
1

Roman Barták
Charles University, Prague (CZ)

roman.bartak@mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Programming
Logic and Constraints

with

3

ESSLLI 2005 – Programming with Logic and Constraints

Unification?Unification?

Recall:
?-3=1+2.
no
?-X=1+2
X=1+2;
no
?-3=X+1
no

What is the problem?
Term has no meaning (even if
it consists of numbers), it is
just a syntactic structure!

We would like to have:
?-X=1+2.
X=3

?-3=X+1.
X=2

?-3=X+Y,Y=2.
X=1

?-3=X+Y,Y>=2,X>=1.
X=1
Y=2

2

ESSLLI 2005 – Programming with Logic and Constraints

ConstraintsConstraints

We can go from unification (a syntactic
equality over terms) to constraint
satisfaction.
Constraint is a relation (so it has a
semantics).

relation is a subset of the Cartesian product of
domains of constrained variables
domain is a set of possible values for the
variable

ESSLLI 2005 – Programming with Logic and Constraints

Constraint satisfactionConstraint satisfaction

For each variable we define its domain.
we will be using discrete finite domains only
such domains can be mapped to integers

We define constraints/relations between the
variables.
?-domain([X,Y],0,100),3#=X+Y,Y#>=2,X#>=1.

This is called a constraint satisfaction problem.
We want the system to find the values for the
variables in such a way that all the constraints are
satisfied.
X=1, Y=2

3

ESSLLI 2005 – Programming with Logic and Constraints

Domain filteringDomain filtering

How is constraint satisfaction realized?
For each variable the system keeps its actual domain.
When a constraint is added, the inconsistent values are
removed from the domain.

Example:
X Y
inf..sup inf..sup

domain([X,Y],0,100) 0..100 0..100
3#=X+Y 0..3 0..3
Y#>=2 0..1 2..3
X#>=1 1 2

ESSLLI 2005 – Programming with Logic and Constraints

Arc consistencyArc consistency

We say that a constraint is arc consistent
(AC) if for any value of the variable in the
constraint there exists a value for the other
variable(s) in such a way that the constraint
is satisfied (we say that the value is
supported).

A CSP is arc consistent if all the
constraints are arc consistent.

4

ESSLLI 2005 – Programming with Logic and Constraints

Making problems ACMaking problems AC

How to establish arc consistency in CSP?
Every constraint must be revised!

Example: X in 1..6, Y in 1..6, Z in 1..6, X#<Y, Z#<X-2

Doing revision of every constraint just once is not
enough!

Revisions must be repeated until any domain is
changed (AC-1).

X in 1..6
Y in 1..6
Z in 1..6

X in 1..6
Y in 1..6
Z in 1..6

X in 1..5
Y in 2..6
Z in 1..6

X in 1..5
Y in 2..6
Z in 1..6

X#<Y
X in 4..5
Y in 2..6
Z in 1..2

X in 4..5
Y in 2..6
Z in 1..2

Z#<X-2
X in 4..5
Y in 5..6
Z in 1..2

X in 4..5
Y in 5..6
Z in 1..2

X#<Y

ESSLLI 2005 – Programming with Logic and Constraints

Algorithm ACAlgorithm AC--33

Uses a queue of constraints that should be revised.
When a domain of variable is changed, only the constraints
over this variable are added back to the queue for re-
revision.

procedure AC-3(V,D,C)
Q ← C
while non-empty Q do

select c from Q
D’ ← c.REVISE(D)
if any domain in D’ is empty then return (fail,D’)
Q ← Q ∪ {c’∈C | ∃x∈var(c’) D’x≠Dx} – {c}
D ← D’

end while
return (true,D)

end AC-3

Mackworth (1977)

5

ESSLLI 2005 – Programming with Logic and Constraints

ACAC--3 in practice3 in practice
Uses a queue of variables with changed domains.

Users may specify for each constraint when the constraint revision
should be done depending on the domain change.

The algorithm is sometimes called AC-8.

procedure AC-8(V,D,C)
Q ← V
while non-empty Q do

select v from Q
for c∈C such that v is constrained by c do

D’ ← c.REVISE(D)
if any domain in D’ is empty then return (fail,D’)
Q ← Q ∪ {u∈V | D’u≠Du}
D ← D’

end for
end while
return (true,D)

end AC-8

ESSLLI 2005 – Programming with Logic and Constraints

RealizationRealization

Constraint solvers typically contain the AC-8
schema realized using event-driven
programming (event=domain change).
Users may add own filtering algorithms for
dedicated constraints (REVISE procedure).

Note:
In CLP, constraints are added incrementally as
search proceeds (in Prolog rules) and constraints
are removed upon backtracking (domains are
restored from the stack in the same way as
Prolog variables are restored).

6

ESSLLI 2005 – Programming with Logic and Constraints

ExampleExample (naïve)(naïve)
SEND+MORE=MONEYSEND+MORE=MONEY

Assign different digits to letters such that
SEND+MORE=MONEY holds and S≠0 and M≠0.

Idea:
generate assignments with different digits and check the constraint

solve_naive([S,E,N,D,M,O,R,Y]):-
Digits1_9 = [1,2,3,4,5,6,7,8,9],
Digits0_9 = [0|Digits1_9],
member(S, Digits1_9),
member(E, Digits0_9), E\=S,
member(N, Digits0_9), N\=S, N\=E,
member(D, Digits0_9), D\=S, D\=E, D\=N,
member(M, Digits1_9), M\=S, M\=E, M\=N, M\=D,
member(O, Digits0_9), O\=S, O\=E, O\=N, O\=D, O\=M,
member(R, Digits0_9), R\=S, R\=E, R\=N, R\=D, R\=M, R\=O,
member(Y, Digits0_9), Y\=S, Y\=E, Y\=N, Y\=D, Y\=M, Y\=O, Y\=R,

1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E =:=

10000*M + 1000*O + 100*N + 10*E + Y.

6.8 s

equality of arithmetic
expressions

ESSLLI 2005 – Programming with Logic and Constraints

ExampleExample (better)(better)
SEND+MORE=MONEYSEND+MORE=MONEY

solve_better([S,E,N,D,M,O,R,Y]):-
Digits1_9 = [1,2,3,4,5,6,7,8,9],
Digits0_9 = [0|Digits1_9],
% D+E = 10*P1+Y
member(D, Digits0_9),
member(E, Digits0_9), E\=D,
Y is (D+E) mod 10, Y\=D, Y\=E,
P1 is (D+E) // 10, % carry bit

% N+R+P1 = 10*P2+E
member(N, Digits0_9), N\=D, N\=E, N\=Y,
R is (10+E-N-P1) mod 10, R\=D, R\=E, R\=Y, R\=N,
P2 is (N+R+P1) // 10,

% E+O+P2 = 10*P3+N
O is (10+N-E-P2) mod 10, O\=D, O\=E, O\=Y, O\=N, O\=R,
P3 is (E+O+P2) // 10,

% S+M+P3 = 10*M+O
member(M, Digits1_9), M\=D, M\=E, M\=Y, M\=N, M\=R, M\=O,
S is 9*M+O-P3,
S>0,S<10, S\=D, S\=E, S\=Y, S\=N, S\=R, S\=O, S\=M.

0 s

Some letters can be
computed from other
letters and invalidity
of the constraint can
be checked before all

letters are know

7

ESSLLI 2005 – Programming with Logic and Constraints

ExampleExample (CLP)(CLP)
SEND+MORE=MONEYSEND+MORE=MONEY

Domain filtering can take care about computing
values for letters that depend on other letters.

:-use_module(library(clpfd)).
solve(Sol):-
Sol=[S,E,N,D,M,O,R,Y],
domain([E,N,D,O,R,Y],0,9),
domain([S,M],1,9),

1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E #=

10000*M + 1000*O + 100*N + 10*E + Y,
all_different([S,E,N,D,M,O,R,Y]),
labeling([],Sol).

Note: It is also possible to use a model with carry bits.

0 s

assign values (from domains) to
variables – depth first search

ESSLLI 2005 – Programming with Logic and Constraints

ExampleExample
NN--queensqueens

queensBT(N,Queens):-
length(Queens,N),
gen_list(1,N,Positions),
gen_queens(Queens,[],Positions).

gen_queens([],_,_).
gen_queens([Q|Rest],Assigned,Positions):-

member(Q,Positions),
no_attack(Assigned,Q,1),
gen_queens(Rest,[Q|Assigned],Positions).

gen_list(N,N,[N]).
gen_list(I,N,[I|Rest]):-

I<N, NextI is I+1,
gen_list(NextI,N,Rest).

no_attack([],_,_).
no_attack([Q1|Rest],Q,Dist):-

Q1\=Q, Q1+Dist=\=Q, Q1-Dist=\=Q,
NextDist is Dist+1,
no_attack(Rest,Q,NextDist).

queensCLP(N,Queens):-
length(Queens,N),
domain(Queens,1,N),
all_different(Queens),
constraint_all(Queens),
labeling([ff],Queens).

constraint_all([]).
constraint_all([Q|Qs]):-

constraint_queens(Qs,Q,1),
constraint_all(Qs).

constraint_queens([],_,_).
constraint_queens([Q2|Qs],Q1,I):-

Q1#\=Q2+I,
Q1#\=Q2-I,
I1 is I+1,
constraint_queens(Qs,Q1,I1).

Place N queens into a chessboard of size NxN in
such a way that no two queens attack each other

20 queens=11 s 20 queens=0.01 s

8

ESSLLI 2005 – Programming with Logic and Constraints

Why simple backtracking is so bad in comparison
with domain filtering?
Backtracking

discovers problems late and hence explores more
branches

Filtering
prunes wrong branches earlier

Backtracking and filteringBacktracking and filtering

OK conflict conflict

OK no value no value
× × ×
×
×
×

× × ×
×
×
×

×

×
×

× × ×
×
×
××

×
× × ×
×
×
××

×
×

ESSLLI 2005 – Programming with Logic and Constraints

Design of filtersDesign of filters
The user can often define the code of REVISE procedure (filtering code).
How to do it?

1) Decide about the event to evoke the filtering
when the domain of involved variable is changed

whenever the domain changes
when minimum/maximum bound is changed
when the variable becomes singleton

different suspensions for different variables
Example: A<B filtering evoked after change of min(A) or max(B)
directional consistency

2) Design the filtering algorithm for the constraint
the result of filtering is the change of domains
more filtering procedures for a single constraint are allowed
Example: A<B

min(A): B in min(A)+1..sup, max(B): A in inf..max(B)-1

9

ESSLLI 2005 – Programming with Logic and Constraints

Filter exampleFilter example
less thenless then

How to describe propagation through A<B?
Note: bound consistency is enough for full arc consistency!

less_then(A,B):-
fd_global(a2b(A,B),no_state,[min(A)]),
fd_global(b2a(A,B),no_state,[max(B)]).

:-multifile clpfd:dispatch_global/4.
clpfd:dispatch_global(a2b(A,B),S,S,Actions):-

fd_min(A,MinA), fd_max(A,MaxA), fd_min(B,MinB),
(MaxA<MinB ->

Actions = [exit]
; LowerBoundB is MinA+1,

Actions = [B in LowerBoundB..sup]).

clpfd:dispatch_global(b2a(A,B),S,S,Actions):-
fd_max(A,MaxA), fd_min(B,MinB), fd_max(B,MaxB),
(MaxA<MinB ->

Actions = [exit]
; UpperBoundA is MaxB-1,

Actions = [A in inf..UpperBoundA]).

A#<B

ESSLLI 2005 – Programming with Logic and Constraints

Filter exampleFilter example
diffdiff

How to describe propagation through A≠B?
Idea: Constraint is consistent if domains of both
variables contain at least two values! Hence, propagation
is called only when domain becomes singleton.

diff(A,B):-
fd_global(diff(A,B),no_state,[val(A)]),
fd_global(diff(B,A),no_state,[val(B)]).

:-multifile clpfd:dispatch_global/4.
clpfd:dispatch_global(diff(X,Y),S,S,Actions):-

(ground(X) ->
fd_set(Y,SetY),
fdset_del_element(SetY,X,NewSetY),
Actions = [exit, Y in_set NewSetY]

;
Actions = []

).

A#\=B

10

ESSLLI 2005 – Programming with Logic and Constraints

Filter exampleFilter example
allall--diffdiff

How to ensure that different values are assigned to variables in a list?
Idea: If a value is assigned to a variable then remove this value from domains of all
other variables in the list.

all_diff(List):-
start_all_diff(List,List).

start_all_diff([],_).
start_all_diff([H|T],List):-

fd_global(all_diff(H,T,List),no_state,[val(H)]),
start_all_diff(T,List).

:-multifile clpfd:dispatch_global/4.
clpfd:dispatch_global(all_diff(X,Pointer,List),S,S,Actions):-

(ground(X) -> % value has been assigned to X
filter_diff(List,X,Pointer, Actions)

;
Actions = []

).

filter_diff([],_X,_Pointer, [exit]).
filter_diff([Y|T],X,Pointer, Actions):-

(T==Pointer -> % identical objects
Actions = RestActions

;
fd_set(Y,SetY),
fdset_del_element(SetY,X,NewSetY),
Actions = [Y in_set NewSetY | RestActions]

),!,
filter_diff(T,X,Pointer, RestActions).

all_different(List)

ESSLLI 2005 – Programming with Logic and Constraints

Diff Diff vsvs allall--diffdiff

All-diff among N variables can also be modeled
using N.(N-1)/2 diff constraints.

Which approach is better?
Propagation power

Both models filter exactly the same values from domains.
Efficiency

all-diff is faster than a set of diff constraints
Example:
completing partial Latin squares of order 20 with 8 pre-filled
cells
all-diff 0.68s, diff 1.43 s Latin Square of order N

is a N×N matrix filled by
values {1,...,N} such that
in each row and in each
column each element
occurs exactly once.
Partial Latin Square has
only some cells filled.

4 2
1 2

13
2 4

4 1 3 2
31 4 2

4 12 3
2 1 43

11

ESSLLI 2005 – Programming with Logic and Constraints

Think globallyThink globally
CSP describes the problem locally:

the constraints restrict small sets of variables
+ heterogeneous real-life constraints
- missing global view

weaker domain filtering

Global constraints
global reasoning over a local sub-problem
using semantic information to improve efficiency

Example:
local (arc) consistency deduces
no pruning
but some values can be
removed

1 2

1 2

1 2 3

≠

≠

≠

X1

X2

X3XX

ESSLLI 2005 – Programming with Logic and Constraints

a set of binary inequality constraints among all variables
X1 ≠ X2, X1 ≠ X3, …, Xk-1 ≠ Xk

all_distinct({X1,…, Xk}) = {(d1,…, dk) | ∀i di∈Di & ∀i≠j di ≠ dj}
better pruning based on matching theory over bipartite graphs

Inside allInside all--distinctdistinct

1

2

3

X1

X2

X3

Initialisation:
1) compute maximum matching
2) remove all edges that do not

belong to any maximum matching

Propagation of deletions (X1≠1):
1) remove discharged edges
2) compute new maximum matching
3) remove all edges that do not

belong to any maximum matching

××

X1

X2

X3

1

2

3

×

×

Régin (1994)

12

ESSLLI 2005 – Programming with Logic and Constraints

ReifiReificcaationtion

we can set/find satisfiability of some constraints
realized via logical constraints (equivalence)

Constraint #<=> B

Example:
X#>5 #<=> B // the domain of X and B do not change
adding X#<3 leads to X in inf..2 and B=0
adding X#>8 leads to X in 9..sup and B=1
setting B=1 leads to X in 6..sup

Only reifiable constraints can participate in logical
“meta-constraints” (arithmetic constraints are usually
reifiable but most global constraints aren’t).

ESSLLI 2005 – Programming with Logic and Constraints

Constraint Constraint ““exactlyexactly””

exactly(N,List,X)
N is a FD variable, List is a list of FD variables and
X is a FD variable
Semantics: exactly N elements from List equals X

implementation via reification:
exactly(0, [], _X).
exactly(N, [Y|L], X) :-
X #= Y #<=> B,
N #= M+B,
exactly(M, L, X).

13

ESSLLI 2005 – Programming with Logic and Constraints

Filter Filter ““exactlyexactly””
exactly(N,List,X)

Like all-diff, it is possible to define “exactly” as a
single constraint with a dedicated filtering algorithm.
Basic idea of the filter:

Undecided ← {Y∈List | Y=X is not decided yet}
NumX ← |{Y∈List | Y=X}|
max(N)=NumX ⇒ N=NumX & ∀Y∈Undecided Y≠X
max(N)<NumX ⇒ fail
max(N)>NumX

MaxNumX ← NumX+|Undecided|
MaxNumX=min(N) ⇒ N=MaxNumX & ∀Y∈Undecided Y=X
MaxNumX<min(N) ⇒ fail
MaxNumX>min(N) ⇒ N in NumX..MaxNumX

NumX<min(N) ⇒ X in domain_union(Undecided)

ESSLLI 2005 – Programming with Logic and Constraints

HomeworkHomework

Write a Prolog program for completing a partial Latin
Square, i.e., finding values for empty cells such that values in
each row and in each column are different:

Tips:
think about representation of the matrix, e.g. as a list of list
write a procedure for checking whether a given value can be used for a cell
use Prolog search to explore alternative filling of cells

Solve the same problem using Prolog with constraints (CLP).
Tips:

use all-distinct (all-different) constraints to encode the feature of Latin
squares
procedure for transposition of Matrix might be useful
use labeling([ff],ListOfVariables) for value assignment

