceedings of the 1997 ACM Symposium
on User Interface Software and Technology, pp. 87-96, 1997.

[8] Bouzoubaa, M., Neveu, B., Hasle, G., Houria III: Solver for
Hierarchical System, Planning of Lexicographic Weight Sum
Better Graph For Functional Constraints, in: the Fifth
INFORMS Computer Science Technical Section Conference
on Computer Science and Operations Research, Dallas,
Texas, 1996.

[9] Harvey, W., Stuckey, P.J., Borning, A., Compiling
Constraint Solving Using Projection, in: Principles and
Practice of Constraint Programming - CP'97 (G. Smolka
ed.), pp. 491-505, Springer-Verlag, 1997.

[10] Hosobe, H., Miyashita, K., Takahashi, S., Matsuoka, S.,
Yonezawa, A., Locally Simultaneous Constraint Satisfaction,
in: Principles and Practice of Constraint Programming -
PPCP'94 (A. Borning ed.), pp. 51-62, Springer-Verlag, 1994.

[11] Hosobe, H., Matsuoka, S., Yonezawa, A., Generalized Local
Propagation: A Framework for Solving Constraint
Hierarchies, in: Principles and Practice of Constraint
Programming - CP'96 (E. Freuder ed.), pp. 237-251,
Springer-Verlag, 1996.

[12] Sannella, M., The SkyBlue Constraint Solver, Tech. Report
92-07-02, Department of Computer Science and
Engineering, University of Washington, 1993.

[13] Sannella, M., Freeman-Benson, B., Maloney, J., Borning,A.,
Multi-way versus One-way Constraints in User Interfaces:
Experience with the DeltaBlue Algorithm, in Software--
Practice and Experience, Vol. 23 No. 5, pp. 529-566, 1993.

[14] Satoh K., Aiba A., Computing Soft Constraints by
Hierarchical Constraint Logic Programming, in: Journal of
Information Processing, 7, 1993.

[15] Vander Zanden, B., An Incremental Algorithm for Satisfying
Hierarchies of Multi-way Dataflow Constraints, Tech.
Report, Department of Computer Science, University of
Tennessee, 1995.

[16] Wilson, M., Borning, A., Hierarchical Constraint Logic
Programming, in: The Journal of Logic Programming,
special issue on Constraint Logic Programming, Vol. 16 No.
3 & 4, pp. 227-318, 1993.

