
CPDC’2004

1

INCOMPLETE DEPTH-FIRST SEARCH TECHNIQUES:
A SHORT SURVEY

ROMAN BARTÁK

Charles University, Faculty of Mathematics and Physics
Malostranské náměstí 2/25, 118 00 Praha 1, Czech Republic
e-mail: bartak@kti.mff.cuni.cz

Abstract: Constraint Satisfaction Problem (CSP) is a discrete combinatorial problem and
hence search algorithms belong to the main constraint satisfaction techniques. There exist
local search techniques exploring complete but inconsistent assignments and depth-first
search techniques extending partial consistent assignments towards complete assignments.
For most problems it is impossible to explore complete search space so incomplete
techniques are used. In this paper, we survey incomplete depth-first search techniques, in
particular, generic incomplete search techniques and discrepancy-based search techniques.

Keywords: constraint satisfaction, depth-first search, discrepancy search, incomplete
solutions

1 INTRODUCTION

Incomplete search techniques are quite popular in
solving real-life problems because the realistic
search space cannot usually be explored
exhaustively and parts of it must be skipped
anyway. Instead of focusing on a small subpart of
the search space that is explored completely, the
incomplete search techniques spread available
resources, like time, over the search space to
increase chances of finding a solution1. This is
usually done via a cutoff limit that stops complete
exploration of some sub-space and forces the search
algorithm to move somewhere else. In this paper,
we will survey general cutoff techniques for
incomplete depth-first search algorithms applied to
constraint satisfaction problems. In particular, we
will discuss limited depth [5], credit [4], breadth
[6], and number of assignments [2].

For many problems there exist heuristics
proposing values to be assigned to variables. For
some problems the heuristics often lead to a
solution but not always. So the question is what to
do when the heuristics fail. The second group of
incomplete algorithms discussed in this paper uses
the number of violations of the heuristics – so

1 If no additional information is available, it is expected that the
solutions are spread uniformly over the search space. Hence,
instead of being stacked in one part of the search space, it seems
better to spread the search effort over the search space as well.

called discrepancies – to guide the search
procedure. These algorithms are based on
observation that the number of discrepancies on the
path leading to a solution is usually small. Thus, the
algorithms limit the number of allowed
discrepancies during search. In this paper, we will
describe three representatives of discrepancy-based
search algorithms, namely Limited Discrepancy
Search [8], Improved Limited Discrepancy Search
[9], and Depth-bounded Discrepancy Search [14].

We will present incomplete versions of the
depth-first search algorithms so the algorithms do
not guarantee finding a solution or proving that no
solution exists. To obtain some valid assignment
from incomplete search, in [1] we proposed to use
incomplete assignments as an approximation of the
solution. The idea is to return at least some partial
assignment of variables at a given time, for
example to allocate the maximal number of lectures
to available rooms [12]. The variables, that are not
assigned, can be seen as a hard part of the problem
and they can be preferred for assignment during the
next run of the search algorithm (called restart).
Note also that the maximal assignment can be seen
as a solution for over-constrained problems where
no complete consistent assignment exists.

In this paper, we focus on the cutoff techniques
only and the restart strategies will be a part of our
follow-up research. Note finally, that by using the
restart strategies that increase the limit, the
presented algorithms can be completed.

CPDC’2004

2

2 PRELIMINARIES

A constraint satisfaction problem (CSP) is a triple
Θ = (V,D,C), where
• V = {v1, v2,…, vn} is a finite set of variables,
• D = {D1, D2,…, Dn} is a set of domains,

where Di is a set of possible values for the
variable vi,

• C = {c1, c2,…, cm} is a finite set of
constraints restricting the values that the
variables can simultaneously take.

Assignment σ for a CSP Θ=(V,D,C) is a set of pairs
vi/di such that vi∈V, di∈Di and each vi appears at
most once in σ. We call the assignment σ complete
if each vi∈V appears exactly once in σ, otherwise
the assignment is incomplete. We call the
assignment τ an extension of the assignment σ if
σ⊂τ. A solution to a CSP Θ is a complete
assignment of the variables that satisfies all the
constraints.

Depth-first search techniques typically extend a
partial consistent assignment towards a complete
consistent assignment, where by consistent
assignment we understand the assignment
satisfying at least the constraints over the
instantiated variables (the variables from the
assignment). There exist stronger consistency
techniques that can check validity of constraints in
advance by propagating information about the
current assignment towards the non-instantiated
variables. In particular, the values incompatible
with the current partial assignment are removed
from the domains (domain filtering), because these
values cannot participate in any assignment
extending the current assignment and satisfying all
the constraints. If any domain becomes empty then
the partial assignment is inconsistent; otherwise the
partial assignment is locally consistent. Note, that
in addition to a consistency check the domain
filtering also prunes the search space to be explored
when extending the partial assignment. On the
other hand, local consistency of the assignment σ
usually does not guarantee existence of the
solution2 extending σ. In this paper, we focus on
the search techniques and we expect that they are
accompanied by a local consistency technique,
typically generalized arc consistency.

For many constraint satisfaction problems, it is
hard or even impossible to find a solution in the
above sense that is to find a complete consistent
assignment. For example, there is no complete
assignment satisfying all the constraints in over-
constrained problems. Therefore in [1] we proposed
a generalized view of the solution based on the
notion of a maximal consistent assignment. The
basic idea is to assign as many variables as possible

2 There exist global consistency techniques that guarantee
existence of the solution but the time complexity of these
techniques is comparable to much simpler search algorithms.

without getting (local) inconsistency. So, the
maximal consistent assignment is defined as a
consistent assignment of the largest cardinality. We
can also define a weaker notion of locally maximal
consistent assignment which is a consistent
assignment that cannot be extended to a non-
instantiated variable.

Note that if there is a solution to a CSP then it is
a maximal consistent assignment and, vice versa, if
the cardinality of a maximal consistent assignment
equals to the number of variables in the problem
then this assignment is a solution. The maximal
consistent assignment can also be seen as a solution
to over-constrained problems where no complete
consistent assignment exists. Moreover looking for
a maximal consistent assignment has the advantage
that it is not necessary to know in advance whether
the problem is over-constrained or not.

The search techniques discussed in this paper
explore the locally maximal consistent assignments
and remember the assignment with the largest
number of assigned variables. If the search space is
explored completely then the maximal consistent
assignment is obtained. For incomplete search
techniques, we will get an approximation of the
solution. The larger assignment we got the better
approximation we have. Thus the quality of
different incomplete search techniques can now be
evaluated by the number of instantiated variables in
the best locally maximal consistent assignment
found. Note finally that such approach is also useful
for solving hard-to-solve problems where
incomplete assignments can be obtained.

3 GENERIC INCOMPLETE SEARCH

In this section, we will survey non-discrepancy
based incomplete depth-first search algorithms,
namely depth-bounded backtrack search, credit
search, iterative broadening, and limited-
assignment number search. We will present the
algorithms in a new uniform recursive code sharing
the same structure and common procedures. The
reason for this uniformity is an attempt to abstract
from the particular implementation which helps us
to compare better the core features of the
algorithms. In particular, we will focus on the
comparison of the cutoff schemes rather than on the
restart strategies.

Another difference from the traditional
formulation of these algorithms is using a specific,
possibly non-binary, branching scheme based on
the selection of a value for the variable. Thus all the
algorithms share the procedures for variable
selection (select_free_variable/1) determining
the shape of the search tree and value selection
(select_first_value/1, select_next_value/2)
determining the order in which the branches are
explored. Note also, that constraint propagation is
integrated into the search algorithms in a MAC-like

CPDC’2004

3

scheme. It means that each time the algorithm
attempts to assign a value to the variable
(assign/2), constraint propagation is evoked and
domains of non-instantiated variables are filtered. If
any domain becomes empty then the assignment
fails and a next value is tried. This so called
shallow backtracking is not counted as a valid
assignment in our algorithms. Otherwise search
proceeds to the next variable. Upon backtracking,
the current variable assignment must be revoked
together with the changes in the variables’ domains
that have been done during constraint propagation
(unassign/1).

Finally, we extended the algorithms to
memorize the largest assignment found during
search. The partial assignment is stored if it is
better (has a higher number of instantiated
variables) than the so-far best stored assignment.
For simplicity reasons, we evaluate the assignments
before any backtrack (update_best/1). Recall that
constraint propagation is integrated into the search
procedure so the actual number of instantiated
variables can be higher than the actual depth where
the partial assignment is being saved. If the
algorithm succeeds (the value true is returned)
then a complete consistent assignment has been
found and all the variables have their own values.
Otherwise (the value fail is returned) the largest
assignment can be recovered from the saved
assignment. This technique is going in the direction
towards the locally maximal consistent assignment
but it does not always give the locally maximal
consistent assignment (when a value selection for a
given variable failed it might be still possible to
assign a value to another non-instantiated variable).
In [1], we proposed a technique of variable locking
to get the locally maximal consistent assignments.
It produces better assignments in terms of the
number of instantiated variables but it is also more
time consuming. For simplicity reasons, we do not
use variable locking here and a deeper study of this
technique is still required.

3.1 Depth-Bounded Backtrack Search (DBS)

Depth-Bounded Backtrack Search (DBS) is based
on the idea of limiting the depth of complete tree
search where all alternatives are explored [5]. To
have a chance of obtaining a complete solution we
use the technique that if the depth limit is exceeded
then only a single alternative is tried (shallow
backtracking ignored). In general, it is possible to
use another incomplete tree search technique there.
Note that if the depth limit equals to the number of
variables then standard chronological backtracking
is obtained. Figure 1 shows an abstract code of
Depth-Bounded Backtrack Search.

procedure DBS(Variables,DepthLimit)
 if all_instantiated(Variables) then
 return true
 Var ← select_free_variable(Variables)
 Tried ← false // ignore shallow BT
 Value ← select_first_value(Var)
 repeat
 if assign(Var,Value) then
 Tried ← true
 if DBS(Variables,DepthLimit-1) then
 return true
 unassign(Var)
 Value ← select_next_value(Var,Value)
 until Value=nil or (Tried & DepthLimit<1)
 update_best(Variables)
 return fail
end DBS

Fig. 1. An abstract code of Depth-Bounded Backtrack
Search (DBS). The bold parts are specific for DBS.

Let d be the size of the domains of the variables,
and h be the depth limit. Then the worst case time
complexity of the algorithm is O(dh), which
corresponds to the number of explored branches.
Note that some values are filtered from the domains
due to constraint propagation and thus fewer
branches are explored. Figure 2 illustrates the
branches possibly explored by the algorithm.
Notice that some branches and sub-trees are
eliminated using constraint propagation (dotted
lines in Figure 2) and some branches may be
terminated earlier due to inconsistency detected
during variable assignment (not included in Figure
2). Actually, when a leaf is reached then the
algorithm stops with success.

Fig. 2. Branches explored by Depth-Bounded Backtrack
Search with the depth 2 (bold). The branches are
explored from left to right. Dotted sub-trees are pruned
via constraint propagation.

3.2 Credit Search (CS)

Credit Search (CS) uses a similar idea like DBS.
They both restrict the number of alternatives tried
in each node, in particular fewer alternatives are
explored in the bottom parts of the search tree [4].
However, CS uses a finer control over branching
via a so called credit. Credit is a natural number
describing the maximal number of alternative
branches to be explored. The credit c is split to k
child nodes (alternatives) in the following way.
Each child node has allocated a credit (c div k) that
is increased by one for the first (c mod k) child
nodes (the order of the nodes is given by the value

DBS(2)

CPDC’2004

4

selection heuristic). In particular, credit one implies
that only one alternative is tried (shallow
backtracking ignored). Figure 3 shows an abstract
code of the Credit Search.

procedure CS(Variables,Credit)
 if all_instantiated(Variables) then
 return true
 Var ← select_free_variable(Variables)
 BaseCredit ← Credit div size(dom(Var))
 RestCredit ← Credit mod size(dom(Var))
 Value ← select_first_value(Var)
 repeat
 if assign(Var,Value) then
 if RestCredit>0 then
 ValueCredit ← BaseCredit+1
 RestCredit ← RestCredit-1
 else
 ValueCredit ← BaseCredit
 end if
 Credit ← Credit-ValueCredit
 if CS(Variables,ValueCredit) then
 return true
 unassign(Var)
 Value←select_next_value(Var,Value)
 until Value=nil or Credit=0
 update_best(Variables)
 return fail
end CS

Fig. 3. An abstract code of Credit Search (CS). The bold
parts are specific for CS.

Let c be the credit then the worst case time
complexity of the algorithm is O(c). Figure 4
illustrates the branches possibly explored by the
algorithm. Again, some branches may be
terminated earlier due to inconsistency of the partial
assignment.

Fig. 4. Branches explored by Credit Search with the
credit 7 (bold). The branches are explored from left to
right. Dotted sub-trees are pruned via constraint
propagation.

3.3 Iterative Broadening (IB)

Iterative Broadening (IB) restricts the number of
alternatives tried in each node by a breadth limit
[6]. Opposite to DBS and CS, Iterative Broadening
may explore a restricted number of alternatives in
each node which leads to an exponential time
complexity. Figure 5 shows an abstract code of IB.
Again, shallow backtracking is ignored so
immediately failing alternatives are not counted in
the breadth limit.

procedure IB(Variables,BreadthLimit)
 if all_instantiated(Variables) then
 return true
 Var ← select_free_variable(Variables)
 AvailableBreadth ← BreadthLimit
 Value ← select_first_value(Var)
 repeat
 if assign(Var,Value) then
 AvailableBreadth ← AvailableBreadth-1
 if IB(Variables,BreadthLimit) then
 return true
 unassign(Var)
 Value ← select_next_value(Var,Value)
 until Value=nil or AvailableBreadth=0
 update_best(Variables)
 return fail
end IB

Fig. 5. An abstract code of Iterative Broadening (IB). The
bold parts are specific for IB.

Let b be the breadth limit and n be the number of
variables. Then the worst case time complexity of
the algorithm is O(bn). Thus, for any b>1 the
algorithm has an exponential time complexity
which makes it different from the above described
incomplete search techniques. Figure 6 illustrates
the branches explored by IB.

Fig. 6. Branches explored by Iterative Broadening with
the breadth 2 (bold). The branches are explored from left
to right. Dotted sub-trees are pruned via constraint
propagation.

3.4 Limited Assignment Number Search (LAN)

Iterative Broadening has the advantage of giving
equal chances to every variable to obtain its value
while Depth-Bounded Backtrack Search and Credit
Search prefer the variables selected earlier (more
values are tried for these variables). However, the
time complexity of Iterative Broadening is
exponential. In [2], we proposed to modify the
main idea of Iterative Broadening in such a way
that the total number of attempts to assign a value
to the variable is restricted. We introduced a so
called LAN (Limited Assignment Number) limit
indicating how many times a value can be assigned
to each variable. When the number of assignments
to the variable reaches the LAN limit, we say that
the variable expired. The search procedure does not
try to assign a value to expired variables (shallow
backtracking ignored). These variables are removed
from the list of variables before a variable is
selected for assignment (filter_expired/1). We
call the resulting algorithm Limited Assignment

CS(7)

IB(2)

CPDC’2004

5

Number (LAN) Search [13] and Figure 7 shows its
abstract code. Note finally, that a value can still be
assigned to the expired variable via constraint
propagation.

procedure LAN(Variables, LANlimit)
// counters were initialized to zero
// before the search started
 FreeVariables ← filter_expired(Variables)
 if all_instantiated(FreeVariables) then
 return true
 Var ← select_free_variable(FreeVariables)
 Value ← select_first_value(Var)
 repeat
 if assign(Var,Value) then
 counter(Var) ← counter(Var)+1
 if LAN(Variables, LANlimit) then
 return true
 unassign(Var)
 Value ← select_next_value(Var,Value)
 until Value=nil or counter(Var)=LANlimit
 update_best(Variables)
 return fail
end LAN

Fig. 7. An abstract code of Limited Assignment Number
Search (LAN). The bold parts are specific for LAN.

Let l be the LAN limit and n be the number of
variables. The number of assignments to the
variable is accumulated during search. Thus for
each variable, at most l values are tried.
Consequently, the worst case time complexity of
the algorithm is O(nl). Figure 8 illustrates the
branches explored by LAN Search.

Fig. 8. Branches explored by LAN Search with the LAN
limit 5 (bold). The branches are explored from left to
right. Dotted sub-trees are pruned via constraint
propagation.

4 DISCREPANCY BASED SEARCH

In this chapter, we will survey discrepancy based
incomplete depth-first search algorithms, namely
limited discrepancy search, improved limited
discrepancy search, and depth-bounded discrepancy
search. All these techniques are trying to recover as
best as possible from the failure of the heuristics.

Heuristics guide search towards regions of the
search space that are most likely to contain
solutions. For some problems, the heuristics lead
directly to a solution but not always. The
discrepancy based search algorithms address the
problem what to do when the heuristics fail. They
are based on a common observation that even if the
heuristic fails then the number of such failures is

quite low on the branch leading to a solution. A
discrepancy is a decision point in the search tree
where the algorithm goes against the heuristic.
According to the above observation, the techniques
like Limited Discrepancy Search [8] and Improved
Limited Discrepancy Search [9] propose to change
the order of branches to be explored in such a way
that the branches with a smaller number of
discrepancies are explored first. These techniques
treat all discrepancies alike, irrespective of their
depth. However, heuristics tend to be less informed
and make more mistakes at the top of the search
tree. Thus, it may seem useful to explore first the
branches where the discrepancies are at the top of
the tree before the branches where the discrepancies
are at the bottom. This idea is used by Depth-
bounded Discrepancy Search [14].

Like in the previous section we will present the
algorithms with possible non-binary branching
based on selecting a value for the chosen variable
(select_free_variable/1). We expect that the
heuristic proposes the best value as the first value
(select_first_value/1) and every other selected
value (select_next_value/2) is a discrepancy.
There exists another approach that increases the
number of discrepancies with the distance from the
first proposed value. In particular, the second value
is counted as one discrepancy, the third value is
counted as two discrepancies and so on. We are not
aware about any study comparing these two
techniques, in fact most of the discrepancy based
algorithms were presented for binary branching
only [3,8,9,14].

4.1 Limited Discrepancy Search (LDS)

Limited Discrepancy Search [8] was the first
algorithm that highlighted the idea of preferring
branches with fewer discrepancies. The algorithm
uses the limit on the number of allowed
discrepancies and it explores only the branches
where the limit is not exceeded. Figure 9 shows an
abstract code of Limited Discrepancy Search.

procedure LDS(Variables,DiscrLimit)
 if all_instantiated(Variables) then
 return true
 Var ← select_free_variable(Variables)
 FirstVal ← select_first_value(Var)
 Value ← select_next_value(Var,FirstVal)
 while DiscrLimit>0 and Value≠nil do
 if assign(Var,Value) then
 if LDS(Variables,DiscrLimit-1) then
 return true
 unassign(Var)
 Value ← select_next_value(Var,Value)
 end while
 update_best(Variables)
 if assign(Var,FirstValue) then
 return LDS(Variables,DiscrLimit)
end LDS

Fig. 9. An abstract code of Limited Discrepancy Search.

LAN(5)

CPDC’2004

6

Let n be the number of variables, d be the domain
size, and l be the limit on the number of
discrepancies. Then Limited Discrepancy Search

explores ()∑ = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

l

i i
n

d
0

1 branches in the worst

case. Figure 10 illustrates the branches explored by
LDS with the limit 1. The left branch is assumed to
be recommended by the heuristic there.

Fig. 10. Branches explored by Limited Discrepancy
Search with the limit 1 (bold). The numbers indicate the
order in which the branches are visited.

4.2 Improved Limited Discrepancy Search
(ILDS)

The main drawback of Limited Discrepancy Search
is that it visits branches more than once when
increasing the limit on the number of discrepancies.
In fact, all the branches explored by LDS(i) are
visited again by LDS(i+1). Therefore Korf
proposed Improved Limited Discrepancy Search [9]
that explores only the branches with a given
number of discrepancies. We present a modified
version of his algorithm where we count the
number of non-assigned variables instead of using
the depth of the choice point. If the number of non-
assigned variables is smaller or equal to the number
of requested discrepancies then discrepancies are
forced to achieve the requested number of
discrepancies. Figure 11 shows an abstract code of
Improved Limited Discrepancy Search.

procedure ILDS(Variables,DiscrLimit)
 if all_instantiated(Variables) then
 return true
 NoFree ← |free_variables(Variables)|
 Var ← select_free_variable(Variables)
 FirstVal ← select_first_value(Var)
 if DiscrLimit<NoFree and
 assign(Var,FirstValue) then
 if ILDS(Variables,DiscrLimit) then
 return true
 Value ← select_next_value(Var,FirstVal)
 while DiscrLimit>0 and Value≠nil do
 if assign(Var,Value) then
 if LDS(Variables,DiscrLimit-1) then
 return true
 unassign(Var)
 Value ← select_next_value(Var,Value)
 end while
 update_best(Variables)
 return fail
end ILDS

Fig. 11. An abstract code of Improved Limited
Discrepancy Search.

In the worst case, Improved Limited Discrepancy

Search explores () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

l
n

d 1 branches, where n is the

number of variables, d is the domain size, and l is
the limit on the number of discrepancies. Figure 12
illustrates the branches explored by ILDS with the
limit 1. Notice also, the ILDS uses a different the
order of branches than LDS.

Fig. 12. Branches explored by Improved Limited
Discrepancy Search with the limit 1 (bold). The numbers
indicate the order in which the branches are visited.

4.3 Depth-bounded Discrepancy Search (DDS)

As we already mentioned LDS and ILDS have been
proposed to explore the branches with a smaller
number of discrepancies first. However, another
observation says that branches with discrepancies at
a top part should be preferred because the heuristics
tend to be less informed and make more mistakes
there. Therefore Depth-bounded Discrepancy
Search has been proposed to address this issue [14].
The idea is to allow discrepancies only till some
depth of the search tree and below this depth the
search procedure must follow the heuristic. Note
also that the depth restricts naturally the number of
discrepancies that cannot be greater than the depth
limit. Moreover, it is surprisingly easy to enforce
that the branches are not re-visited in the next
iteration by forcing a discrepancy at given depth.
Figure 13 shows an abstract code of Depth-bounded
Discrepancy Search.

procedure DDS(Variables,Depth)
 if all_instantiated(Variables) then
 return true
 Var ← select_free_variable(Variables)
 FirstVal ← select_first_value(Var)
 if Depth≠1 and
 assign(Var,FirstValue) then
 if DDS(Variables,Depth-1) then
 return true
 Value ← select_next_value(Var,FirstVal)
 while Depth>0 and Value≠nil do
 if assign(Var,Value) then
 if DDS(Variables,Depth-1) then
 return true
 unassign(Var)
 Value ← select_next_value(Var,Value)
 end while
 update_best(Variables)
 return fail
end DDS

Fig. 13. An abstract code of Depth-bounded Discrepancy
Search.

6 2 4 1 3 5

LDS(1)

42 5 31

ILDS(1)

CPDC’2004

7

Let d be the domain size and l be the depth limit.
Then Depth-bounded Discrepancy Search explores
at most d(l-1) branches. Figure 14 illustrates the
branches explored by DDS with the depth limit 3.

Fig. 14. Branches explored by Depth-bounded
Discrepancy Search with the limit 3 (bold). The numbers
indicate the order in which the branches are visited.

5 RELATED WORKS

In addition to search algorithms presented in this
paper, there exist other incomplete depth-first
search techniques. The only missing algorithm
among the generic (non-discrepancy) incomplete
depth-first search techniques that we are aware
about is bounded backtrack search that limits the
number of backtracks [7]. We decided to omit this
algorithm because it can be modeled using the
above algorithms by including a time limit.
Moreover bounded backtrack search does not
follow the idea of spreading the search effort over
the search space because all the explored branches
are cumulated in the same area.

Among the discrepancy-based search techniques
we are aware about two additional algorithms:
interleaved depth-first search [10] and discrepancy-
bounded depth-first search [3]. Interleaved depth-
first search (IDFS) biases search to discrepancies
high in the tree similarly to DDS. The idea of IDFS
is to search in parallel several sub-trees. When a
leaf is found in one sub-tree then IDFS switches to
a parallel sub-tree and continues there until a leaf is
found. Then it switches to the next parallel sub-tree
etc. and the process is terminated when a goal leaf
is found. There exists a pure version of IDFS with
an exponential space complexity in search depth
(Figure 15) and a limited version of IDFS with a
linear space complexity in search depth. Opposite
to other algorithms presented in this paper, IDFS is
a complete algorithm that does not use restarts.
IDFS is experimentally compared to DDS in [11].

Fig. 15. The first branches explored by Interleaved depth-
first search (bold). The numbers indicate the order in
which the branches are visited.

Discrepancy-bounded depth-first search [3]
(DBDFS) has been proposed for finding and
proving optimal solutions. The algorithm is
designed to minimize the number of revisited nodes
while, at the same time, to preserve as much as
possible the discrepancy-based order in which
branches are explored. During the i-th iteration, the
algorithm explores branches with discrepancies
between (i-1)k and ik-1 inclusive, where k is called
a width of the search and it is an additional
parameter of the algorithm. Figure 16 illustrates the
search process. Notice that the branches are
explored in a different order than LDS (Figure 10)

Fig. 16. Branches explored by Discrepancy-bounded
depth-first search during the first iteration with width 2
(bold). The numbers indicate the order in which the
branches are visited.

6 CONCLUSIONS

In the paper we presented the main incomplete
depth-first search algorithms including generic and
discrepancy-based techniques. The paper did not
give just a survey of these algorithms but we
described the algorithms in a new uniform way that
makes their comparison easier. We modified some
of the algorithms to work with non-binary
branching that is more typical for variable
assignments. Additionally, the algorithms are
presented in such a way that they can keep the
maximal consistent assignment found during
search. A deeper comparison of generic incomplete
depth-first search techniques is given in [2], where
the LAN Search algorithm is introduced.

Our future work goes in the direction of
studying the restart strategies for these algorithms
as well as studying implementation details and
performance of the discrepancy-based search
techniques when applied to various types of
problems.

7 ACKNOWLEDGEMENTS

The author is supported by the Czech Science
Foundation under the contract No. 201/04/1102 and
by the project LN00A056 of the Ministry of
Education of the Czech Republic. The LAN Search
technique was developed in co-operation with Hana
Rudová from Masaryk University, Brno.

1 53 6 42

DBDFS

4 3 2

pure IDFS

5

42 3 1

DDS(3)

1 6

CPDC’2004

8

8 REFERENCES

1. Roman Barták, Tomáš Müller, Hana Rudová. A New
Approach to Modelling and Solving Minimal
Perturbation Problems. In Recent Advances in
Constraints. Springer-Verlag LNAI 3010, pp. 233-
249, 2004.

2. Roman Barták and Hana Rudová. Limited
Assignments:A New Cutoff Strategy for Incomplete
Depth-First Search. Submitted to KI-2004.

3. J. Christopher Beck and Laurent Perron.
Discrepancy-Bounded Depth First Search. In
Proceedings of CP-AI-OR, pp. 7-17, 2000.

4. Nicolas Beldiceanu, Eric Bourreau, Peter Chan, and
David Rivreau. Partial Search Strategy in CHIP. In
Proceedings of 2nd International Conference on
Metaheuristics-MIC97, 1997.

5. Andrew M. Cheadle, Warwick Harvey, Andrew J.
Sadler, Joachim Schimpf, Kish Shen and Mark G.
Wallace. ECLiPSe: An Introduction. IC-Parc,
Imperial College London, Technical Report IC-
Parc-03-1, 2003.

6. Matthew L. Ginsberg and William D. Harvey.
Iterative Broadening. In Proceedings of National
Conference on Artificial Intelligence (AAAI-90).
AAAI Press, pp. 216-220, 1990.

7. William D. Harvey. Nonsystematic backtracking
search. PhD thesis, Stanford University, 1995.

8. William D. Harvey and Matthew L. Ginsberg.
Limited discrepancy search. In Proceedings of the
14th International Joint Conference on Artificial
Intelligence, pp. 607-615, 1995.

9. Richard E. Korf. Improved Limited Discrepancy
Search. In Proceedings of National Conference on
Artificial Intelligence (AAAI-96). AAAI Press, pp.
286-291, 1996.

10. Pedro Meseguer. Interleaved Depth-First Search. In
Proceedings of 15th International Joint Conference
on Artificial Intelligence, pp. 1382-1387, 1997.

11. Pedro Meseguer and Toby Walsh. Interleaved and
Discrepancy Based Search. In Proceedings of 13th
European Conference on Artificial Intelligence,
Wiley, pp. 239-243, 1998.

12. Hana Rudová and Keith Murray. University Course
Timetabling with Soft Constraints. In Edmund
Burke and Patrick De Causmaecker (eds.): Practice
And Theory of Automated Timetabling IV.
Springer-Verlag LNCS 2740, pp. 310-328, 2003.

13. Kamil Veřmiřovský and Hana Rudová. Limited
Assignment Number Search Algorithm. In Maria
Bielikova (ed.): SOFSEM 2002 Student Research
Forum, pp. 53-58, 2002.

14. Toby Walsh. Depth-bounded Discrepancy Search.
In Proceedings of 15th International Joint
Conference on Artificial Intelligence, pp. 1388-
1393, 1997.

