
CPDC’2004 
 

1 

 
 
 
 
 
INCOMPLETE DEPTH-FIRST SEARCH TECHNIQUES: 
A SHORT SURVEY 
 
ROMAN BARTÁK 
 
Charles University, Faculty of Mathematics and Physics 
Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic 
e-mail: bartak@kti.mff.cuni.cz 
 
Abstract: Constraint Satisfaction Problem (CSP) is a discrete combinatorial problem and 
hence search algorithms belong to the main constraint satisfaction techniques. There exist 
local search techniques exploring complete but inconsistent assignments and depth-first 
search techniques extending partial consistent assignments towards complete assignments. 
For most problems it is impossible to explore complete search space so incomplete 
techniques are used. In this paper, we survey incomplete depth-first search techniques, in 
particular, generic incomplete search techniques and discrepancy-based search techniques. 
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1 INTRODUCTION 

Incomplete search techniques are quite popular in 
solving real-life problems because the realistic 
search space cannot usually be explored 
exhaustively and parts of it must be skipped 
anyway. Instead of focusing on a small subpart of 
the search space that is explored completely, the 
incomplete search techniques spread available 
resources, like time, over the search space to 
increase chances of finding a solution1. This is 
usually done via a cutoff limit that stops complete 
exploration of some sub-space and forces the search 
algorithm to move somewhere else. In this paper, 
we will survey general cutoff techniques for 
incomplete depth-first search algorithms applied to 
constraint satisfaction problems. In particular, we 
will discuss limited depth [5], credit [4], breadth 
[6], and number of assignments [2].  

For many problems there exist heuristics 
proposing values to be assigned to variables. For 
some problems the heuristics often lead to a 
solution but not always. So the question is what to 
do when the heuristics fail. The second group of 
incomplete algorithms discussed in this paper uses 
the number of violations of the heuristics – so 

                                                           
1 If no additional information is available, it is expected that the 
solutions are spread uniformly over the search space. Hence, 
instead of being stacked in one part of the search space, it seems 
better to spread the search effort over the search space as well. 

called discrepancies – to guide the search 
procedure. These algorithms are based on 
observation that the number of discrepancies on the 
path leading to a solution is usually small. Thus, the 
algorithms limit the number of allowed 
discrepancies during search. In this paper, we will 
describe three representatives of discrepancy-based 
search algorithms, namely Limited Discrepancy 
Search [8], Improved Limited Discrepancy Search 
[9], and Depth-bounded Discrepancy Search [14]. 

We will present incomplete versions of the 
depth-first search algorithms so the algorithms do 
not guarantee finding a solution or proving that no 
solution exists. To obtain some valid assignment 
from incomplete search, in [1] we proposed to use 
incomplete assignments as an approximation of the 
solution. The idea is to return at least some partial 
assignment of variables at a given time, for 
example to allocate the maximal number of lectures 
to available rooms [12]. The variables, that are not 
assigned, can be seen as a hard part of the problem 
and they can be preferred for assignment during the 
next run of the search algorithm (called restart). 
Note also that the maximal assignment can be seen 
as a solution for over-constrained problems where 
no complete consistent assignment exists. 

In this paper, we focus on the cutoff techniques 
only and the restart strategies will be a part of our 
follow-up research. Note finally, that by using the 
restart strategies that increase the limit, the 
presented algorithms can be completed. 
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2 PRELIMINARIES 

A constraint satisfaction problem (CSP) is a triple 
Θ = (V,D,C), where  
• V = {v1, v2,…, vn} is a finite set of variables,  
• D = {D1, D2,…, Dn} is a set of domains, 

where Di is a set of possible values for the 
variable vi, 

• C = {c1, c2,…, cm} is a finite set of 
constraints restricting the values that the 
variables can simultaneously take. 

Assignment σ for a CSP Θ=(V,D,C) is a set of pairs 
vi/di such that vi∈V, di∈Di and each vi appears at 
most once in σ. We call the assignment σ complete 
if each vi∈V appears exactly once in σ, otherwise 
the assignment is incomplete. We call the 
assignment τ an extension of the assignment σ if 
σ⊂τ. A solution to a CSP Θ is a complete 
assignment of the variables that satisfies all the 
constraints. 

Depth-first search techniques typically extend a 
partial consistent assignment towards a complete 
consistent assignment, where by consistent 
assignment we understand the assignment 
satisfying at least the constraints over the 
instantiated variables (the variables from the 
assignment). There exist stronger consistency 
techniques that can check validity of constraints in 
advance by propagating information about the 
current assignment towards the non-instantiated 
variables. In particular, the values incompatible 
with the current partial assignment are removed 
from the domains (domain filtering), because these 
values cannot participate in any assignment 
extending the current assignment and satisfying all 
the constraints. If any domain becomes empty then 
the partial assignment is inconsistent; otherwise the 
partial assignment is locally consistent. Note, that 
in addition to a consistency check the domain 
filtering also prunes the search space to be explored 
when extending the partial assignment. On the 
other hand, local consistency of the assignment σ 
usually does not guarantee existence of the 
solution2 extending σ. In this paper, we focus on 
the search techniques and we expect that they are 
accompanied by a local consistency technique, 
typically generalized arc consistency. 

For many constraint satisfaction problems, it is 
hard or even impossible to find a solution in the 
above sense that is to find a complete consistent 
assignment. For example, there is no complete 
assignment satisfying all the constraints in over-
constrained problems. Therefore in [1] we proposed 
a generalized view of the solution based on the 
notion of a maximal consistent assignment. The 
basic idea is to assign as many variables as possible 

                                                           
2 There exist global consistency techniques that guarantee 
existence of the solution but the time complexity of these 
techniques is comparable to much simpler search algorithms. 

without getting (local) inconsistency. So, the 
maximal consistent assignment is defined as a 
consistent assignment of the largest cardinality. We 
can also define a weaker notion of locally maximal 
consistent assignment which is a consistent 
assignment that cannot be extended to a non-
instantiated variable. 

Note that if there is a solution to a CSP then it is 
a maximal consistent assignment and, vice versa, if 
the cardinality of a maximal consistent assignment 
equals to the number of variables in the problem 
then this assignment is a solution. The maximal 
consistent assignment can also be seen as a solution 
to over-constrained problems where no complete 
consistent assignment exists. Moreover looking for 
a maximal consistent assignment has the advantage 
that it is not necessary to know in advance whether 
the problem is over-constrained or not. 

The search techniques discussed in this paper 
explore the locally maximal consistent assignments 
and remember the assignment with the largest 
number of assigned variables. If the search space is 
explored completely then the maximal consistent 
assignment is obtained. For incomplete search 
techniques, we will get an approximation of the 
solution. The larger assignment we got the better 
approximation we have. Thus the quality of 
different incomplete search techniques can now be 
evaluated by the number of instantiated variables in 
the best locally maximal consistent assignment 
found. Note finally that such approach is also useful 
for solving hard-to-solve problems where 
incomplete assignments can be obtained. 

3 GENERIC INCOMPLETE SEARCH 

In this section, we will survey non-discrepancy 
based incomplete depth-first search algorithms, 
namely depth-bounded backtrack search, credit 
search, iterative broadening, and limited-
assignment number search. We will present the 
algorithms in a new uniform recursive code sharing 
the same structure and common procedures. The 
reason for this uniformity is an attempt to abstract 
from the particular implementation which helps us 
to compare better the core features of the 
algorithms. In particular, we will focus on the 
comparison of the cutoff schemes rather than on the 
restart strategies. 

Another difference from the traditional 
formulation of these algorithms is using a specific, 
possibly non-binary, branching scheme based on 
the selection of a value for the variable. Thus all the 
algorithms share the procedures for variable 
selection (select_free_variable/1) determining 
the shape of the search tree and value selection 
(select_first_value/1, select_next_value/2) 
determining the order in which the branches are 
explored. Note also, that constraint propagation is 
integrated into the search algorithms in a MAC-like 
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scheme. It means that each time the algorithm 
attempts to assign a value to the variable 
(assign/2), constraint propagation is evoked and 
domains of non-instantiated variables are filtered. If 
any domain becomes empty then the assignment 
fails and a next value is tried. This so called 
shallow backtracking is not counted as a valid 
assignment in our algorithms. Otherwise search 
proceeds to the next variable. Upon backtracking, 
the current variable assignment must be revoked 
together with the changes in the variables’ domains 
that have been done during constraint propagation 
(unassign/1). 

Finally, we extended the algorithms to 
memorize the largest assignment found during 
search. The partial assignment is stored if it is 
better (has a higher number of instantiated 
variables) than the so-far best stored assignment. 
For simplicity reasons, we evaluate the assignments 
before any backtrack (update_best/1). Recall that 
constraint propagation is integrated into the search 
procedure so the actual number of instantiated 
variables can be higher than the actual depth where 
the partial assignment is being saved. If the 
algorithm succeeds (the value true is returned) 
then a complete consistent assignment has been 
found and all the variables have their own values. 
Otherwise (the value fail is returned) the largest 
assignment can be recovered from the saved 
assignment. This technique is going in the direction 
towards the locally maximal consistent assignment 
but it does not always give the locally maximal 
consistent assignment (when a value selection for a 
given variable failed it might be still possible to 
assign a value to another non-instantiated variable). 
In [1], we proposed a technique of variable locking 
to get the locally maximal consistent assignments. 
It produces better assignments in terms of the 
number of instantiated variables but it is also more 
time consuming. For simplicity reasons, we do not 
use variable locking here and a deeper study of this 
technique is still required. 

3.1 Depth-Bounded Backtrack Search (DBS) 

Depth-Bounded Backtrack Search (DBS) is based 
on the idea of limiting the depth of complete tree 
search where all alternatives are explored [5]. To 
have a chance of obtaining a complete solution we 
use the technique that if the depth limit is exceeded 
then only a single alternative is tried (shallow 
backtracking ignored). In general, it is possible to 
use another incomplete tree search technique there. 
Note that if the depth limit equals to the number of 
variables then standard chronological backtracking 
is obtained. Figure 1 shows an abstract code of 
Depth-Bounded Backtrack Search. 
 

procedure DBS(Variables,DepthLimit) 
 if all_instantiated(Variables) then 
  return true 
 Var ← select_free_variable(Variables) 
 Tried ← false   // ignore shallow BT 
 Value ← select_first_value(Var) 
 repeat 
  if assign(Var,Value) then 
   Tried ← true 
   if DBS(Variables,DepthLimit-1) then 
    return true 
   unassign(Var) 
   Value ← select_next_value(Var,Value) 
 until Value=nil or (Tried & DepthLimit<1) 
 update_best(Variables) 
 return fail 
end DBS 
 
Fig. 1. An abstract code of Depth-Bounded Backtrack 
Search (DBS). The bold parts are specific for DBS. 

Let d be the size of the domains of the variables, 
and h be the depth limit. Then the worst case time 
complexity of the algorithm is O(dh), which 
corresponds to the number of explored branches. 
Note that some values are filtered from the domains 
due to constraint propagation and thus fewer 
branches are explored. Figure 2 illustrates the 
branches possibly explored by the algorithm. 
Notice that some branches and sub-trees are 
eliminated using constraint propagation (dotted 
lines in Figure 2) and some branches may be 
terminated earlier due to inconsistency detected 
during variable assignment (not included in Figure 
2). Actually, when a leaf is reached then the 
algorithm stops with success. 
 
 
 
 
 
 
 
 
Fig. 2. Branches explored by Depth-Bounded Backtrack 
Search with the depth 2 (bold). The branches are 
explored from left to right. Dotted sub-trees are pruned 
via constraint propagation. 

3.2 Credit Search (CS) 

Credit Search (CS) uses a similar idea like DBS. 
They both restrict the number of alternatives tried 
in each node, in particular fewer alternatives are 
explored in the bottom parts of the search tree [4]. 
However, CS uses a finer control over branching 
via a so called credit. Credit is a natural number 
describing the maximal number of alternative 
branches to be explored. The credit c is split to k 
child nodes (alternatives) in the following way. 
Each child node has allocated a credit (c div k) that 
is increased by one for the first (c mod k) child 
nodes (the order of the nodes is given by the value 

DBS(2) 
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selection heuristic). In particular, credit one implies 
that only one alternative is tried (shallow 
backtracking ignored). Figure 3 shows an abstract 
code of the Credit Search. 
 
procedure CS(Variables,Credit) 
 if all_instantiated(Variables) then 
  return true 
 Var ← select_free_variable(Variables) 
 BaseCredit ← Credit div size(dom(Var)) 
 RestCredit ← Credit mod size(dom(Var)) 
 Value ← select_first_value(Var) 
 repeat 
  if assign(Var,Value) then 
   if RestCredit>0 then 
    ValueCredit ← BaseCredit+1 
    RestCredit ← RestCredit-1 
   else 
    ValueCredit ← BaseCredit 
   end if 
   Credit ← Credit-ValueCredit 
   if CS(Variables,ValueCredit) then 
    return true 
   unassign(Var) 
  Value←select_next_value(Var,Value) 
 until Value=nil or Credit=0 
 update_best(Variables) 
 return fail 
end CS 
 
Fig. 3. An abstract code of Credit Search (CS). The bold 
parts are specific for CS. 

Let c be the credit then the worst case time 
complexity of the algorithm is O(c). Figure 4 
illustrates the branches possibly explored by the 
algorithm. Again, some branches may be 
terminated earlier due to inconsistency of the partial 
assignment. 
 
 
 
 
 
 
 

Fig. 4. Branches explored by Credit Search with the 
credit 7 (bold). The branches are explored from left to 
right. Dotted sub-trees are pruned via constraint 
propagation. 

3.3 Iterative Broadening (IB) 

Iterative Broadening (IB) restricts the number of 
alternatives tried in each node by a breadth limit 
[6]. Opposite to DBS and CS, Iterative Broadening 
may explore a restricted number of alternatives in 
each node which leads to an exponential time 
complexity. Figure 5 shows an abstract code of IB. 
Again, shallow backtracking is ignored so 
immediately failing alternatives are not counted in 
the breadth limit. 
 

procedure IB(Variables,BreadthLimit) 
 if all_instantiated(Variables) then 
  return true 
 Var ← select_free_variable(Variables) 
 AvailableBreadth ← BreadthLimit 
 Value ← select_first_value(Var) 
 repeat 
  if assign(Var,Value) then 
  AvailableBreadth ← AvailableBreadth-1 
  if IB(Variables,BreadthLimit) then 
   return true 
  unassign(Var) 
  Value ← select_next_value(Var,Value) 
 until Value=nil or AvailableBreadth=0 
 update_best(Variables) 
 return fail 
end IB 
 
Fig. 5. An abstract code of Iterative Broadening (IB). The 
bold parts are specific for IB. 

Let b be the breadth limit and n be the number of 
variables. Then the worst case time complexity of 
the algorithm is O(bn). Thus, for any b>1 the 
algorithm has an exponential time complexity 
which makes it different from the above described 
incomplete search techniques. Figure 6 illustrates 
the branches explored by IB. 
 
 
 
 
 
 
 
 
Fig. 6. Branches explored by Iterative Broadening with 
the breadth 2 (bold). The branches are explored from left 
to right. Dotted sub-trees are pruned via constraint 
propagation. 

3.4 Limited Assignment Number Search (LAN) 

Iterative Broadening has the advantage of giving 
equal chances to every variable to obtain its value 
while Depth-Bounded Backtrack Search and Credit 
Search prefer the variables selected earlier (more 
values are tried for these variables). However, the 
time complexity of Iterative Broadening is 
exponential. In [2], we proposed to modify the 
main idea of Iterative Broadening in such a way 
that the total number of attempts to assign a value 
to the variable is restricted. We introduced a so 
called LAN (Limited Assignment Number) limit 
indicating how many times a value can be assigned 
to each variable. When the number of assignments 
to the variable reaches the LAN limit, we say that 
the variable expired. The search procedure does not 
try to assign a value to expired variables (shallow 
backtracking ignored). These variables are removed 
from the list of variables before a variable is 
selected for assignment (filter_expired/1). We 
call the resulting algorithm Limited Assignment 

CS(7) 

IB(2) 
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Number (LAN) Search [13] and Figure 7 shows its 
abstract code. Note finally, that a value can still be 
assigned to the expired variable via constraint 
propagation. 
 
procedure LAN(Variables, LANlimit) 
// counters were initialized to zero 
// before the search started 
 FreeVariables ← filter_expired(Variables) 
 if all_instantiated(FreeVariables) then 
  return true 
 Var ← select_free_variable(FreeVariables) 
 Value ← select_first_value(Var) 
 repeat 
  if assign(Var,Value) then 
   counter(Var) ← counter(Var)+1 
   if LAN(Variables, LANlimit) then 
    return true 
   unassign(Var) 
  Value ← select_next_value(Var,Value) 
 until Value=nil or counter(Var)=LANlimit 
 update_best(Variables) 
 return fail 
end LAN 
 
Fig. 7. An abstract code of Limited Assignment Number 
Search (LAN). The bold parts are specific for LAN. 

Let l be the LAN limit and n be the number of 
variables. The number of assignments to the 
variable is accumulated during search. Thus for 
each variable, at most l values are tried. 
Consequently, the worst case time complexity of 
the algorithm is O(nl). Figure 8 illustrates the 
branches explored by LAN Search. 
 
 
 
 
 
 
 
Fig. 8. Branches explored by LAN Search with the LAN 
limit 5 (bold). The branches are explored from left to 
right. Dotted sub-trees are pruned via constraint 
propagation. 

4 DISCREPANCY BASED SEARCH 

In this chapter, we will survey discrepancy based 
incomplete depth-first search algorithms, namely 
limited discrepancy search, improved limited 
discrepancy search, and depth-bounded discrepancy 
search. All these techniques are trying to recover as 
best as possible from the failure of the heuristics. 

Heuristics guide search towards regions of the 
search space that are most likely to contain 
solutions. For some problems, the heuristics lead 
directly to a solution but not always. The 
discrepancy based search algorithms address the 
problem what to do when the heuristics fail. They 
are based on a common observation that even if the 
heuristic fails then the number of such failures is 

quite low on the branch leading to a solution. A 
discrepancy is a decision point in the search tree 
where the algorithm goes against the heuristic. 
According to the above observation, the techniques 
like Limited Discrepancy Search [8] and Improved 
Limited Discrepancy Search [9] propose to change 
the order of branches to be explored in such a way 
that the branches with a smaller number of 
discrepancies are explored first. These techniques 
treat all discrepancies alike, irrespective of their 
depth. However, heuristics tend to be less informed 
and make more mistakes at the top of the search 
tree. Thus, it may seem useful to explore first the 
branches where the discrepancies are at the top of 
the tree before the branches where the discrepancies 
are at the bottom. This idea is used by Depth-
bounded Discrepancy Search [14]. 

Like in the previous section we will present the 
algorithms with possible non-binary branching 
based on selecting a value for the chosen variable 
(select_free_variable/1). We expect that the 
heuristic proposes the best value as the first value 
(select_first_value/1) and every other selected 
value (select_next_value/2) is a discrepancy. 
There exists another approach that increases the 
number of discrepancies with the distance from the 
first proposed value. In particular, the second value 
is counted as one discrepancy, the third value is 
counted as two discrepancies and so on. We are not 
aware about any study comparing these two 
techniques, in fact most of the discrepancy based 
algorithms were presented for binary branching 
only [3,8,9,14]. 

4.1 Limited Discrepancy Search (LDS) 

Limited Discrepancy Search [8] was the first 
algorithm that highlighted the idea of preferring 
branches with fewer discrepancies. The algorithm 
uses the limit on the number of allowed 
discrepancies and it explores only the branches 
where the limit is not exceeded. Figure 9 shows an 
abstract code of Limited Discrepancy Search. 
 
procedure LDS(Variables,DiscrLimit) 
 if all_instantiated(Variables) then 
  return true 
 Var ← select_free_variable(Variables) 
 FirstVal ← select_first_value(Var) 
 Value ← select_next_value(Var,FirstVal) 
 while DiscrLimit>0 and Value≠nil do 
  if assign(Var,Value) then 
   if LDS(Variables,DiscrLimit-1) then 
    return true 
   unassign(Var) 
  Value ← select_next_value(Var,Value) 
 end while 
 update_best(Variables) 
 if assign(Var,FirstValue) then 
  return LDS(Variables,DiscrLimit) 
end LDS 
 
Fig. 9. An abstract code of Limited Discrepancy Search. 

LAN(5) 
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Let n be the number of variables, d be the domain 
size, and l be the limit on the number of 
discrepancies. Then Limited Discrepancy Search 

explores ( )∑ = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

l

i i
n

d
0

1  branches in the worst 

case. Figure 10 illustrates the branches explored by 
LDS with the limit 1. The left branch is assumed to 
be recommended by the heuristic there. 
 

 
Fig. 10. Branches explored by Limited Discrepancy 
Search with the limit 1 (bold). The numbers indicate the 
order in which the branches are visited. 

4.2 Improved Limited Discrepancy Search 
(ILDS) 

The main drawback of Limited Discrepancy Search 
is that it visits branches more than once when 
increasing the limit on the number of discrepancies. 
In fact, all the branches explored by LDS(i) are 
visited again by LDS(i+1). Therefore Korf 
proposed Improved Limited Discrepancy Search [9] 
that explores only the branches with a given 
number of discrepancies. We present a modified 
version of his algorithm where we count the 
number of non-assigned variables instead of using 
the depth of the choice point. If the number of non-
assigned variables is smaller or equal to the number 
of requested discrepancies then discrepancies are 
forced to achieve the requested number of 
discrepancies. Figure 11 shows an abstract code of 
Improved Limited Discrepancy Search. 
 
procedure ILDS(Variables,DiscrLimit) 
 if all_instantiated(Variables) then 
  return true 
 NoFree ← |free_variables(Variables)| 
 Var ← select_free_variable(Variables) 
 FirstVal ← select_first_value(Var) 
 if DiscrLimit<NoFree and 
   assign(Var,FirstValue) then 
  if ILDS(Variables,DiscrLimit) then 
   return true 
 Value ← select_next_value(Var,FirstVal) 
 while DiscrLimit>0 and Value≠nil do 
  if assign(Var,Value) then 
   if LDS(Variables,DiscrLimit-1) then 
    return true 
   unassign(Var) 
  Value ← select_next_value(Var,Value) 
 end while 
 update_best(Variables) 
 return fail 
end ILDS 
 
Fig. 11. An abstract code of Improved Limited 
Discrepancy Search. 

In the worst case, Improved Limited Discrepancy 

Search explores ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

l
n

d 1  branches, where n is the 

number of variables, d is the domain size, and l is 
the limit on the number of discrepancies. Figure 12 
illustrates the branches explored by ILDS with the 
limit 1. Notice also, the ILDS uses a different the 
order of branches than LDS. 
 

 
Fig. 12. Branches explored by Improved Limited 
Discrepancy Search with the limit 1 (bold). The numbers 
indicate the order in which the branches are visited. 

4.3 Depth-bounded Discrepancy Search (DDS) 

As we already mentioned LDS and ILDS have been 
proposed to explore the branches with a smaller 
number of discrepancies first. However, another 
observation says that branches with discrepancies at 
a top part should be preferred because the heuristics 
tend to be less informed and make more mistakes 
there. Therefore Depth-bounded Discrepancy 
Search has been proposed to address this issue [14]. 
The idea is to allow discrepancies only till some 
depth of the search tree and below this depth the 
search procedure must follow the heuristic. Note 
also that the depth restricts naturally the number of 
discrepancies that cannot be greater than the depth 
limit. Moreover, it is surprisingly easy to enforce 
that the branches are not re-visited in the next 
iteration by forcing a discrepancy at given depth. 
Figure 13 shows an abstract code of Depth-bounded 
Discrepancy Search. 
 
procedure DDS(Variables,Depth) 
 if all_instantiated(Variables) then 
  return true 
 Var ← select_free_variable(Variables) 
 FirstVal ← select_first_value(Var) 
 if Depth≠1 and 
   assign(Var,FirstValue) then 
  if DDS(Variables,Depth-1) then 
   return true 
 Value ← select_next_value(Var,FirstVal) 
 while Depth>0 and Value≠nil do 
  if assign(Var,Value) then 
   if DDS(Variables,Depth-1) then 
    return true 
   unassign(Var) 
  Value ← select_next_value(Var,Value) 
 end while 
 update_best(Variables) 
 return fail 
end DDS 
 
Fig. 13. An abstract code of Depth-bounded Discrepancy 
Search. 

6 2 4 1 3 5 

LDS(1) 

42 5 31

ILDS(1) 



CPDC’2004 
 

7 

Let d be the domain size and l be the depth limit. 
Then Depth-bounded Discrepancy Search explores 
at most d(l-1) branches. Figure 14 illustrates the 
branches explored by DDS with the depth limit 3. 
 
 

 
Fig. 14. Branches explored by Depth-bounded 
Discrepancy Search with the limit 3 (bold). The numbers 
indicate the order in which the branches are visited. 

5 RELATED WORKS 

In addition to search algorithms presented in this 
paper, there exist other incomplete depth-first 
search techniques. The only missing algorithm 
among the generic (non-discrepancy) incomplete 
depth-first search techniques that we are aware 
about is bounded backtrack search that limits the 
number of backtracks [7]. We decided to omit this 
algorithm because it can be modeled using the 
above algorithms by including a time limit. 
Moreover bounded backtrack search does not 
follow the idea of spreading the search effort over 
the search space because all the explored branches 
are cumulated in the same area. 

Among the discrepancy-based search techniques 
we are aware about two additional algorithms: 
interleaved depth-first search [10] and discrepancy-
bounded depth-first search [3]. Interleaved depth-
first search (IDFS) biases search to discrepancies 
high in the tree similarly to DDS. The idea of IDFS 
is to search in parallel several sub-trees. When a 
leaf is found in one sub-tree then IDFS switches to 
a parallel sub-tree and continues there until a leaf is 
found. Then it switches to the next parallel sub-tree 
etc. and the process is terminated when a goal leaf 
is found. There exists a pure version of IDFS with 
an exponential space complexity in search depth 
(Figure 15) and a limited version of IDFS with a 
linear space complexity in search depth. Opposite 
to other algorithms presented in this paper, IDFS is 
a complete algorithm that does not use restarts. 
IDFS is experimentally compared to DDS in [11]. 

 

 
Fig. 15. The first branches explored by Interleaved depth-
first search (bold). The numbers indicate the order in 
which the branches are visited. 

Discrepancy-bounded depth-first search [3] 
(DBDFS) has been proposed for finding and 
proving optimal solutions. The algorithm is 
designed to minimize the number of revisited nodes 
while, at the same time, to preserve as much as 
possible the discrepancy-based order in which 
branches are explored. During the i-th iteration, the 
algorithm explores branches with discrepancies 
between (i-1)k and ik-1 inclusive, where k is called 
a width of the search and it is an additional 
parameter of the algorithm. Figure 16 illustrates the 
search process. Notice that the branches are 
explored in a different order than LDS (Figure 10) 

 
 

 
Fig. 16. Branches explored by Discrepancy-bounded 
depth-first search during the first iteration with width 2 
(bold). The numbers indicate the order in which the 
branches are visited. 

6 CONCLUSIONS 

In the paper we presented the main incomplete 
depth-first search algorithms including generic and 
discrepancy-based techniques. The paper did not 
give just a survey of these algorithms but we 
described the algorithms in a new uniform way that 
makes their comparison easier. We modified some 
of the algorithms to work with non-binary 
branching that is more typical for variable 
assignments. Additionally, the algorithms are 
presented in such a way that they can keep the 
maximal consistent assignment found during 
search. A deeper comparison of generic incomplete 
depth-first search techniques is given in [2], where 
the LAN Search algorithm is introduced. 

Our future work goes in the direction of 
studying the restart strategies for these algorithms 
as well as studying implementation details and 
performance of the discrepancy-based search 
techniques when applied to various types of 
problems. 
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