
1

3FoundationsFoundations
of constraint satisfactionof constraint satisfaction

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Foundations of constraint satisfaction, Roman Barták

Introduction to consistency techniquesIntroduction to consistency techniques

So far we used constraints in a passive way (as a test) …
…in the best case we analysed the reason of the conflict.

Cannot we use the constraints in a more active way?

Example:

A in 3..7, B in 1..5 the variables’ domains
A<B the constraint

many inconsistent values can be removed
we get A in 3..4, B in 4..5
Note: it does not mean that all the remaining combinations of the

values are consistent (for example A=4, B=4 is not consistent)

How to remove the inconsistent values from the variables’
domains in the constraint network?

Foundations of constraint satisfaction, Roman Barták

Node consistency (NC)Node consistency (NC)

Unary constraints are converted into variables’ domains.

Definition:
– The vertex representing the variable X is node consistent iff

every value in the variable’s domain Dx satisfies all the unary
constraints imposed on the variable X.

– CSP is node consistent iff all the vertices are node consistent.

Algorithm NC

procedure NC(G)
for each variable X in nodes(G)

for each value V in the domain DX

if unary constraint on X is inconsistent with V then
delete V from DX

end for
end for

end NC

Foundations of constraint satisfaction, Roman Barták

Arc consistency (AC)Arc consistency (AC)
Since now we will assume binary CSP only

i.e. a constraint corresponds to an arc (edge) in the
constraint network.

Definition:
– The arc (Vi,Vj) is arc consistent iff for each value x from the

domain Di there exists a value y in the domain Dj such that
the valuation Vi =x a Vj = y satisfies all the binary constraints
on Vi, Vj.

Note: The concept of arc consistency is directional, i.e., arc
consistency of (Vi,Vj) does not guarantee consistency of (Vj,Vi).

– CSP is arc consistent iff every arc (Vi,Vj) is arc consistent (in
both directions).

Example:

3..7 1..5
A<B

 no arc is consistent

A B 3..4 1..5
A<B

(A,B) is consistent

A B 3..4 4..5
A<B

(A,B) and (B,A) are consistent

A B

Foundations of constraint satisfaction, Roman Barták

Algorithm for arc revisionsAlgorithm for arc revisions

How to make (Vi,Vj) arc consistent?
Delete all the values x from the domain Di that are

inconsistent with all the values in Dj (there is no value y
in Dj such that the valuation Vi = x, Vj = y satisfies all
the binary constrains on Vi a Vj).

Algorithm of arc revision
procedure REVISE((i,j))

DELETED ←← false
for each X in Di do

if there is no such Y in Dj such that (X,Y) is consistent, i.e.,
(X,Y) satisfies all the constraints on Vi, Vj then

delete X from Di

DELETED ←← true
end if

end for
return DELETED

end REVISE

The procedure also
reports the deletion
of some value.

Foundations of constraint satisfaction, Roman Barták

Algorithm AC-1 (Algorithm AC-1 (MackworthMackworth 19771977))

How to make CSP arc consistent?

Do revision of every arc.

But this is not enough! Pruning the domain may make
some already revised arcs inconsistent again.

A<B, B<C: (3..7,1..5,1..5) (3..4,1..5,1..5) (3..4,4..5,1..5) (3..4,4,1..5) (3..4,4,5) (3,4,5)

Thus the arc revisions will be repeated until any domain is
changed.

Algorithm AC-1

procedure AC-1(G)
repeat

CHANGED ←← false
for each arc (i,j) in G do

CHANGED ←← REVISE((i,j)) or CHANGED
end for

until not(CHANGED)
end AC-1

2

Foundations of constraint satisfaction, Roman Barták

What is wrong with AC-1?What is wrong with AC-1?

If a single domain is pruned then revisions of all the arcs
are repeated even if the pruned domain does not
influence most of these arcs.

What arcs should be reconsidered for revisions?

The arcs whose consistency is affected by the domain
pruning
i.e., the arcs pointing to the changed variable.

Omit the arc running out of
the variable whose domain
has been changed
(this arc is not affected by
the domain change).

Variable with
pruned domain

The arc whose
revision caused

the domain reduction

××

We can omit one more arc!

Foundations of constraint satisfaction, Roman Barták

Algorithm AC-2 (Algorithm AC-2 (MackworthMackworth 19771977))
A generalised version of the Waltz’s labelling algorithm.
In every step, the arcs going back from a given vertex are

processed (i.e. a sub-graph of visited nodes is AC)

Algorithm AC-2
procedure AC-2(G)

for i ←← 1 to n do % n is a number of variables
Q ←← {(i,j) | (i,j)∈∈arcs(G), j<i} % arcs for the base revision
Q’ ←← {(j,i) | (i,j)∈∈arcs(G), j<i} % arcs for re-revision
while Q non empty do

while Q non empty do
 select and delete (k,m) from Q
 if REVISE((k,m)) then

Q’ ←← Q’ ∪∪ {(p,k) | (p,k)∈∈arcs(G), p≤≤i, p≠≠m }
end while
Q ←← Q’
Q’ ←← empty

end while
end for

end AC-2

Foundations of constraint satisfaction, Roman Barták

Algorithm AC-3 (Algorithm AC-3 (MackworthMackworth 19771977))

Re-revisions can be done more elegant than in AC-2.
1) one queue of arcs for (re-)revisions is enough
2) only the arcs affected by domain reduction are added

to the queue (like AC-2)

Algorithm AC-3

procedure AC-3(G)
Q ←← {(i,j) | (i,j)∈∈arcs(G), i≠≠j} % queue of arcs for revision
while Q non empty do

select and delete (k,m) from Q
if REVISE((k,m)) then

Q ←← Q ∪∪ {(i,k) | (i,k)∈∈arcs(G), i≠≠k, i≠≠m}
end if

end while
end AC-3

AC-3 is the most widely used consistency algorithm
but it is still not optimal.

Foundations of constraint satisfaction, Roman Barták

Looking for (and remembering of) the supportLooking for (and remembering of) the support
Observation (AC-3):

Many pairs of values are tested for consistency in every
arc revision.

These tests are repeated every time the arc is revised.

a
b
c
d

a
b
c
d

a
b
c
d
V1 V2 V3

1. When the arc V2,V1 is revised, the
value a is removed from domain of V2.

2. Now the domain of V3, should be
explored to find out if any value
a,b,c,d loses the support in V2.

Observation:
The values a,b,c need not be checked again because
they still have a support in V2 different from a.

The support set for a∈∈Di is the set {<j,b> | b∈∈Dj , (a,b)∈∈Ci,j}

Cannot we compute the support sets once and then use
them during re-revisions?

××1

××2

Foundations of constraint satisfaction, Roman Barták

Computing support setsComputing support sets
A set of values supported by a given value (if the value disappears then

these values lost one support), and a number of own supporters are
kept.

procedure INITIALIZE(G)
Q ←← {} , S ←← {} % emptying the data structures
for each arc (Vi,Vj) in arcs(G) do

for each a in Di do
total ←← 0
for each b in Dj do

if (a,b) is consistent according to the constraint Ci,j then
total ←← total + 1
Sj,b ←← Sj,b ∪∪ {<i,a>}

end if
end for
counter[(i,j),a] ←← total
if counter[(i,j),a] = 0 then

delete a from Di
Q ←← Q ∪∪ {<i,a>}

end if
end for

end for
return Q

end INITIALIZE

Sj,b - a set of pairs <i,a> such that
<j,b> supports them

counter[(i,j),a] - number of supports

for the value a from Di
in the variable Vj

Sj,b - a set of pairs <i,a> such that
<j,b> supports them

counter[(i,j),a] - number of supports

for the value a from Di
in the variable Vj

Computing and counting supporters

Foundations of constraint satisfaction, Roman Barták

Computing supports and how to use themComputing supports and how to use them
Situation:

we have just processed the arc (i,j) in INITIALIAZE

counter(i,j),_
2
2
1

Sj,_
<i,a1>,<i,a2>
<i,a1>
<i,a2>,<i,a3>

i
a1
a2
a3

j
b1
b2
b3

Using the support sets:
1. Let b3 is deleted from the domain of j (for some reason).
2. Look at Sj,b3 to find out the values that were supported by b3
(i.e. <i,a2>,<i,a3>).
3. Decrease the counter for these values (i.e. tell them that they lost
one support).
4. If any counter is zero (a3) then delete the value and repeat the
procedure with the respective value (i.e., go to 1).

counter(i,j),_
2
1
0

Sj,_
<i,a1>,<i,a2>
<i,a1>

i
a1
a2
a3

j
b1
b2
b3××1××2

3

Foundations of constraint satisfaction, Roman Barták

Algorithm AC-4 (Algorithm AC-4 (MohrMohr, Henderson , Henderson 19861986))

The algorithm AC-4 has the optimal worst case!

Algorithm AC-4

procedure AC-4(G)
Q ←← INITIALIZE(G)
while Q non empty do

select and delete any pair <j,b> from Q
for each <i,a> from Sj,b do

counter[(i,j),a] ←← counter[(i,j),a] - 1
if counter[(i,j),a] = 0 & "a" is still in Di then

delete "a" from Di

Q ←← Q ∪∪ {<i,a>}
end if

end for
end while

end AC-4

Unfortunately the average efficiency is not so good
… plus there is a big memory consumption!

Foundations of constraint satisfaction, Roman Barták

Other arc consistency algorithmsOther arc consistency algorithms

AC-5 (Hentenryck, Deville, Teng 1992)

– a generic arc-consistency algorithm
– can be reduced both to AC-3 and AC-4
– exploits semantic of the constraint

functional, anti-functional, and monotonic constraints

AC-6 (Bessiere 1994)
– improves memory complexity and average time

complexity of AC-4
– keeps one support only, the next support is looked

for when the current support is lost

AC-7 (Bessiere, Freuder, Regin 1999)

– based on computing supports (like AC-4 and AC-6)
– exploits symmetry of the constraint

Foundations of constraint satisfaction, Roman Barták

Directional arc consistency (DAC)Directional arc consistency (DAC)

Observation 1: AC has a directional character but CSP is
not directional.

Observation 2: AC has to repeat arc revisions; the total
number of revisions depends on the number of arcs but
also on the size of domains (while cycle).

Is it possible to weaken AC in such a way that every arc is
revised just once?

Definition: CSP is directional arc consistent using a given
order of variables iff every arc (i,j) such that i<j is arc
consistent.

Again, every arc has to be revised, but revision in one
direction is enough now.

Foundations of constraint satisfaction, Roman Barták

Algorithm DAC-1Algorithm DAC-1

1) Consistency of the arc is required just in one direction.
2) Variables are ordered

ÄÄ there is no directed cycle in the graph!

procedure DAC-1(G)
for j = |nodes(G)| to 1 by -1 do

for each arc (i,j) in G such that i<j do
REVISE((i,j))

end for
end for

end DAC-1

Algorithm DAC-1

If the arc are explored in a „good“ order, no revision has to be repeated!

1 2 3 4 5

1

2

6

5

4

3

Foundations of constraint satisfaction, Roman Barták

How to use DACHow to use DAC

AC visibly covers DAC (if CSP is AC then it is DAC as well)
So, is DAC useful?

– DAC-1 is surely much faster than any AC-x
– there exist problems where DAC is enough

Example: If the constraint graph forms a tree then DAC is
enough to solve the problem without backtracks.

How to order the vertices for DAC?
How to order the vertices for search?

1. Apply DAC in the order from
the root to the leaf nodes.

2. Label vertices starting from
the root.

DAC guarantees that there is a
value for the child node
compatible with all the parents.

Foundations of constraint satisfaction, Roman Barták

Relation between DAC and ACRelation between DAC and AC

Observation: CSP is arc consistent iff for some order of the
variables, the problem is directional arc consistent in
both directions.

Is it possible to achieve AC by applying DAC in both primal
and reverse direction?

In general NO, but …

Example:
X in {1,2}, Y in {1}, Z in {1,2}, X≠≠Z,Y<Z

using the order X,Y,Z
there is no domain
change

using the order Z,Y,X, the
domain of Z is changed but
the graph is not AC

However if the order Z,Y,X is used then we get AC!

{1,2}
X Y

Z
{1,2}

{1}

X≠≠Z Y<Z

{1,2}
X Y

Z
{2}

{1}

X≠≠Z Y<Z

4

Foundations of constraint satisfaction, Roman Barták

From DAC to AC for tree-structured CSPFrom DAC to AC for tree-structured CSP

If we apply DAC to tree-structured CSP first using the
order from the root to the leaf nodes and second in the
reverse direction then we get (full) arc consistency.

Proof:

together: every value has some support in the child nodes (the first run)
as well as in the parent node (the second run), i.e., we have AC

if any value is deleted during
the second run of DAC (in the
reverse direction) then this
value does not support any
value in the parent node (the
values in the parent node does
not lose any support)

the first run of DAC ensures that
any value in the parent node has
a support (a compatible value) in
all the child nodes

××

×× ××
××

a b

p q r u v

a b c
5 4

3 2

1

a b

p q r u v

a b c
1 2

3 4

5

Foundations of constraint satisfaction, Roman Barták

Is arc consistency enough?Is arc consistency enough?

By using AC we can remove many incompatible values
– Do we get a solution?
– Do we know that there exists a solution?

Unfortunately, the answer to both above questions is NO!
Example:

X

Y
Z

X≠≠Z
X≠≠Y

Y≠≠Z

{1,2}

{1,2} {1,2}

CSP is arc consistent
but there is no solution

So what is the benefit of AC?
Sometimes we have a solution after AC

• any domain is empty →→ no solution exists
• all the domains are singleton →→ we have a solution

In general, AC prunes the search space.

Foundations of constraint satisfaction, Roman Barták

Consistency techniques in practiceConsistency techniques in practice
N-ary constraints are processed directly!

The constraint CY is arc consistent iff for every variable i
constrained by CY and for every value v∈∈Di there is an
assignment of the remaining variables in CY such that
the constraint is satisfied.

Example: A+B=C, A in 1..3, B in 2..4, C in 3..7 is AC

Constraint semantics is used!
Interval consistency

working with intervals rather than with individual values
interval arithmetic
Example: after change of A we compute A+B →→ C, C-A →→ B

bounded consistency
only lower and upper bound of the domain are propagated

Such techniques do not provide full arc consistency!

It is possible to use different levels of consistency for
different constraints!

Foundations of constraint satisfaction, Roman Barták

Base propagation algorithmBase propagation algorithm

Based on generalisation of AC-3.
Repeat constraint revisions until any domain is changed.

procedure AC-3(C)
Q ←← C % a list of constraints for revision
while Q non empty do

select and delete c from Q
REVISE(c,Q)

end while
end AC-3

The REVISE procedure is customised for each constraint.
we get algorithms with various consistency levels

Constraint planning
How to choose the order of constraints for revisions (a queue Q)?
Event driven programming

event = domain change
REVISE generates new events that evoke further filtering

Foundations of constraint satisfaction, Roman Barták

Design of consistency algorithmsDesign of consistency algorithms
The user can often define the code of REVISE procedure.
How to do it?

1) Decide about the event to evoke the filtering
when the domain of involved variable is changed

• whenever the domain changes
• when minimum/maximum bound is changed
• when the variable becomes singleton

different suspensions for different variables
Example: A<B filtering evoked after change of min(A) or max(B)
• directional consistency

2) Design the filtering algorithm for the constraint
the result of filtering is the change of domains
more filtering procedures for a single constraint are allowed
Example: A<B

min(A): B in min(A)+1..sup, max(B): A in inf..max(B)-1

Foundations of constraint satisfaction, Roman Barták

Definition of a constraint (Definition of a constraint (SICStus PrologSICStus Prolog))
How to describe propagation through A<B?

bound consistency is enough for full consistency!

less_then(A,B):-
fd_global(a2b(A,B),no_state,[min(A)]),
fd_global(b2a(A,B),no_state,[max(B)]).

dispatch_global(a2b(A,B),S,S,Actions):-
fd_min(A,MinA), fd_max(A,MaxA), fd_min(B,MinB),
(MaxA<MinB ->

Actions = [exit]
; LowerBoundB is MinA+1,

Actions = [B in LowerBoundB..sup]).

dispatch_global(b2a(A,B),S,S,Actions):-
fd_max(A,MaxA), fd_min(B,MinB), fd_max(B,MaxB),
 (MaxA<MinB ->

Actions = [exit]
; UpperBoundA is MinB-1,

Actions = [A in inf..UpperBoundA]).

