
1

Roman Barták
Charles University, Prague (CZ)

roman.bartak@mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Programming
Logic and Constraints

with

2

ESSLLI 2005 – Programming with Logic and Constraints

ListsLists
How to represent a list of elements?
Using terms:

a pointer-like structure
list(a,list(b,list(c,nil)))

Prolog provides this structure directly:
[Head|Tail]
[a,b,c] =[a|[b|[c|[]]]]
Elements can be anything, e.g. a list again

[[q,2], 12, f(a,b), [[]]]

This is a syntactic sugar only!

a b c

• • • • • nil

2

ESSLLI 2005 – Programming with Logic and Constraints

MembershipMembership

How to check membership in a list?
Explore the list from start until the element is
found.
member(X,[X|_]).
member(X,[_|T]):- member(X,T).

?-member(a,[a,b,a]).
?-member(X,[a,b,a]).

?-member(a,L).

-> yes

-> X=a; X=b; X=a

-> L=[a|_]; L=[_,a|_], …

ESSLLI 2005 – Programming with Logic and Constraints

Deleting elementDeleting element
Delete the first occurrence of X from the list.
delete(List,X,ListWithoutX)

delete([],_,[]).
delete([X|T],X,T).
delete([Y|T],X,[Y|NewT]):-

X\=Y, delete(T,X,NewT).

The part of the list before X is duplicated!
X and Y cannot be unified

a b c

• • • • • •

d e

• • • niloriginal list

• •• •new list after deleting c

delete([a,b,c,d,e],c,L])

3

ESSLLI 2005 – Programming with Logic and Constraints

DeletingDeleting
Delete all occurrences of X from the list.

delete_all([],_X,[]).
delete_all([X|T],X,NewT):-
delete_all(T,X,NewT).

delete_all([Y|T],X,[Y|NewT]):-
X\=Y,delete_all(T,X,NewT).

The list is completely duplicated in memory.

difference from delete

a b c

• • • • • •

b e

• • • niloriginal list

new list after deleting b • • • • • nil

delete_all([a,b,c,b,e],b,L])

ESSLLI 2005 – Programming with Logic and Constraints

InsertingInserting

Insert X before the list insert(L,X,LStartWithX):
insert(L,X,[X|L]).

Add X to the end of the list add(L,X,LEndWithX) :
add([],X,[X]).
add([Y|T],X,[Y|NewT]):-
add(T,X,NewT).

Again, the list is completely duplicated!
The procedure can also remove the last element from
the list!
?-add(NewList,X,[a,b,c,d]).
NewList=[a,b,c]
X=d

4

ESSLLI 2005 – Programming with Logic and Constraints

ConcatenatingConcatenating
concatenate two lists

concat(L1,L2,L)
L1=[a,b,c], L2=[d,e] -> L=[a,b,c,d,e]

concat([],L,L).
concat([H|T],L2,[H|NewT]):-
concat(T,L2,NewT).

Time and space complexity depends on the size
of the first list!
The procedure can also be used to split the list.
?-concat(List1,List2,[a,b,c,d]).
List1=[], List2=[a,b,c,d] ;
List1=[a], List2=[b,c,d] ;
…

ESSLLI 2005 – Programming with Logic and Constraints

RevertingReverting

Revert the list
revert(L,Rev)

L=[a,b,c] ->
Rev=[c,b,a]

revert([],[]).
revert([H|T],Rev):-
revert(T,RT),
add(RT,H,Rev).

Slow and memory consuming!
Try to omit add (concat) in

your code.

Much better solution is
using accumulator!

revert1(List,Rev):-
rev(List,[],Rev).

rev([],L,L).
rev([H|T],Acc,Rev):-
rev(T,[H|Acc],Rev).

0 s.39 s.50000

revert1revertlist
length

5

ESSLLI 2005 – Programming with Logic and Constraints

OperatorsOperators

writing everything as a term is not always
comfortable

compare '='(X,'+'(2,3)) and X=2+3

a more human readable form of terms would be
appropriate

e.g. infix notation of “standard” operations
(provided by Prolog)

moreover, user may define own operators via
:- op(precedence, type, name).

this is only a “syntactic sugar”

ESSLLI 2005 – Programming with Logic and Constraints

Arithmetic expressionsArithmetic expressions
?-X=1+2.

?-3=1+2.

Term 1+2 is different from the term 3.
No semantics is associated with terms!

We need a special procedure to evaluate the
numerical expression: “is”

?-X is 1+2.
X=3

X is Expr works as arithmetic evaluator:
evaluate Expr and compare (unify) the result with X

Be careful: “is” is not an assignment command!
?-X is 1+2, X is 7.

Number is a special type of atom.
It has a semantics (it is a number)!

-> X=1+2

-> no

6

ESSLLI 2005 – Programming with Logic and Constraints

Arithmetic comparisonArithmetic comparison

If we have numbers, can we compare them?
Prolog provides standard comparison of
numbers:
X < Y

The numeric value of X is less than the numeric value
of Y

?-1<2.
?-1+1<3.
?-3<1+2.

X > Y, X =< Y, X >= Y

-> yes
-> yes
-> no

ESSLLI 2005 – Programming with Logic and Constraints

CutCut

Prolog uses depth-first search to cover
non-determinism of alternative rules.

use choice point when there is an alternative

Can we prune alternatives explicitly?
Cut removes the choice point so no alternative
rules will be tried.

Head:-Body1,!,Body2.
Head:-Body3.

backtrack not allowed!backtrack allowed!

cut

7

ESSLLI 2005 – Programming with Logic and Constraints

Practicing cutsPracticing cuts
test1(X,Y):-
member(Y,[[1,2],[3,4]]),member(X,Y).

test1(0,[]).

test2(X,Y):-
!,member(Y,[[1,2],[3,4]]),member(X,Y).

test2(0,[]).

test3(X,Y):-
member(Y,[[1,2],[3,4]]),!,member(X,Y).

test3(0,[]).

test4(X,Y):-
member(Y,[[1,2],[3,4]]),member(X,Y),!.

test4(0,[]).

[][3,4][3,4][1,2][1,2]Y

04321X

1
2
3
4

Ex
am

pl
es

 o
f

re
d

cu
ts

Th
ei

r
u

sa
ge

 is
 d

is
co

u
ra

ge
d

be
ca

u
se

 t
h

ey
 c

h
an

ge
 c

om
pu

ta
ti

on
!

ESSLLI 2005 – Programming with Logic and Constraints

Cut for determinismCut for determinism

Prune branches that will not be visited (green cut).

Example:
split the list into a list with elements smaller than X
and a list with elements not smaller than X

split([],_,[],[]):-!.
split([H|T],X,[H|T1],T2):-
H<X,!,
split(T,X,T1,T2).

split([H|T],X,T1,[H|T2]):-
split(T,X,T1,T2).

8

ESSLLI 2005 – Programming with Logic and Constraints

NegationNegation

How to prove non-existence of the solution?
Useful for complex tests like non-member.
\+ :Goal

no variable binding!
Inside negation:
not(Query):-
call(Query),!,fail.

not(_Query):-
true.

META-PREDICATE
Prolog goal is a term so any
term can be used as a query

If Query succeeds then fail
(cut forbids using the
alternative rule), otherwise
succeed using the alternative
rule.

ESSLLI 2005 – Programming with Logic and Constraints

Practicing negationPracticing negation

Negation in Prolog is negation-as-failure
It is not a full logical negation!

p(a).
p(b).
q(a).

?- \+ (p(X),q(X)), X=b.
?- X=b, \+ (p(X),q(X)).

Be especially careful when negation is applied to non-
ground goal (contains variables)!

-> fail

-> X=b

9

ESSLLI 2005 – Programming with Logic and Constraints

All solutionsAll solutions

How to find all answers to a Query?

findall(?Template,:Query,?List)

Collects all answers to Query in the form of Template
in a List.

Example:
Find all neighboring nodes of “a”.
?-findall(X,edge(a,X),Neigborhood).
?-findall(f(X),edge(a,X),Neigborhood).
?-findall(dzzz,edge(a,X),Neigborhood).

[b,c]

[f(b),f(c)]

[dzzz,dzzz]

ESSLLI 2005 – Programming with Logic and Constraints

BlackboardBlackboard

How to pass information back when
backtracking?
How to pass information between search
branches?
We can use the Prolog database!
assert the information in one branch
access it in the other branch

It is better to use blackboard!
clear and efficient

10

ESSLLI 2005 – Programming with Logic and Constraints

Blackboard primitivesBlackboard primitives

Each information stored in the blackboard
is identified by a unique atom called a key
(an atom defined by the user).

bb_put(:Key, +Term)
bb_get(:Key, ?Term)
bb_delete(:Key, ?Term)
bb_update(:Key, ?OldTerm, ?NewTerm)

ESSLLI 2005 – Programming with Logic and Constraints

Blackboard exampleBlackboard example

Test satisfiability of Query without binding variables.

sat(Query, _Answer):-
bb_put(sat,no),
once(Query), % finds one solution (if any)
bb_put(sat,yes),
fail.

sat(_Query,Answer):-
bb_delete(sat,Answer).

Another solution using negation and if-then-else:
sat2(Query,Answer):-
(\+ call(Query) -> Answer=no ; Answer=yes).

11

ESSLLI 2005 – Programming with Logic and Constraints

Practicing bPracticing blackboardlackboard

Count the number of answers to Query
sat_num(:Query,-NumAnswers)

sat_num(Query,_NumAnswers):-
bb_put(counter,0),
call(Query),
bb_get(counter,N),
N1 is N+1,
bb_put(counter,N1),
fail.

sat_num(_Query,NumAnswers):-
bb_delete(counter,NumAnswers).

Another solution using findall:
sat_num(Query,NumAnswers):-
findall(x,Query,List),
length(List,NumAnswers).

arc(a,b).
arc(a,c).
arc(a,d).

?-sat_num(arc(a,X),N).
N=3;
no

ESSLLI 2005 – Programming with Logic and Constraints

Blackboard featuresBlackboard features

Blackboard works as a global „variable“.
Be careful of nesting!

If Query in the previous examples calls sat then
the blackboard data are mishandled.

Structure of the term is preserved but a
connection to the „local“ variables is lost!!

?-A=term(X,f(X)), bb_put(test,A), X=a,
bb_get(test,B).

A = term(a,f(a)),
B = term(_A,f(_A)),
X = a ? ;
no

12

ESSLLI 2005 – Programming with Logic and Constraints

Final PROLOG practiceFinal PROLOG practice

Database (graph):
arc(a,b).
arc(a,c).
arc(b,c).
arc(b,e).
arc(c,d).
arc(d,b).
arc(d,e).

Expected answers:

?-shortest_path(a,a,P).
P = [a]

?- shortest_path(a,e,P).
P = [a,b,e]

?- shortest_path(e,b,P).
no

Compute (one of) the shortest path
between two nodes (avoid cycling).

a

b

c

ed

ESSLLI 2005 – Programming with Logic and Constraints

Shortest path Shortest path ((nanaïïveve))
Find all paths in a DFS manner and then select
the shortest.

shortest_path(From,To, ShortestPath):-
findall(Path,path(From,To,[],Path),AllPaths),
shortest_list(AllPaths,ShortestPath).

path(From,From,Visited,Path):-!,
revert([From|Visited],Path).

path(From,To,Visited,Path):-
arc(From,Through), % next node
\+ member(Through,Visited), % prevent cycles
path(Through,To,[From|Visited],Path).

[a,b,c,d,e]

[a,b,e]

[a,c,d,b,e]

[a,c,d,e]

a

b

c

ed

path(From,To,[],Path)

13

ESSLLI 2005 – Programming with Logic and Constraints

Shortest path (B&B)Shortest path (B&B)
Branch&Bound exploring all paths in a DFS manner

shortest_pathBB(From,To,_Path):-
bb_put(best,no_path),
spathBB(From,To,[],0).

shortest_pathBB(_From,_To,Path):-
bb_get(best,path(_,Path)).

spathBB(From,From,Visited,Length):-!,
revert([From|Visited],Path),
bb_put(best,path(Length,Path)),% save so-far best path
fail.

spathBB(From,To,Visited,OldLength):-
NewLength is OldLength+1,
can_be_shorter(NewLength), % check the bound
arc(From,Through), % find the next node
\+ member(Through,Visited), % prevent cycles
spathBB(Through,To,[From|Visited],NewLength).

can_be_shorter(_):-
bb_get(best,no_path).

can_be_shorter(Length):-
bb_get(best,path(BestLength,_)),
Length<BestLength.

abcde best(5)

abe best(3)

acd not better

a

b

c

ed

ESSLLI 2005 – Programming with Logic and Constraints

Shortest path (BFS)Shortest path (BFS)
Breadth-first search with concatenation

shortest_pathBFS(From,To,Path):-
spathBFS([[From]],To,Path).

spathBFS([Visited|Rest],To,Path):-
Visited = [N|_],
(N=To -> % we found the path

revert(Visited,Path)
; % expand the node N

findall([N1|Visited],
(arc(N,N1),
\+ member(N1,Visited),
\+ member([N1|_],Rest)),

NewNodes),
concat(Rest,NewNodes, Nodes),
spathBFS(Nodes,To,Path)

).

[a]

[b,a] [c,a]

[c,b,a] [e,b,a] [d,c,a]

a

b

c

ed

14

ESSLLI 2005 – Programming with Logic and Constraints

HomeworkHomework

Write procedures (rules) defining:
length(List,Length)
shortest_list(ListOfLists,ShortestList)

Write a Prolog program solving the water
pouring problem.

We have three (N) cups, each with a given capacity
and a given level of water. It is possible to pour
completely a cup into another cup (if capacity is not
exceeded) or pour part of a cup to fill another cup.
Find a shortest plan for reaching a given level of
water in each cup.
Tip: use the shortest path algorithms!

