
1

Roman Barták
Charles University, Prague (CZ)

roman.bartak@mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Programming
Logic and Constraints

with

1

ESSLLI 2005 – Programming with Logic and Constraints

„„Constraint programming represents Constraint programming represents
one of the closest approaches one of the closest approaches
computer science has yet made to computer science has yet made to
the Holy Grail of programming: the the Holy Grail of programming: the
user states the problem, the user states the problem, the
computer solves it.computer solves it.““

Eugene C. Eugene C. FreuderFreuder, Constraints, April 1997, Constraints, April 1997

2

ESSLLI 2005 – Programming with Logic and Constraints

today reality

a Star Trek view

HollyHolly GrailGrail ofof ProgrammingProgramming
> Computer, solve the SEND, MORE, MONEY problem!

> Here you are. The solution is
[9,5,6,7]+[1,0,8,5]=[1,0,6,5,2]

> Sol=[S,E,N,D,M,O,R,Y],
domain([E,N,D,O,R,Y],0,9), domain([S,M],1,9),

1000*S + 100*E + 10*N + D +
1000*M + 100*O + 10*R + E #=

10000*M + 1000*O + 100*N + 10*E + Y,
all_different(Sol),
labeling([ff],Sol).

> Sol = [9,5,6,7,1,0,8,2]

ESSLLI 2005 – Programming with Logic and Constraints

Application areasApplication areas
All types of hard combinatorial problems:

molecular biology
DNA sequencing
determining protein structures

interactive graphic
web layout

network configuration
assignment problems

personal assignment
stand allocation

timetabling
scheduling
planning

3

ESSLLI 2005 – Programming with Logic and Constraints

A bit of historyA bit of history
Procedural Interpretation of Horn Clauses
(Kowalski)

axiom „A if B“ can be read as a procedure
A is a procedure head
B is a procedure body

Prolog (Colmerauer)
Programation et Logique or Programming in Logic
specialised theorem prover for natural language
processing

From unification to constraints (Gallaire 1985,
Jaffar, Lassez 1987)

unification is constraint solving over Herbrand universe

ESSLLI 2005 – Programming with Logic and Constraints

CourseCourse outlineoutline
Monday

Tuesday

Wednesday

Thursday

Friday

Programming with logic
foundations of Prolog
facts, rules, and queries

Extensions to pure Prolog
lists and arithmetic
cut, negation, and blackboard

From unification to constraints
consistency techniques
programming filtering algorithms

Programming depth-first search
incomplete search techniques
branch and bound

Modeling with constraints
modeling examples

4

ESSLLI 2005 – Programming with Logic and Constraints

Basic conceptBasic concept

Prolog is a deductive system that finds
answers to queries using a knowledge
base consisting of facts and rules.

Where is the programming?
writing the database of facts and rules
Prolog interpreter deduces the answer
automatically
declarative programming

ESSLLI 2005 – Programming with Logic and Constraints

PrologProlog architecturearchitecture

Prolog source files
*.pl

Prolog database

Queries

arc(a,b).
arc(a,c).
arc(b,c).
arc(c,d).
arc(d,e).
arc(b,e).

edge(X,Y):-arc(X,Y).
edge(X,Y):-arc(Y,X).

path(X,Y):-arc(X,Y).
path(X,Y):-arc(X,Z),path(Z,Y).

SICStus 3.11.0 (x86-win32-nt-4):
Mon Oct 20 00:38:10 WEDT 2003
Licensed to visopt.com
| ?-

member(X,[X|_]).
member(X,[_|T]):-

member(X,T).

delete([],_X,[]).
delete([X|T],X,T).
delete([Y|T],X,[Y|NewT]):-

X\=Y,
delete(T,X,NewT).

5

ESSLLI 2005 – Programming with Logic and Constraints

FactsFacts

node(a).
node(b).
node(c).
node(d).
node(e).

arc(a,b).
arc(a,c).
arc(b,c).
arc(b,d).
arc(c,d).
arc(d,e).

argumentname

more arguments
separated by commas

Prolog facts describe basic information
about the problem.

a

b

c

ed

ESSLLI 2005 – Programming with Logic and Constraints

Simple queriesSimple queries
It is possible to ask queries about the facts

stored in the knowledge base:

node(a).
yes

node(bla).
no

arc(a,c).
yes

arc(a,d).
no

path(a,d).
no

node(a).
node(b).
node(c).
node(d).
node(e).

arc(a,b).
arc(a,c).
arc(b,c).
arc(b,d).
arc(c,d).
arc(d,e).

Prolog prompt query

answer
?-

?-

?-

?-

?-

6

ESSLLI 2005 – Programming with Logic and Constraints

Open queriesOpen queries

The query may contain variables whose
values will be found using stored facts:

node(X).
X=a
X=b
X=c ;
X=d ;
X=e ;
no

arc(a,X).
X=b
X=c
no

a request for an
alternative answer

no more answers

node(a).
node(b).
node(c).
node(d).
node(e).

arc(a,b).
arc(a,c).
arc(b,c).
arc(b,d).
arc(c,d).
arc(d,e).

?-

?-

;
;

;
;

ESSLLI 2005 – Programming with Logic and Constraints

Compound queriesCompound queries
List of facts is nothing more than a simple database.
Is it possible to generate an answer that is not stored
directly as a fact but that can be combined from
several facts?

Yes. It is possible to query over a combination of
facts from the knowledge base:

arc(a,Y),arc(Y,Z).
Y=b
Z=c
Y=b
Z=d
Y=c
Z=d
no

variables can be
shared between

simple open queries

variables can be
shared between
simple open queries

node(a).
node(b).
node(c).
node(d).
node(e).

arc(a,b).
arc(a,c).
arc(b,c).
arc(b,d).
arc(c,d).
arc(d,e).

;

;

;

?-

7

ESSLLI 2005 – Programming with Logic and Constraints

Syntax Syntax breakbreak
Atoms vs. variablesAtoms vs. variables

Data (and programs) are expressed using terms

Atoms
words consisting of letters, numbers and underscores
that start with a non-capital letter

a, arc, john_123, …

words enclosed in single quotas
´Edinburgh´, …

Variables
words consisting of letters, numbers and underscores
that start with a capital letter or underscore

X, Node, _noname, …

_ is an anonymous variable
two occurences of _ are assumed to be different variables
contents is not reported to the user

ESSLLI 2005 – Programming with Logic and Constraints

Syntax Syntax breakbreak
Compound termsCompound terms

Compound terms express structured
information

atoms and variables are terms
functor(arg1,…,argn) is a (compound) term,
where functor is an atom and arg1, …, argn are
terms

arc(a,c)
path(a,path(b,path(d,e)))
tree(tree(a,tree(b,c)),tree(d,e))
arc(a,X)
…

a

b

d e

path • •

path • •

path • •

8

ESSLLI 2005 – Programming with Logic and Constraints

Deductive rulesDeductive rules
We can give a name to the query so it can be
used repeatedly
doubleArc(X,Z):-arc(X,Y),arc(Y,Z).

This is called a rule.
After defining the rule, we can query it like the
facts:

doubleArc(b,W).
W=d
W=e
no

doubleArc(a,W).
W=c
W=d
W=d
no

only variables from
the rule head are
returned to user

node(a).
node(b).
node(c).
node(d).
node(e).

arc(a,b).
arc(a,c).
arc(b,c).
arc(b,d).
arc(c,d).
arc(d,e).

;
;

;

?-

?-

;
;

ESSLLI 2005 – Programming with Logic and Constraints

How does it work?How does it work?
Deductive rulesDeductive rules

?-doubleArc(b,W).
find a rule whose head matches the goal and
substitute variables accordingly.
doubleArc(b,W):-arc(b,Y),arc(Y,W).

substitute query by the body of the rule
?-arc(b,Y),arc(Y,W).

find a matching fact (arc(b,c)), substitute
variables, and remove the fact from the query

?-arc(c,W).
do the same with the rest (arc(c,d))

W=d ;
Try alternative facts (arc(b,d),arc(d,e))

W=e ;
no

node(a).
node(b).
node(c).
node(d).
node(e).

arc(a,b).
arc(a,c).
arc(b,c).
arc(b,d).
arc(c,d).
arc(d,e).

9

ESSLLI 2005 – Programming with Logic and Constraints

AlternativeAlternative rulesrules

It is possible to define alternative rules
(disjunction)
edge(X,Y):-arc(X,Y).
edge(X,Y):-arc(Y,X).

edge(W,b).
W=a
W=c
W=d
no

node(a).
node(b).
node(c).
node(d).
node(e).

arc(a,b).
arc(a,c).
arc(b,c).
arc(b,d).
arc(c,d).
arc(d,e).

deduced using the
first rule

deduced using the
second rule

?-
;
;
;

ESSLLI 2005 – Programming with Logic and Constraints

How does it work?How does it work?
Alternative rulesAlternative rules

Just like before, but more alternative rules matches the query.
?-edge(W,b).

find a rule whose head matches the goal, substitute variables
accordingly, and substitute query by the body of the rule
edge(W,b):-arc(W,b).

?-arc(W,b).
find all solutions to a query using facts

W=a ;
try an alternative rule for the original query
edge(W,b):-arc(b,W).

?-arc(b,W).
find all solutions to a query using facts

W=c ;
W=d ;
no

node(a).
node(b).
node(c).
node(d).
node(e).

arc(a,b).
arc(a,c).
arc(b,c).
arc(b,d).
arc(c,d).
arc(d,e).

10

ESSLLI 2005 – Programming with Logic and Constraints

RecursiveRecursive rulesrules

It is possible to use the rule head in its
body, i.e., to use recursion
path(X,Y):-arc(X,Y).
path(X,Y):-arc(X,Z),path(Z,Y).

path(c,W).
W=d
W=e

no

node(a).
node(b).
node(c).
node(d).
node(e).

arc(a,b).
arc(a,c).
arc(b,c).
arc(b,d).
arc(c,d).
arc(d,e).

deduced using the first
rule and arc(c,d)

deduced using the
second rule through d

?-
;
;

ESSLLI 2005 – Programming with Logic and Constraints

How does it work?How does it work?
Recursive rulesRecursive rules

Just like before, but
the rule may be used
several times.
This is OK because
each time a rule is
used, its copy with
„fresh“ variables is
generated (like calling
a procedure with local
variables).

?-path(c,W)

?-arc(c,W) ?-arc(c,Z1),path(Z1,W)

?-path(d,W)

?-arc(d,W) ?-arc(d,Z2),path(Z2,W)

?-path(e,W)

?-arc(e,W) ?-arc(e,Z3),path(Z3,W)

fail fail

W=d

W=epath(X,Y):-arc(X,Y).
path(X,Y):-arc(X,Z),path(Z,Y).

node(a). arc(a,b).
node(b). arc(a,c).
node(c). arc(b,c).
node(d). arc(b,d).
node(e). arc(c,d).

arc(d,e).

path(c,W):-arc(c,W).

path(d,W):-arc(d,W).

path(e,W):-arc(e,W).

path(c,W):-arc(c,Z1),path(Z1,W).

path(c,W):-
arc(c,Z2),path(Z2,W).

arc(c,d).

arc(d,e).

path(e,W):-
arc(e,Z3),path(Z3,W).

arc(c,d).

arc(d,e).

11

ESSLLI 2005 – Programming with Logic and Constraints

PrologProlog atat glanceglance
Prolog „program“ consists of rules and facts.
Each rule has the structure Head:-Body.

Head is a (compound) term
Body is a query (a conjunction of terms)

typically Body contains all variables from Head
rule semantics: if Body is true then Head can be deduced

Fact can be seen as a rule with an empty (true) body.

Query is a conjunction of terms: Q = Q1,Q2,…,Qn.
Find a rule whose head matches goal Q1.

If there are more rules then introduce a choice point and use
the first rule.
If no rule exists then backtrack to the last choice point and use
an alternative rule there.

Use the rule body to substitute Q1.
For facts (Body=true), the goal Q1 disappears.

Repeat until empty query is obtained.

ESSLLI 2005 – Programming with Logic and Constraints

Prolog technologyProlog technology

Prolog = Unification + Backtracking

Unification (matching)
to select an appropriate rule
to compose an answer substitution
How?

make the terms syntactically identical by applying a substitution

Backtracking (depth-first search)
to explore alternatives
How?

resolve the first goal (from left) in a query
apply the first applicable rule (from top)

12

ESSLLI 2005 – Programming with Logic and Constraints

UnificationUnification

a basic mechanism for information passing
syntactic equality of terms via substitution of terms
to variables
?-X=f(a).
?-f(X,a)=f(g(b),Y).
?-f(X,b,g(a))=f(a,Y,g(X)).
?-X=f(X).

occurs check can forbid such structures
but cyclic structures might be very useful for modeling
pointer structures

X

•f

-> X/f(a)

-> X/g(b), Y/a

-> X/a, Y/b

-> infinite term

ESSLLI 2005 – Programming with Logic and Constraints

Selecting rulesSelecting rules

Unification is used for rule selection.
?-path(f(a),G).

rule: path(X,Y):-arc(X,Y).
do unification: X=f(a),Y=G

?-arc(f(a),G).
rule (fact): arc(a,b).
do unification: f(a)=a, G=b -> fail

rule (fact): arc(a,c).
do unification: f(a)=a, G=c -> fail

…

13

ESSLLI 2005 – Programming with Logic and Constraints

Computing resultsComputing results

Unification is used for answer composition.

path(X,Y,path(X,Y)):-
arc(X,Y).

path(X,Y,path(X,PathZY)):-
arc(X,Z),
path(Z,Y,PathZY).

?-path(a,d,P).
P=path(a,path(b,d))
P=path(a,path(b,path(c,d)))
P=path(a,path(c,d))
no

node(a).
node(b).
node(c).
node(d).
node(e).

arc(a,b).
arc(a,c).
arc(b,c).
arc(b,d).
arc(c,d).
arc(d,e).

;
;

;

a

b

c

ed

ESSLLI 2005 – Programming with Logic and Constraints

Information passingInformation passing

How to obtain the result?
Accumulator

Accumulate partial results in a parameter of the
procedure.
Requires additional parameter with initialization.

Composition of substitutions
Compute the result from partial results to be
computed later.
Specific to Prolog and substitutions.

14

ESSLLI 2005 – Programming with Logic and Constraints

AccumulatorAccumulator
Symbolic addition of unary represented numbers

(0, s(0), s(s(0)), …).
Result is accumulated in a parameter of the procedure.

plus(0,X,X).
plus(s(X),Y,Z):-plus(X,s(Y),Z).

?-plus(s(s(s(0))), s(0) ,Sum).
?-plus(s(s(0)) , s(s(0)) ,Sum).
?-plus(s(0) , s(s(s(0))) ,Sum).
?-plus(0 ,s(s(s(s(0)))),Sum).

accumulator

ESSLLI 2005 – Programming with Logic and Constraints

CompositionComposition

Symbolic addition of unary represented numbers.
Result is a composition of substitutions that will be

computed later.

plus2(0,X,X).
plus2(s(X),Y,s(Z)):-plus2(X,Y,Z).

?-plus2(s(s(s(0))),s(0),S1). %S1=s(S2)
?-plus2(s(s(0)) ,s(0),S2). %S2=s(S3)
?-plus2(s(0) ,s(0),S3). %S3=s(S4)
?-plus2(0 ,s(0),S4). %S4=s(0)

argument for composing the result

15

ESSLLI 2005 – Programming with Logic and Constraints

HomeworkHomework

Propose a simple genealogy database:
facts

man, woman, parent, …

rules
father, mother, son, daughter,
grandparent, uncle, aunt, siblings,
descendant, …

For example solution look at
http://kti.mff.cuni.cz/bartak/prolog/genealogy.html

