
Integrated modelling: when time and resources play a role

Roman Barták

Charles University in Prague, Faculty of Mathematics and Physics
Malostranské námestí 2/25

118 00 Praha 1, Czech Republic
bartak@kti.mff.cuni.cz

Abstract
A formal model of the planning or scheduling problem is
the first step in the design of a solver for such a problem.
In the paper we propose a basic framework for modelling
planning and scheduling problems that involve reasoning
about time and resources. In this framework we go beyond
the traditional definitions of planning and scheduling and,
from the beginning, we expect integration of both these
areas.

Introduction

Traditional AI planning tackles the problem of sequencing
operators to achieve some goal. In STRIPS-like planning,
the operator is defined by pre-conditions and effects, i.e.,
the pre-conditions must be satisfied to use the operator,
and the effects hold after using the operator. The task is to
find a sequence of operators starting from a given set of
pre-conditions and achieving a given set of effects.

There is no explicit usage of time and resources in
traditional planning. In fact, there are no numeric values
used so planning methods are based mostly on symbolic
manipulation. That is the reason why planning is assumed
to be an AI problem rather than a number crunching task.
Nevertheless, we can find time and resources behind the
traditional planning notions. At least relative time must be
assumed if speaking about operator sequencing, i.e., the
pre-conditions hold just before we execute the operator
and the operator's effect will be true since we execute the
operator (until another operator annihilates the effect).
Still, traditional planning uses instantaneous operators,
i.e., no duration of the operator is assumed. This is OK if
we are just sequencing the operators, but, it may cause
problems when overlaps of operators are allowed.
Moreover, in reality executing the operator takes some
time so the planning system should assume this time when
looking for a valid sequence of operators. The above
observations are reflected in so called durative actions that
are included in the recent version of PDDL (Fox and Long
2001), a modelling language for planning problems, and
that are studied in (Coddington, Fox, and Long 2001).

While time is hidden in semantics of operators, the
resources can be encoded in formulas defining pre-
conditions and effects. Even one the earliest planning
problems - a block world problem - involved a resource,
the robot's hand that moves the blocks over the table.
Encoding resource in pre-conditions and effects is a
standard way of modelling resources in traditional
planning. However, this technique covers only a limited
number of resources, we can call them state resources.
Pre-conditions describe a required state of the resource to
execute the operator, e.g., an empty hand, and effects
describe a state of the resource after executing the
operator, e.g. holding a block A.

In reality, the interaction between resources and
operators and the integration of time and resources is
more complex, e.g. a single resource may execute several
operations in parallel. This brings planning to a new level
where the quality and feasibility of the plan depends on
time and resources too. Planning community is aware of
such real-life demand and handling of time and resources
is a hot topic in AI planning.

Time and resources play a key role in the areas of
scheduling and timetabling too. The scheduling task is to
allocate a known set of activities to available resources
over time respecting precedence, capacity and other
constraints. Timetabling can be seen as a special case of
scheduling (Wren 1996) with different view of space-time
(slots) and different objectives. Thus, we will not speak
about timetabling separately.

The main difference of scheduling (and timetabling)
from planning is that in scheduling we know the structure
of activities while planning has to construct this structure.
Therefore, when solving real-life problems planning and
scheduling modules can be kept separated: first, we plan
which activities (operators) are necessary to satisfy the
demands and, second, we schedule the activities to
available resources. This could be useful in some problems
due to efficiency issues (Srivastava and Kambhampati
1999) but in other areas, integration of scheduling and
planning seems necessary (Barták 1999) or (Smith, Frank,
and Jónsson 2000). Note that this integration is not easy
because of rather different techniques used to solve
problems in planning and scheduling. While planning is

based mainly on symbolic manipulation, scheduling uses
number crunching techniques from operations research.
Recently, constraint satisfaction seems to provide a bridge
between these two different technologies so discussions
about integration of planning and scheduling are
becoming more realistic now. Constraint programming is
a widespread technology in scheduling (Wallace 1994);
application of constraint satisfaction techniques to
planning problems is described in (Binh Do and
Kambhampati 2000), (Laborie 2001), (Nareyk 2000), or
(Van Beek and Chen 1999) among others.

When speaking about integration of planning and
scheduling, a formal modelling framework to describe
such problems is one of the first issues. There exists a de
facto standard modelling language PDDL for description
of planning problems (Ghallab et al. 1998) and this
language is being extended to model time (Fox and Long
2001). Other approaches in planning attempts to model
resources (Brenner 2001) or (Koehler 1998). Still, all
these approaches have their limitations when describing
real-life resources and time.

Surprisingly, there is no system independent language
for scheduling problems; at least we are not aware of any
such language. There exists a well-known classification of
scheduling problems using the triple (machine
environment | job characteristics | optimality criterion) by
Graham et al. (Brucker 2001). However, this is an
academic classification, not a modelling language to
describe a particular problem. Some modelling languages,
like STTL (Kingston 2001), exist for timetabling problems
but these languages can hardly be extended to general
scheduling problems or to planning problems.

In this paper, we describe a framework for integrated
description of both planning and scheduling problems.
This framework is based on our previous works on
modelling scheduling problems enhanced by planning
capabilities (Barták 1999) and (Barták and Rudová 2001)
so time and resources play an important role there. We
have abstracted from a particular scheduling problem to
cover a wider class of problems including pure planning
and pure scheduling problems. This paper is a bit refined
version of our proposal from (Barták and Rudová 2001).
Here, we concentrate on a basic structure of the framework
rather than on particular attributes (even if we mention
some attributes to illustrate how the objects are used). This
gives us a freedom of designing a generic framework that
can be filled by attributes and that way adapted to a
particular problem area. We also describe how such
formalisation can be used to support planning/scheduling.

The paper is organised as follows. In Section 2, we
highlight the main roles of formal models. In Section 3,
we describe basic modelling requirements to capture real-
life planning and scheduling domains and in Section 4 we
specify how to model a particular problem in the given
domain. Section 5 is dedicated to pre-scheduling and pre-
planning techniques that prepare the formal model for
solving.

A Context for Formal Models

The design of a formal model is a crucial step to
understand all the details of the problem and to find a
solution of the problem. However, having a formal model
or more precisely having a modelling language to describe
problems has other advantages. Basically, such modelling
language serves as an interface (see Figure 1).

Naturally, the modelling language forms an interface
between the real problem and the solver. Having such
interface brings several advantages. First, the solver is
independent from the problem description, i.e., it is
possible to exchange the solver for a better one without
changing the problem specification. For example, we can
use a special solver for a particular domain without
changing the user interface of the system or the problem
description. Second, we can have several user interfaces
for modelling different problems and all these user
interfaces may share a common generic solver via the
unified interface. In fact, we can use an automated
modeller that converts the problem description from an
ERP system or, generally, from a database describing the
problem to a formal model. The solver does not need to
know what is the source of the model. To summarise it,
the formal modelling language provides an interface
between various modules in a complete
planning/scheduling system.

Universal description of planning and scheduling
problems brings also the advantage of sharing problem
domains and problems between researchers. Thus, it
simplifies maintenance of benchmark sets. We sketch
some other usages of the formal model later in the paper.

Figure 1. The role of a formal model.

benchmarks

ERP

solvers

a formal model

GUI modelling

machinery

output

Domain Modelling

When describing a problem, we can start with the
description of the problem area - a domain. This makes
the model more general, because it simplifies changes of
the model. What is it a domain? Let us start with a real-
life example of industrial scheduling. When scheduling
processes in the factory, the problem description consists
of the description of the factory, i.e. machines and
processes, and the description of demands (orders). In this
case, the domain corresponds to the description of the
factory and the particular problem consists of the domain
and a set of demands. We can say that the domain is a
static part of the whole problem that is not changing or the
changes are less frequent.

We propose the model for a domain to consist of three
basic elements: activities, resources, and recipes. Activity
is a basic scheduled/planned object that usually occupies
some time and space. Resources define space for
processing the activities and recipes describe direct
relations between the activities.

Resources
Resource is an object that defines space for processing the
activity. We will speak about connection between resource
and activity later, so let us now concentrate on resource-
only features.

Life of the resource, i.e., evolution of the resource in
time can be described using a sequence of states. For
example, the resource oven uses four states load - heat -
unload - clean and these states are repeating in a cycle.
Some resources, e.g. classroom in timetabling, have only
one state. We expect that resource is an object (machine,
room etc.) so consumable resources like fuel are modelled
using a tank etc. The resource appears in a single state at a
given time so the schedule for the resource consists of the
sequence of non-overlapping states.

Basically, the model of resource consists of the set of
states and transitions among the states (see Figure 2). The
transition describes how the resource can change a state.
Typically, information about timing is included so we can
define minimal and maximal duration of the state,
working time for the states, and transition time.

Figure 2. A state transition diagram for the resource.

Because the resource defines a space for activities, we
should describe how much space is available in each state
- a state capacity. The state capacity restricts the number
of activities that can be processed together. We can also
restrict the alignment of activities in the state. Basically,

we distinguish between parallel processing, where there is
no restriction about the alignment of activities, and batch
processing, where the overlapping activities must start and
complete at identical times (see Figure 3).

Figure 3. Parallel (left) vs. batch (right) processing.

To summarise the above discussion, the model of resource
consists of the states with some attributes and the
transitions between the states (see Figure 4).

Figure 4. A basic structure of the resource model.

Activities
Activity is a basic scheduled/planned object so when
modelling the problem we should specify which activities
can be used in the solution. The basic attribute of the
activity is its duration, i.e., time occupied by the activity.
We can also use time windows to restrict when the activity
can be processed.

In many cases, the activity requires some resources for
processing. For example, a lecture in timetabling requires
a classroom and a teacher, a heating activity in industrial
scheduling requires an oven, and a moving activity in
transport planning requires fuel. So for each activity we
can assign a set of resource requirements. In the resource
requirement we describe the way of using the resource.
Some resources are consumed or produced, we call them
consumable resources, and some resources are just used,
we call them renewable resources (see Figure 5).

Figure 5. Renewable (top) and consumable (bottom) resources.
Dashed lines indicate start and end of the activity.

time

re
so

ur
ce

time

re
so

ur
ce

resource

states

transitions

loading

heating unloading

cleaning

cooling

time

fr
ee

 c
ap

ac
ity

time

fr
ee

 c
ap

ac
ity

time

fr
ee

 c
ap

ac
ity

Naturally, we should also describe what capacity of the
resource is consumed/used/produced. We can also describe
what state of the resource the activity requires. Note that
the states with batch processing are meaningful for
renewable usage of the resource only while parallel
processing can be used both for renewable and for
consumable usage of the resource.
When specifying the resource requirement, we usually
have alternative resources that can satisfy the requirement.
Thus we attach a list of resources to each requirement (see
Figure 6).

Figure 6. A basic structure of the activity model.

Recipes
The model of activities and resources can describe an
indirect relation between the activities only. In particular,
the only modelled relation between the activities is via a
shared resource, e.g., two activities cannot run in parallel
if they share a resource with capacity 1. Such modelling is
usually enough for (most) timetabling problems. However,
in planning and scheduling we need to model direct
relations between the activities (and between the
resources), for example a supplier-consumer dependency
or a precedence.

Traditional planning uses STRIPS-like rules (Fikes and
Nilsson 1971) to model relations between the activities:
each activity has some pre-conditions and it generates
some effects that may become pre-conditions of another
activity. If we add some attributes to the pre-conditions
and effects (typically logical terms are used to describe
both pre-conditions and effects) we have a general
mechanism for information passing between the activities.
In HTN (Hierarchical Task Network) Planning (Erol,
Hendler, and Nau 1994) the activities are connected into a
task graph so more constraints can be expressed over the
activities. Moreover, the tasks can be part of another task
graph so planning is done via task decomposition and
conflict resolution.

To simplify description of relations between the
activities we introduce a notion of event. Each activity
requires some events to precede it, we say that the activity
consumes the events, and each activity generates some
other events, we say that the activity produces the events.
We call a triple (activity, consumed events, produced
events) an activity environment. Note that we may have
several environments for a single activity, e.g., there exists
various combinations of input items consumed by the
activity that produces another item. Moreover, we can put
constrains between the event and the activity, for example
to describe the allowed delay between the event and the
activity.

Figure 7. Two activity environments for a single activity;
consumed events are on the left side and produced events are on
the right side. Notice also the timing constraint between the
activity and the produced event.

To provide richer modelling capabilities we propose to
combine activity environments into a recipe. Basically, a
recipe is a DAG (directed acyclic graph) where nodes are
marked by activities and events. The edge goes either from
an activity to an event produced by the activity or the edge
goes from an event to the activity that consumes the event.
In particular there are no direct edges between the
activities and no direct edges between the events. The
activity must be connected to all its produced and
consumed events (for a given activity environment). So an
activity environment forms a sub-graph in the recipe. If
there are more environments for the activity then the
activity may appear more times in the recipe (each
appearance corresponds to one activity environment).
However, there are no duplicate events in the recipe.
There is one exception when the event may appear two
times in the recipe. If the event is produced by one activity
and consumed by another activity and connecting both
activities to the same event node forms a cycle in the
graph. To break the cycle (we require the recipe to be a
DAG) we divide the event into two events, one is used as a
consumed event only and the other one is used as a
produced event only. Let us call such event a broken
event. Such situation may appear if we want to model
recycling or similar features of the real problem (see
Figure 8).

Figure 8. A primitive recipe Heating; the edges goes from left to
right. There is also a broken event "prepared".

In the recipe, there exist three types of events: events that
are both produced and consumed (by different activities),
events that are produced only, and events that are
consumed only. In case of recycling described above, the
broken event is part of both consumed-only and produced-
only sets of events. Together, the recipe behaves like a
meta-activity and thus we can use the recipe within
another recipe like an activity environment (see Figure 9).

During planning we are decomposing the required
recipes to individual activities but we can also connect
different recipes via common events (one recipe produces
the event and another recipe consumes the event). Still
there could be some events that are consumed only (there
is no action that consumes such event); these events may

activity

resource requiremenent

resources

heat •• heatedprepared ••
≤≤ 5 hours

heat •• preparedprepared ••
> 5 hours

heat •• heated
≤≤ 5 hours

heat •• prepared

prepared ••
> 5 hours

correspond to purchases of raw material etc. Similarly,
there could be produced only events, e.g. describing
appearance of the final product. We call such produced-
only and consumed-only events one-way events.

Figure 9. A recipe using another recipe (dashed).

If we expect that all the events have unique names then we
can represent the recipe as a set of activity environments
and recipes. In such a representation it is clear how the
activities and recipes are connected via common events.

Figure 10. A basic structure of the recipe.

Problem Modelling

A domain model describes the problem area i.e. which
resources are available, what activity types can be used,
and what are the relations between the activities. To
specify a particular problem we need to describe the actual
activities. This could be done explicitly, like in traditional
scheduling and timetabling, where the set of activities is
given as the input and the task is to allocate the activities
to resources respecting the resource and recipe
(precedence) constraints. In traditional planning, the input
consists of some events and the task is to generate the
activities in such a way that the events are connected via
activities i.e. the activities in the plan are described
implicitly via the events. In our framework, we propose to
combine both these ways of input specification, i.e.,
depending on the input we will solve either a pure
scheduling (timetabling) problem or a pure planning
problem or a mixture of both.

Initial data
If we are using resources in the problem, it is a good
manner to describe the initial situation/state of each
resource. In timetabling this is useless because there are
no states. In pure scheduling this is done via specification
of the activity with pre-allocation of the activity to the
resource and to initial time.

In our framework we allow description of the initial
state(s) of each resource as well as specification of
activities that are known before we start scheduling. These
activities may be pre-allocated, i.e., some of the
parameters of the activity are known (like time and used
resources) or the parameters are unknown and the task is
to find their value (allocate the activity to resources and
time). Using such initial data allows us to model pure
scheduling and timetabling problems or to use the system
to complete partially known schedules. In the second case,
new activities are introduced during scheduling to fill gaps
in recipes.

Goals
To further extend the planning features of the framework,
we allow specification of known events in the description
of the problem. Remind that the events make a connection
node between the activities. If there appears an event in
the system then this event must be produced by some
activity and consumed by another activity. Only the one-
way events may have either the consumer or the producer.
To start planning, we can put some initial events to the
system and the system will try to cover them, i.e., to find
an action that produces the event and/or the action that
consumes the event. Introduction of the action may cause
introduction of new events and the task is to cover all the
events. As we said above it means that there must be an
action producing the event and an action consuming the
event. A missing action (producer or consumer) in a one-
way event is substituted by including the event among the
initial events. Note that this process is similar to STRIPS
planning where we have to find activities generating the
final effects using the initial pre-conditions.

It is possible that some one-way events are introduced
during the process of planning and these events are not
included among the initial events. For example we can
introduce an event describing a purchase of raw material.
To allow such situation we can mark some one-way events
as free events. Then, we can introduce a free event during
planning if some activity requires it even if the event is
not among the initial events.

To summarise the above paragraphs, the problem is
described by specifying the domain (a problem area) and
by describing some objects in the final schedule, namely
some activities and initial events. The task is to fill the
gaps in the schedule following the recipes and respecting
the resource constraints (see Figure 11). It means that the
resulting plan consists of the activities allocated to
resources and connected with other activities via events.

•• processed

•• purchased

≤≤ 5 hours

•• prepared

•• heated

•• final

process&test

process

test

prepare

Heating

recipe

activity environments

recipes

Figure 11. Gantt charts - from the problem description (top) to
the solution (bottom).

Before Planning/Scheduling

When the problem is described formally, the next step is
to solve the problem. However, we can look in data and
insert some addition steps that may simplify the process of
problem solving. Basically, we distinguish three steps that
could/should be done before we start solving the problem:
• data checking that reports errors in data,
• data pre-processing that simplifies the model,
• data analysing that finds useful information for the

solver.

Data Checking
The modelling framework may provide a formal language
for problem description. This language is typically based
on some underlying language like LISP or Prolog so we
can use tools of the underlying language to ensure
syntactic soundness of the model. Nevertheless, syntactic
soundness does not guarantee that the model is
semantically correct, i.e., that there are no bugs
prohibiting finding a solution. Especially, when a less-
experienced user designs the model we can expect many
such bugs. Semantic bugs can be discovered during
planning/scheduling but it is often a tough process leading
to a very long computation (the system tries to find a
solution even if "visibly" no solution exists).
Our and others [personal communication to Helmut
Simonis] experience says that it is very important to check
data before we start scheduling. Such data checking can be
automated in some way, for example to discover (some)
clashes in data. Some data-checking can be general, i.e.,
designed for all models. For example, we can check if

resources required by activities are present in the model or
if all states of the resource are accessible from the initial
state. Note also that the data checker may identify parts of
the model that could cause problems, i.e., it is not an error
but it could be an error. For example, the graph of states
for the resource consists of more components that are not
connected etc.

Other data checks may be designed for particular
instances of the modelling framework. Assume that time
windows are defined for activities and for states of the
resources. We can check if the activity can be processed by
a given resource in a given state by comparing time
windows of the activity and the state.

We mentioned just few data checks, many other
checking techniques can be proposed for a particular class
of models. Generally, data checking is not a complete
technique that guarantees existence of the solution;
otherwise complete data checker includes full
planner/scheduler which is not the goal of data checking.
The point is that as much as possible (polynomial) data
checks should be done before we start (exponential)
planning or scheduling.

Data Pre-processing
When the developer designs a formal model of a non-
trivial problem then he or she should take in account the
details of the solving algorithm. Sometimes the modelling
language guides the user to design "reasonable" models
but if the modelling framework is general like our
framework then it is hard to integrate all good modelling
skills into the modelling language itself. Moreover, the
end users prefer the models that are close to what they
know in reality rather than the models with "low-level"
tricks that make the model easier for scheduling. Finally,
the formal model of the problem may be designed
automatically from an ERP system or a database
describing the domain. All in all, the pure formal models
may contain features that are sound but that make
scheduling more complicated.

To remove "bad" features of the pure model we can
smooth it out by applying some pre-processing techniques
that change the model into a model easier for scheduling.
The only requirement about the pre-processed model is
that it must be equivalent to the original model. Such
equivalence is defined in the following way: the post-
processed schedule of the pre-processed model is a
schedule of the original model (see Figure 12).

Figure 12. Using pre- and post-processor

Some pre-processing techniques change significantly the
model, e.g. by using different structure of activities. For
example, when the end user describes a resource using

original model

clean model

pre-preprocessing
solution

schedule

post-preprocessing

solving

•

• • •

re
so

ur
ce

s

time

• °

• • •

re
so

ur
ce

s

time

• initial events
c initial activity

° a new free event
g new activities
→ used recipes

states, he or she tends to describe all possible states, e.g.
loading - processing - unloading. Or all these states are
saved in a database describing the resource so it is natural
that they appear in the automatically generated model as
well. It implies that there must be loading, processing, and
unloading activities as well. However, if such sequence is
unique, then the experienced modeller abstracts from these
states and uses just one abstract state/activity to describe
the situation. Visibly, using just one activity is easier for
scheduling then using three activities. Moreover, if we
substitute such activity by a triple of activities in the final
schedule then we get a schedule for the original problem
so the conversion is sound.

Other pre-processing techniques are less invasive and
they just remove some unfeasibility from the model.
Assume that time windows are defined for activities and
for resources (their states). If we know that some resource
must be selected from the set of alternative resources then
we can make an intersection of the time window for the
activity with the union of the time windows of these
resources to get a new time window for the activity. It
means that some values may be removed from the time
window for the activity, which decreases the search space.

Note finally that pre-processing is closely related to data
checking so both techniques can be applied together.

Data Analysing
When we have a sound and complete formal description of
the problem, there remains one "small" step - to solve the
problem. There exist many solving algorithms for
particular classes of planning, scheduling, and timetabling
problems; the hard job is to choose the one that best fits
the problem or to extract some information from data that
the solver can use.

At top level, by analysing the data we can decide
automatically whether the problem belongs to traditional
planning (no resources and time), to traditional scheduling
(all activities are known), or if it requires both approaches.
In case of traditional problems we can further classify the
problem. For example, in traditional scheduling there
exists a Graham's classification of scheduling problems
and a catalogue of efficient algorithms for solving these
problems (Brucker 2001). Theoretically, if we classify the
problem, which can be done by analysing the data, then
we can find a solving algorithm automatically.
Unfortunately, Graham's classification is rather academic
so we can hardly expect that a real-life problem fits into a
category in this classification. Still, it is possible to find
sub-problems that can be solved using existing efficient
algorithms and the rest of the problem is solved using
some generic technique like constraint satisfaction.

Note that data analysis may be used also to find
additional information for the solving algorithm. For
example, we can go beyond simple activity joining
described in the previous section and we can identify some
required dependencies between the activities, so called
landmarks (Porteous and Sebastia 2000). A planning

algorithm can then use information about landmarks to
improve its efficiency.

Conclusions

In the paper we describe an integrated framework for
modelling planning and scheduling problems. We
concentrate on an informal description of such a
framework rather than on a precise specification of all the
attributes and solving algorithms.

This paper extends the work from (Barták and Rudová
2001) in the way of more precise specification of objects,
in particular recipes. We also separated the model of
domain from the problem and we put our framework into
a context of existing frameworks for planning (like HTN,
STRIPS) and scheduling (resources). Finally, we showed
how such a formal framework might automate some data
processing before we start planning/scheduling.

Acknowledgements

The research is supported by the Grant Agency of the
Czech Republic under the contract no. 201/01/0942. The
author would like to thank Hana Rudová, Roman Mecl,
and the team of VisOpt Ltd. for useful discussions
concerning modelling real-life scheduling and timetabling
problems. The author is also grateful to Ondrej Cepek for
proof-reading of the paper draft.

References

Barták R. 1999. On the Boundary of Planning and
Scheduling: A Study. In Proceedings of the 18th Workshop
of the UK Planning and Scheduling SIG, 28-39,
Manchester, UK.

Barták R. and Rudová H. 2001. Integrated Modelling for
Planning, Scheduling, and Timetabling Problems. In
Proceedings of the 20th Workshop of the UK Planning and
Scheduling SIG, 19-31, Edinburgh, UK.

Binh Do M. and Kambhampati S. 2000. Solving
planning-graph by compiling it into CSP. In Proceedings
of AIPS 2000, 89-91.

Brenner M. 2001. A Formal Model for Planning with
Time and Resources in Concurrent Domains. In
Proceedings of IJCAI-01 Workshop Planning with
Resources, Seattle.

Brucker P. 2001. Scheduling Algorithms. Springer Verlag.

Coddington A., Fox M., Long D. 2001. Handling Durative
Actions in Classical Planning Frameworks. In
Proceedings of the 20th Workshop of the UK Planning and
Scheduling SIG, 44-58, Edinburgh, UK.

Erol K., Hendler J., and Nau D. 1994. UMCP: A Sound
and Complete Procedure for Hierarchical Task-Network

Planning. In Proceedings of 2nd International Conference
on AI Planning Systems, 249-254.

Fikes R. and Nilsson N.J. 1971. STRIPS: A new approach
to the application of theorem proving to problem solving.
Artificial Intelligence 2: 189-208.

Fox M. and Long L. 2001. PDDL 2.1: An extension to
PDDL for expressing temporal planning domains.
Technical Report, Department of Computer Science,
University of Durham, UK.

Ghallab M., Howe A., Knoblock C., McDermott D., Ram
A., Veloso M., Weld D., Wilkins D. 1998. PDDL - The
Planning Domain Definition Language, Tech Report CVC
TR-98-003/DCS TR-1165, Yale Center for Computational
Vision and Control.

Kingston J.H. 2001. Modelling Timetabling Problems
with STTL. In Proceedings of The Practice and Theory of
Automated Timetabling, 309-321, LNCS 2079, Springer
Verlag.

Koehler J. 1998. Planning under Resource Constraints. In
Proceedings of 13th European Conference on Artificial
Intelligence, 489-493, Brighton, UK.

Laborie P. 2001. Algorithms for Propagating Resource
Constraints in AI Planning and Scheduling: Existing
Approaches and New Results. In Proceedings of 6th

European Conference on Planning, 205-216, Toledo,
Spain.

Nareyek A. 2000. AI Planning in a Constraint
Programming Framework. In Proceedings of 3rd

International Workshop on Communication-Based
Systems.

Porteous J. and Sebastia L. 2000. Extracting and Ordering
Landmarks for Planning. In Proceedings of the 19th

Workshop of the UK Planning and Scheduling SIG, 161-
174, Milton Keynes, UK.

Smith D.E, Frank J., and Jónsson A.K. 2000. Bridging the
Gap Between Planning and Scheduling. Knowledge
Engineering Review, 15(1): 61-94.

Srivastava B. and Kambhampati S. 1999. Scaling up
Planning by teasing out Resource Scheduling. Technical
Report ASU CSE TR 99-005, Arizona State University.

Van Beek P. and Chen, X. 1999. CPlan: A Constraint
Programming Approach to Planning. In Proceedings of
AAAI-99, 585-590.

Wallace, M. 1994. Applying Constraints for Scheduling,
in: Constraint Programming, Mayoh B. and Penjaak J.
(eds.), NATO ASI Series, Springer Verlag.

Wren A. 1996. Scheduling, Timetabling and Rostering -
A Special Relationship. In Proceedings of The Practice
and Theory of Automated Timetabling, 46-76, LNCS
1153, Springer Verlag.

