
Nested Precedence Networks with Alternatives:
Recognition, Tractability, and Models

Roman Barták*, Ondřej Čepek*

*Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic
roman.bartak@mff.cuni.cz, ondrej.cepek@mff.cuni.cz

Institute of Finance and Administration
Estonská 500, 101 00 Praha 10, Czech Republic

cepek@mail.vsfs.cz

Abstract. Integrated modeling of temporal and logical constraints is important
for solving real-life planning and scheduling problems. Logical constrains
extend the temporal formalism by reasoning about alternative activities in
plans/schedules. Temporal Networks with Alternatives (TNA) were proposed to
model alternative and parallel processes, however the problem of deciding
which activities can be consistently included in such networks is NP-complete.
Therefore a tractable subclass of Temporal Networks with Alternatives was
proposed. This paper shows formal properties of these networks where
precedence constraints are assumed. Namely, an algorithm that effectively
recognizes whether a given network belongs to the proposed sub-class is
studied and the proof of tractability is given by proposing a constraint model
where global consistency is achieved via arc consistency.

Keywords: temporal networks, alternatives, constraint models, complexity.

1 Introduction

Temporal networks focus on modeling temporal relations in planning and scheduling
applications. Nodes of the network describe activities (or more specifically, important
time points such as start times and end times of activities) while arcs are annotated by
temporal relations between the activities such as precedence relations. Traditional
approaches assume that all nodes are present in the network, though the position of
nodes in time may be influenced by other than temporal constraints, for example, by
resource constraints. Conditional Temporal Planning (CTP) [10] introduced an option
to decide which node will be present in the solution depending on a certain external
condition. Hence CTP can model conditional plans where the nodes actually present
in the solution are selected based on external forces. Recently, logical dependencies
between the nodes were added to temporal networks to capture relations between
existences of nodes. For example, the logical dependency A ⇒ B says that if node A
is present in the solution then node B must be present as well. The possibility to select

nodes according to logical, temporal, and resource constrains was introduced to
manufacturing scheduling by ILOG in their MaScLib [9]. The same idea was
independently formalized in Extended Resource Constrained Project Scheduling
Problem (RCPSP) [8]. In the common model each node has a Boolean validity
variable indicating whether the node is selected to be in the solution and these
Boolean variables participate in binary logical constraints. The validity variable
originates from works by Beck and Fox [4] dealing with alternative activities.
Temporal Networks with Alternatives (TNA) [1] introduced a similar type of implicit
alternatives via so called parallel and alternative branching. Basically, TNA is a
directed acyclic graph with nodes corresponding to activities and arcs corresponding
to temporal relations, where the input and output branchings in nodes (fan-in and fan-
out sub-graphs) are annotated either as parallel or alternative branching. If only
precedence relations instead of temporal ones are used, then we are talking about a
parallel/alternative graph (P/A graph in short). The input parallel branching for node
x means that all direct predecessors of x (branching nodes) must be processed, while
the input alternative branching means that exactly one direct predecessor of x must be
processed to allow processing of x (and similarly for the output branching). These
branching relations describe how the processes are being joined and split (Figure 1).
Formally, the branching relations implicitly define special logical constraints between
the validity variables. It is possible to show that alternative branching with two or
more branching nodes cannot be decomposed into binary logical constraints used in
MaScLib and Extended RCPSP [3].

Fig. 1. A real-life manufacturing process with alternatives.

The P/A graph assignment problem [1] is defined as a question whether it is possible
to select a subset of nodes satisfying the above branching constraints. In practice, it
corresponds to selecting a subset of activities describing a single process among
alternative processes. This problem is NP-complete if some node is pre-selected [1].
Beck and Fox [4] informally proposed legal networks where logical reasoning should
be easy. Nested TNAs [2] generalize the very same idea using the notion of TNA.

weldTube
weldRod

assembleKit

shipPiston

buyTube

sawTube

clearTube

sawRod

clearRod

assemblePiston

ALT

ALT

collectMaterial

They are motivated by real-life manufacturing processes built by decomposition of
meta-processes into operations (the network in Figure 1 is nested). Hence it is not
surprising that the structure of Nested TNA is identical to Temporal Planning
Networks (TPN) proposed in [7] and also used in TAEMS formalism [6]. TPNs and
TAEMS were proposed ad-hoc by giving a language for specifying nested networks
and only the nested networks and no attention was paid to theoretical complexity of
node selection. Nested TNAs are based on a more general formalism of TNA;
examples in [1] show TNAs which cannot be expressed as TPNs.

This paper extends the work [2] (where Nested TNAs were first introduced) by
giving formal proofs of soundness and complexity of the algorithm recognizing
Nested TNAs and by proving the tractability of P/A graph assignment problem using
a constraint model where global consistency is achieved via arc consistency.

3 Nested P/A Graphs

P/A graphs were proposed in [1] to formally describe processes with parallel and
alternative branches. Let us first recapitulate the formal definitions of a P/A graph and
a P/A graph assignment problem. Let G be a directed acyclic graph. A sub-graph of G
is called a fan-out sub-graph if it consists of nodes x, y1,…, yk (for some k) such that
each (x, yi), 1 ≤ i ≤ k, is an arc in G. If y1,…, yk are all and the only successors of x in
G (there is no z such that (x, z) is an arc in G and ∀i = 1,…,k: z ≠ yi) then we call the
fan-out sub-graph complete. Similarly, a sub-graph of G is called a fan-in sub-graph
if it consists of nodes x, y1,…, yk (for some k) such that each (yi, x), 1 ≤ i ≤ k, is an arc
in G. A complete fan-in sub-graph is defined similarly as above. In both cases x is
called a principal node and all y1,…, yk are called branching nodes.

Definition 1: A directed acyclic graph G together with its pairwise edge-disjoint
decomposition into complete fan-out and fan-in sub-graphs, where each sub-graph in
the decomposition is marked either as a parallel sub-graph or an alternative sub-
graph, is called a P/A graph.

In this paper, we focus mainly on handling special logical relations imposed by the
fan-in and fan-out sub-graphs – we call them branching constraints. In particular, we
are interested in finding whether it is possible to select a subset of nodes in such a
way that they form a feasible graph according to the branching constraints. Formally,
the selection of nodes can be described by an assignment of 0/1 values to nodes of a
given P/A graph, where value 1 means that the node is selected and value 0 means
that the node is not selected. The assignment is called feasible if

• in every parallel sub-graph all nodes are assigned the same value (both the
principal node and all branching nodes are either all 0 or all 1),

• in every alternative sub-graph either all nodes (both the principal node and
all branching nodes) are 0 or the principal node and exactly one branching
node are 1 while all other branching nodes are 0.

Notice that the feasible assignment naturally describes one of the alternative processes
in the P/A graph. For example, weldRod is present if and only if both clearRod and

assembleKit are present (Figure 1). Similarly, weldTube is present if exactly one of
nodes buyTube or clearTube is present (but not both).

It can be easily noticed that given an arbitrary P/A graph the assignment of value 0
to all nodes is always feasible. On the other hand, if some of the nodes are required to
take value 1, then the existence of a feasible assignment is by no means obvious. Let
us now formulate this decision problem formally.

Definition 2: Given a P/A graph G and a subset of nodes in G which are assigned to
1, P/A graph assignment problem is “Is there a feasible assignment of 0/1 values to all
nodes of G which extends the prescribed partial assignment?”

Intuition motivated by real-life examples says that it should not be complicated to
select the nodes to form a valid process according to the branching constraints
described above. The following proposition from [1] says the opposite.

Proposition 1: The P/A graph assignment problem is NP-complete.

In the rest of the paper, we will propose a restricted form of the P/A graph, a so called
nested P/A graph that can cover many real-life problems while keeping the P/A graph
assignment problem tractable.

When we analyzed how the P/A graphs modeling real-life processes look, we
noticed several typical features. First, the process has usually one start point and one
end point. Second, the graph is built by decomposing meta-processes into more
specific processes until non-decomposable processes (operations) are obtained. There
are basically three types of decomposition. The meta-process can split into two or
more processes that run in a sequence, that is, after one process is finished, the
subsequent process can start (serial decomposition). The meta-process can split into
two or more sub-processes that run in parallel, that is, all sub-processes start at the
same time and the meta-process is finished when all sub-processes are finished
(parallel decomposition). Finally, the meta-process may consists of several alternative
sub-processes, that is, exactly one of these sub-processes is selected to do the job of
the meta-process (alternative decomposition). The last two decompositions have the
same topology of the network (Figure 2), they only differ in the meaning of the
branches. Since we focus on modeling instances of processes with particular
operations that will be allocated to time, we do not assume loops (used to model
abstract processes).

Fig. 2. Possible decompositions of the process.

Based on above observations we propose a recursive definition of a nested graph.
Definition 3: A directed graph G = ({s,e}, {(s,e)}) is a (base) nested graph. Let
G = (V, E) be a graph, (x,y) ∈ E be its arc, and z1,…, zk (k > 0) be nodes such that no
zi is in V. If G is a nested graph (and I = {1,…,k}) then graph G’ = (V ∪ {zi | i∈I},
E ∪ {(x,zi), (zi,y) | i∈I} – {(x,y)}) is also a nested graph.

parallel/alternative
decomposition

serial
decomposition

According to Definition 3, any nested graph can be obtained from the base graph
with a single arc by repeated substitution of any arc (x,y) by a special sub-graph with
k nodes (see Figure 3). Notice that a single decomposition rule covers both the serial
process decomposition (k = 1) and the parallel/alternative process decomposition
(k > 1). Though this definition is constructive rather than declarative, it is practically
very useful. Namely, interactive process editors can be based on this definition so the
users can construct only valid nested graphs by decomposing the base nested graph.

Fig. 3. Arc decompositions in nested graphs.

The directed nested graph defines topology of the nested P/A graph but we also need
to annotate all fan-in and fan-out sub-graphs as either alternative or parallel sub-
graphs. The idea is to annotate each node by input and output label which defines the
type of branching. Recall that a fan-out sub-graph with principal node x and
branching nodes zi is a sub-graph consisting of nodes x, z1,…, zk (for some k) such that
each (x, zi), 1 ≤ i ≤ k, is an arc in G. Fan-in sub-graph is defined similarly.
Definition 4: Labeled nested graph is a nested graph where each node has (possibly
empty) input and output labels defined in the following way. Nodes s and e in the
base nested graph and nodes zi introduced during decomposition have empty initial
labels. Let k be the parameter of decomposition when decomposing arc (x,y). If k > 1
then the output label of x and the input label of y are unified and set either to PAR or
to ALT (if one of the labels is non-empty then this label is used for both nodes).
Figure 4 shows how the labeled nested graph is constructed for the example from
Figure 1. Notice how the labels are introduced (a semicircle for PAR label and A for
ALT label) or unified in case that one of the labels already exists (see the third step).
When a label is introduced for a node, it never changes in the generation process.

Fig. 4. Building a labelled nested graph.

If an arc (x, y) is being decomposed into a sub-graph with k new nodes where k > 1,
then we require that the output label of x is unified with the input label of y. This can
be done only if either both labels are identical or at least one of the labels is empty.
The following lemma shows that the second case always holds.

A

A

A

A

z z z

x x

y y

x

y

z z

x

y

z

k = 1 k = 2 k = 3

Lemma 1: For any arc (x, y) in the labeled nested graph, either the output label of x or
the input label of y is empty.

Proof: The base nested graph contains a single arc (s, e) and labels for s and e are
empty so the arc (the graph) satisfies the lemma. Assume now that graph G satisfies
the lemma and we decompose some arc (x, y). During the decomposition, arc (x, y) is
removed from the graph and substituted by arcs (x, zi) and (zi, y) for new nodes zi,
1 ≤ i ≤ k, which have empty labels. Hence, the new arcs satisfy the lemma. According
to Definition 4 if k > 1 the output label of x and the input label of y are set (both or
just one of them, if the other one was set already) so we need to check the other arcs
going from x or going to y. If there was another arc (x, b) in G in addition to removed
(x, y) then some arc (x, c) has already been decomposed to obtain two or more arcs
going from x. Hence the output label of x has already been set in G and according to
assumption the input label of b was empty which is preserved in the new graph.
Symmetrically, if there was additional arc (b, y) in G then the output label of b is
empty. So, all arcs in graph G that remain in the new graph still satisfy the lemma. ■

Now, we can formally introduce a nested P/A graph.

Definition 5: A nested P/A graph is obtained from a labeled nested graph by
removing the labels and defining fan-in and fan-out sub-graphs in the following way.
If the input label of node x is non-empty then all arcs (y, x) form a fan-in sub-graph
which is parallel for label PAR or alternative for label ALT. Similarly, nodes with a
non-empty output label define fan-out sub-graphs. Each arc (x, y) such that both
output label of x and input label of y are empty forms a parallel fan-in sub-graph.

Note, that requesting a single arc to form a parallel fan-in sub-graph is a bit artificial.
We use this requirement to formally ensure that each arc is a part of some sub-graph.

Proposition 2: A nested P/A graph is a P/A graph.

Proof: A nested P/A graph is a directed acyclic graph because the base nested graph
is acyclic and the decomposition rule does not add a cycle. From Lemma 1, for each
arc (x, y) either the output label of x or the input label of y is empty. If both labels are
empty then the arc forms a separate fan-in sub-graph. If the output label of x is non-
empty then the arc belongs to a fan-out sub-graph with principal node x. Similarly, if
the input label of y is non-empty then the arc belongs to a fan-in sub-graph with
principal node y. Consequently, each arc belongs to exactly one sub-graph so the
nested P/A graph is a P/A graph. ■

3.1 Recognizing Nested P/A Graphs

Proposition 2 claims that a nested P/A graph is a special form of a P/A graph. It is
easy to show that there exist P/A graphs which are not nested [1]. Hence, an
interesting question is “Can we efficiently recognize whether a given P/A graph is
nested?” In this section we will present a polynomial algorithm that can recognize
nested P/A graphs by reconstructing how they are built.

First, notice that in a nested P/A graph there are no two different fan-in (fan-out)
sub-graphs sharing the same principal node (Definition 5). In other words, either all

arcs going to (from) a given node x belong to a single fan-in (fan-out) sub-graph with
the principal node x or there is no fan-in (fan-out) sub-graph with that principal node.
This feature is easy to detect so in the rest of the paper, we assume that each node
participates as a principal node in at most one fan-in and at most one fan-out sub-
graph. This is reflected in the following representation of P/A graphs (Figure 5). The
P/A graph is represented as a set of nodes where each node x is annotated by sets of
predecessors pred(x) and successors succ(x) in the graph and by labels inLab(x) and
outLab(x). inLab(x) = PAR if x is a principal node in a fan-in parallel sub-graph,
inLab(x) = ALT if x is a principal node in a fan-in alternative sub-graph. If x is not a
principal node in any fan-in sub-graph then inLab(x) is empty. A similar definition is
done for outLab(x) with relation to fan-out sub-graphs. Notice the similarity of labels
to labeled nested graphs (Definition 4). The reader should realize that any nested P/A
graph can be represented this way: all fan-in and fan-out sub-graphs correspond to
non-empty labels and for any arc (x, y) either the label outLab(x) or inLab(y) is empty.

Fig. 5. Representation of a (nested) P/A Graph.

The following algorithm DetectNested recognizes labeled nested graphs by
reconstructing how they are built. Figure 6 illustrates the recognition process. Notice
that some nodes in Q are not eligible for contraction because the condition in line 4
fails (e.g. node 10 in step 3, since 1 has two successors and 11 has two predecessors).

algorithm DetectNested(input: graph G, output: {success, failure})
1. select all nodes x in G such that |pred(x)| = |succ(x)| = 1
2. sort the selected nodes lexicographically according to index
 (pred(x), succ(x)) to form a queue Q
3. while non-empty Q do
4. select and delete a sub-sequence L of size k in Q such that
 all nodes in L have an identical index ({x}, {y}) and
 either |succ(x)| = k or |pred(y)| = k
5. if no such L exists then stop with failure
6. if k > 1 & outLab(x) ≠ inLab(y) then stop with failure
7. remove nodes z∈L from the graph
8. remove nodes x, y from Q (if they are there)
9. add arc (x,y) to the graph (an update succ(x) and pred(y))
10. if |pred(x)| = |succ(x)| = 1 then insert x to Q
11. if |pred(y)| = |succ(y)| = 1 then insert y to Q
12. end while
13. if the graph consists of two nodes connected by an arc then
14. stop with success
15. else stop with failure

node pred succ inLab outLab
1 2,3,4 - PAR
2 1 5,6 - ALT
3 1 8 - -
4 1 10 - -
5 2 9 - -
6 2 7 - -
7 6 9 PAR -
8 3 10 PAR -
9 5,7 11 ALT -

10 4,8 11 PAR -
11 9,10 12 PAR -
12 11 PAR -

A

A

1

2
3

4 5 6

7 8

9 10

11

12

Fig. 6. Detecting nested P/A graphs by sub-graph contraction (contracted nodes are in black).

Proposition 3: Algorithm DetectNested always terminates and it stops with success if
and only if the input P/A graph is nested.

Proof: Each line of the algorithm terminates. The body of the while loop either
terminates with a failure or at least one node is removed from the graph. Because the
queue Q consists of nodes that are part of the current graph, it must become empty
sometime so the while loop terminates and hence the whole algorithm terminates.

We will show that the algorithm recognizes labeled nested graphs by induction on
the number of decomposition steps necessary to generate a graph. The base nested
graph is trivially recognized in line 13. Assume now that the algorithm can recognize
all nested graphs built using m steps. We shall show that:

(i) if DetectNested fails to find a set L of nodes to be contracted then the input
graph is not a labeled nested graph, and

(ii) if DetectNested finds a set L of nodes and contracts them and the input graph is
a labeled nested graph build using (m+1) steps, then the resulting graph is a
labeled nested graph which can be built using m steps.

It is easy to see that these two claims are sufficient for the proof of the equivalence
part of the proposition.

To prove (i) it is enough to realize that in any labeled nested graph constructed in
accordance with Definition 3, the nodes added in the last decomposition step always

A

A

1

2
3

4 5 6

7 8

9 10

11

12

Q = 〈31,8, 41,10, 62,7, 52,9, 83,10, 76,9〉

A

A

1

2

4 5 6

7 8

9 10

11

12

A

A

1

2

5 6

7

9 10

11

12

A

A

1

2

5

7

9 10

11

12

1

2

9 10

11

12

1

9 10

11

12

1

11

12

1

12

Q = 〈41,10, 81,10, 62,7, 52,9, 76,9〉

Q = 〈101,11, 52,9, 72,9〉 Q = 〈21,9, 101,11, 92,11〉 Q = 〈91,11, 101,11〉 Q = 〈111,12〉

Q = 〈101,11, 62,7, 52,9, 76,9〉

fulfill the requirements on the set L in DetectNested. Thus if DetectNested fails to find
a suitable set L then the input graph is not a labeled nested graph.

The proof of (ii) is more difficult because of the fact that there may be many
suitable sets L = { z1, …, zk } which DetectNested may find and contract. We have to
show that any such choice produces a graph, which is labeled nested and can be built
using m steps. Let us consider two cases:

a) k > 1. In this case a parallel or alternative sub-graph with nodes x, y, z1, …, zk
and arcs (x, zi), (zi, y) is contracted into arc (x, y). Notice, that (using the
assumption that the input graph is nested) this sub-graph must be a result of an
arc decomposition of (x, y) during the recursive construction and moreover no
arc inside this sub-graph is further decomposed. Therefore the graph which is
obtained from the input graph by contraction of L is a labeled nested graph
obtainable in m steps. The sequence of decomposition steps is the same as for
the input graph except that the decomposition of (x, y) is skipped.

b) k = 1. In this case a chain of length ≥ 2 is shortened (by one vertex and one
arc) by the contraction of L. In this case there is no guarantee that the
contraction can be matched to a decomposition step which built the input
graph (see example below).

However, the chain of length l can be produced from a single arc by (l-1)
decompositions and can be contracted back into a single arc by (l-1) contractions in
DetectNested (all with |L| = 1). Thus, similarly as in case a) the graph which is
obtained from the input graph by contraction of L is a labeled nested graph obtainable
in m steps. The sequence of decomposition steps is the same as for the input graph
except that the sub-sequence (not necessarily a sub-interval) of (l-1) decompositions
which built the chain is replaced by (l-2) decompositions which build the shorter
chain. ■

Proposition 4: The worst-case time complexity of algorithm DetectNested is O(n2),
where n is a number of nodes in the graph.

Proof: The initial selection of nodes for the queue can be done in time O(n). Time
O(n.log n) is necessary to sort the queue. The sub-list for contraction can be selected
in time O(n) and insertion of nodes into the list can be done in O(n). All other
operations can be implemented in constant time. The while-loop is repeated at most n
times because each time at least one node is removed from the graph. Together, the
while loop takes time O(n2) so the whole algorithm takes time O(n2). ■

3.2 Tractability and Constraint Models

The main motivation for introducing nested P/A graphs was to make the P/A graph
assignment problem tractable for this special subclass of graphs. Recall that the

decomp decomp contract contract

assignment problem consists of deciding whether it is possible to complete a partial
assignment of validity variables for nodes to obtain a complete feasible assignment.
We can reformulate the P/A graph assignment problem as a constraint satisfaction
problem in the following way. Each node x is represented using a Boolean validity
variable vx, that is a variable with domain {0,1}. If the arc between nodes x and y is a
part of some parallel sub-graph then we define the following constraint:

vx = vy.

If x is a principal node and y1,…, yk for some k are all branching nodes in some
alternative sub-graph then the logical relation defining the alternative branching can
be described using the following arithmetic constraint:

vx = Σj=1,…,k vyj.

Notice that if k = 1 then the constraints for parallel and alternative branching are
identical (hence, it is not necessary to distinguish between them). Notice also that the
arithmetic constraint for alternative branching together with the use of {0,1} domains
defines exactly the logical relation between the nodes – vx is assigned to 1 if and only
if exactly one of vyj is assigned to 1. Using the arithmetic constraint simplifies a lot
the formal model of the logical relation. Notice, that the task whether a completion of
the partial assignment of validity variables satisfying all constraints exists is clearly
equivalent to the assignment problem for the original P/A graph. Hence, if some local
(polynomial) consistency such as arc consistency implies global consistency for the
constraint model then the P/A graph assignment problem is trivially tractable. Recall
that global consistency means that any value in the domain of a variable is part of
some solution so if no domain is empty then a feasible assignment exists and can be
found in polynomial time using a backtrack-free search. Unfortunately, arc
consistency does not guarantee global consistency of the above-described basic
constraint model. Assume a simple graph with two alternative branchings that are
modeled using constraints va = vb + vc and vd = vb + vc. If we set va to 1 then arc
consistency is not able to deduce that vd must also be 1 and hence the problem is not
globally consistent. Nevertheless, if we use an equivalent model va = vb + vc and vd =
va then arc consistency implies global consistency. Based on this idea we will now
propose an equivalent constraint model of the nested P/A graph where arc consistency
implies global consistency.

The nested constraint model for a nested P/A graph is designed incrementally
along the process of building the nested graph. The base nested graph is modeled by a
single constraint vs = ve. Assume that arc (x, y) is decomposed into a sub-graph
(Figure 3) with new nodes z1, …, zk and new arcs (x, zi), (zi, y). If the decomposition is
parallel or k = 1 then we add constraints y = zi into the constraint model. Recall that
this decomposition is allowed only if (x, y) was already a part of a serial or a parallel
decomposition (or the initial arc - see Definition 4), which implies by induction on the
number of decomposition steps that there is already a constraint x = y in the model.
Hence, the constraints x = y, y = zi are equivalent to the constraints of the basic model
x = zi, y = zi. Assume now that the decomposition is alternative. It means that the arc
(x, y) was a part of a serial or of an alternative decomposition (or the initial arc). In
the second case, without loss of generality let us assume that x was the principal node
of the alternative branching and zj’, j = 1,…, m (m ≥ 0) are the remaining branching

nodes (if any) in addition to y. Now, we add a constraint y = Σi=1,…,k zi. The model
before decomposition implies (by induction on the number of decomposition steps)
the constraint x = y + Σj=1,…,m zj’ (this constraint is either explicitly in the model or
there is a set of constraints equivalent to this constraint). The added and the implied
constraints are equivalent to constraints x = Σi=1,…,k zi + Σj=1,…,m zj’, y = Σi=1,…,k zi which
are used in the basic model to describe such a branching. Altogether, the modified
constraint model of the nested P/A graph is equivalent to the original model (in terms
of having the same set of feasible assignments). Note that the algorithm DetectNested
reconstructs the decomposition process so we can define the nested constraint model
for any given nested P/A graph. Figure 7 illustrates the process of building the nested
constraint model and compares both nested and basic models.

network

basic
model

s = t s = a + b
t = a + b

s = c + d + b
a = c + d
t = a + b

s = c + d + b
a = c + d
t = a + e
b = e

nested
model

s = t s = t
t = a + b

s = t
t = a + b
a = c + d

s = t
t = a + b
a = c + d
b = e

Fig. 7. Branching constraints as arithmetic formulas over 0-1 variables (all fan-in/fan-out sub-
graphs are assumed to be alternative).

Proposition 5: The assignment problem for a nested P/A graph is tractable (can be
solved in a polynomial time).

Proof: We shall show that the modified constraint model is Berge acyclic for which it
is known that arc consistency implies global consistency [5]. The constraint model for
the base nested graph consists of a single constraint so it is Berge acyclic. Any
constraint added to the model after arc decomposition contains exactly one variable of
the former model and new variable(s). Hence, it cannot introduce a Berge cycle. ■

6 Conclusions

The paper studies a recursive definition of temporal networks with alternative
processes, so called nested temporal networks with alternatives [2], motivated by a
structure of typical manufacturing processes. Though this structure is identical to TPN
[7] and TAEMS framework [6], our approach to modeling branching relations

s

t

s

ba

t

s

c d b

a
t

s

c d b

a

t

e

resembles more the work [4]. Surprisingly nobody so far paid attention to logical
reasoning on these networks which is the main focus of this paper. We proposed an
algorithm that can recognize nested TNAs, we proved its soundness, and showed its
complexity. We also showed that the assignment problem for Nested TNAs is
tractable by using a Berge acyclic constraint model of the problem. This constraint
model applied to nested subparts of a TNA can even improve practical efficiency
when solving the P/A graph assignment problem for general TNAs as showed in [3].
To solve real-life problems, the proposed model can be combined with other
constraints such as the constraints modeling temporal and resource restrictions as
demonstrated in [4,8,9]. Note finally, that despite a visual similarity to AND/OR
graphs the concept of alternative branching differs from OR branching (the alternative
branching allows two types of feasible assignment: either all nodes in the branching
are invalid or the principal node is valid and exactly one branching node is valid).
Moreover, opposite to AND/OR graphs, where only fan-out branching is marked by
AND/OR label, P/A graphs specify both fan-in and fan-out branching for nodes.

Acknowledgments. The research is supported by the Czech Science Foundation
under the contract no. 201/07/0205.

References

1. Barták, R. and Čepek, O. Temporal Networks with Alternatives: Complexity and Model. In
Proceedings of the Twentieth International Florida AI Research Society Conference
(FLAIRS), pp. 641–646, AAAI Press (2007)

2. Barták, R. and Čepek, O. Nested Temporal Networks with Alternatives: Recognition and
Tractability. Applied Computing 2008 - Proceedings of 23rd Annual ACM Symposium on
Applied Computing, Volume 1, pp. 156-157, ACM (2008)

3. Barták, R., Čepek, O., and Surynek, P. Discovering Implied Constraints in Precedence
Graphs with Alternatives. Annals of Operations Research, Springer (2008), to appear.

4. Beck, J. Ch. and Fox, M. S. Constraint-directed techniques for scheduling alternative
activities. Artificial Intelligence 121, 211–250 (2000)

5. Beeri, C., Fagin, R., Maier, D., and Yannakakis, M. On the desirability of acyclic database
schemes. Journal of the ACM 30, 479–513 (1983)

6. Horling, B., Leader, V., Vincent, R., Wagner, T., Raja, A., Zhang, S., Decker, K., and
Harvey, A. The Taems White Paper, University of Massachusetts (1999)
http://mas.cs.umass.edu/research/taems/white/taemswhite.pdf

7. Kim, P. Williams, B. and Abramson, M. Executing Reactive, Model-based Programs
through Graph-based Temporal Planning. In Proceedings of International Joint Conference
on Artificial Intelligence (IJCAI), pp. 487 – 493, (2001)

8. Kuster, J., Jannach, D., and Friedrich, G. Handling Alternative Activities in Resource-
Constrained Project Scheduling Problems. In Proceedings of Twentieth International Joint
Conference on Artificial Intelligence (IJCAI-07), pp. 1960–1965 (2007)

9. Nuijten, W., Bousonville, T., Focacci, F., Godard, D., and Le Pape, C. MaScLib: Problem
description and test bed design. (2003)
http://www2.ilog.com/masclib

10. Tsamardinos, I., Vidal, T., and Pollack, M. E. CTP: A New Constraint-Based Formalism
for Conditional Temporal Planning. Constraints, 8(4), 365–388 (2003)

