

Binary constraints

World is not binary ...
but it could be transformed to a binary one!

Each CSP can be transformed to an equivalent binary CSP - many CSP algorithms designed for binary problems

- still open efficiency issues

Projection technique (Montanary 1974):

- straightforward but
- does not give an equivalent problem
- bound consistency
- better efficiency
- weaker pruning

Dual encoding

Swapping variables and constraints.
\mathbf{k} - ary constraint \mathbf{c} is converted to
a dual variable v_{c} with the domain consisting of compatible tuples
for each pair of constraints \mathbf{c} a \mathbf{c}^{\prime} sharing some variables there is
a binary constraint between $v_{c} a v_{c}$, restricting the dual variables
to tuples in which the original shared variables take the same value

Example:

variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{6}$ with domain $\{0,1\}$
$c_{1}: x_{1}+x_{2}+x_{6}=1$
c_{2} : $x_{1}-x_{3}+x_{4}=1$
$c_{3}: x_{4}+x_{5}-x_{6}>0$
$\mathrm{C}_{4}: \mathrm{x}_{2}+\mathrm{x}_{5}-\mathrm{x}_{6}=0$

Hidden variable encoding

New dual variables for (non-binary) constraints.
k - ary constraint c is translated to
a dual variable v_{c} with the domain consisting of compatible tuples
for each variable x in the constraint c there is a constraint between
$x a v_{c}$ restricting tuples of dual variable to be compatible with x
Example:
variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{6}$
with domains $\{0,1\}$
$c_{1}: x_{1}+x_{2}+x_{6}=1$
$c_{2}: x_{1}-x_{3}+x_{4}=1$
$c_{3}: x_{4}+x_{5}-x_{6}>0$
$c_{4}: \mathrm{x}_{2}+\mathrm{x}_{5}-\mathrm{x}_{6}=0$

[^0]
Algorithm chronological backtracking

A recursive definition

Algorithm BT(X:variables, V:assignment, C:constraints) if $\mathrm{X}=\{ \}$ then return V
$\mathbf{x} \leftarrow$ select a not-yet assigned variable from X
for each value h from the domain of x do
if constraints C are satisfied over $V+x / h$ then $\mathrm{R} \leftarrow \mathrm{BT}(\mathrm{X}-\mathrm{x}, \mathrm{V}+\mathrm{x} / \mathrm{h}, \mathrm{C})$ if $\mathbf{R} \neq$ fail then return \mathbf{R}
end for
return fail
top call $\operatorname{BT}(X,\{ \}, C)$

Backtracking is always better than generate and test!

Weaknesses of backtracking

thrashing
throws away the reason of the conflict
Example: A,B,C,D,E:: 1..10, A>E
$B T$ tries all the assignments for B, C, D before finding that $A \neq 1$
Solution: backjumping (jump to the source of the failure)
redundant work
unnecessary constraint checks are repeated
Example: A,B,C,D,E:: 1..10, B+8<D, C=5*E
when labelling C, E the values $1, . ., 9$ are repeatedly checked for D
Solution: backmarking, backchecking (remember (no-)good assignments)
late detection of the conflict
constraint violation is discovered only when the values are known
Example: A,B,C,D,E::1..10, A=3*E
the fact that $\mathrm{A}>2$ is discovered when labelling E
Solution: forward checking (forward check of constraints)

Backjumping_(Gaschnig 1979)

Backjumping is used to remove thrashing.
How?

1) identify the source of the conflict (impossible to assign a value)
2) jump to the past variable in conflict

The same run like in backtracking, only the back-jump can be longer, i.e. irrelevant assignments are skipped!

How to find a jump position? What is the source of the conflict?
select the constraints containing just the currently assigned variable and the past variables select the closest variable participating in the selected constraints Graph-directed backjumping

Enhancement: use only the violated constraints

Conflict-directed backjumping in practice

N-queens problem

Queens in rows are allocated to columns.

6th queen cannot be allocated!

1. Write a number of conflicting queens to each position. 2. Select the farthest conflicting queen for each position.
2. Select the closest conflicting queen among positions.

Note:
Graph-directed backjumping has no effect here (due to complete graph)!

Identification of the conflicting variable

How to find out the conflicting variable?

Situation:

assume that the variable no. 7 is being assigned (values are 0,1) the symbol • marks the variables participating the violated constraints (two constraints for each value)

Consistency check for backjumping

In addition to the test of satisfaction of the constraints, the closest conflicting level is computed
procedure consistent(Labelled, Constraints, Level)
$J \leftarrow$ Level \quad \% the level to which we will jump
NoConflict \leftarrow true \% remember if there is any conflict
for each C in Constraints do
if all variables from C are Labelled then
if C is not satisfied by Labelled then NoConflict \leftarrow false
$\mathrm{J} \leftarrow \min \{\mathrm{J}, \max \{\mathrm{L} \mid \mathrm{X}$ in $\mathrm{C} \& \mathrm{X} / \mathrm{V} / \mathrm{L}$ in Labelled \& L<Level $\}$ end if
end if
end for
if NoConflict then return true else return fail(J)
end consistent
Foundations of constraint satistaction, Roman Bart

```
Algorithm backjumping
procedure BJ(Unlabelled, Labelled, Constraints, PreviousLevel)
    if Unlabelled ={} then return Labelled
    pick first X from Unlabelled
    Level }\leftarrow\mathrm{ PreviousLevel+1
    Jump }\leftarrow
    for each value V from D}\mp@subsup{D}{\textrm{x}}{}\mathrm{ do
        C}\leftarrow\operatorname{consistent({X/V/Level} \cupLabelled, Constraints, Level)
        if C=fail(J) then
            Jump }\leftarrow\operatorname{max}{Jump, J
            else
                Jump }\leftarrow\mathrm{ PreviousLevel
                R}\leftarrow\textrm{BJ}\mathrm{ (Unlabelled-{X},{X/V/Level} }\cup\mathrm{ Labelled,Constraints, Level)
                if R}\boldsymbol{\not=f\mathrm{ fail(Level) then return }R\quad% success or back-jump
        end if
    end for
    return fail(Jump) % jump to the conflicting variable
end BJ
top call BJ(Variables,{},Constraints,0)
```


Weakness of backjumping

When jumping back the in-between assignment is lost!

Example:

colour the graph in such a way that the connected vertices have differen colours

node vertex

A				
B 2×1	2			
C 12 cit $12<1$				
D				
E				

During the second attempt to label C superfluous work is done - it is enough to leave there the original value 2 , the change of B does not influence C.

Algorithm dynamic backtracking (Ginsberg 1993)
procedure DB(Variables, Constraints)
Labelled $\leftarrow\}$; Unlabelled \leftarrow Variables
while Unlabelled $\neq\{ \}$ do
select X in Unlabelled
Values $\mathrm{x}_{\mathrm{x}} \leftarrow \mathrm{D}_{\mathrm{x}}$-\{values inconsistent with Labelled using Constraints\}
if Values ${ }_{x}=\{ \}$ then
et E be an explanation of the conflict (set of conflicting variables)
if $E=\{ \}$ then failure
else
let Y be the most recent variable in E
unassign Y (from Labelled) with eliminating explanation $\mathrm{E}-\{\mathrm{Y}\}$
remove all the explanations involving Y
end i
else
select V in Values ${ }_{x}$
Unlabelled \leftarrow Unlabelled - $\{\mathrm{X}\}$
Labelled \leftarrow Labelled $\cup\{\mathrm{X} v \mathbf{V}\}$
end if
end while
return Labelled
end DB

Redundant work in backtracking
What is redundant work?
repeated computation whose result has already been obtained

Example:

Backmarking_(Haralick, Elliot 1980)
Removes redundant constraint checks by memorising negative and positive tests:
$\operatorname{Mark}(X, V)$ is the farthest (instantiated) variable in conflict with the assignment $\mathrm{X}=\mathrm{V}$
$\operatorname{BackTo}(X)$ is the farthest variable to which we backtracked since the last attempt to instantiate X
Now, some constraint checks can be omitted

Consistency check for backmarking

Only the constraints where any value is changed are re-checked, and the farthest conflicting level is computed.
procedure consistent(X/V, Labelled, Constraints, Level)
or each Y/VY/LY in Labelled such that LY \geq BackTo(X) do \% only possible changed variables Y are explored \% in the increasing order of LY (first the oldest one) if X / V is not compatible with Y/VY using Constraints then Mark $(\mathrm{X}, \mathrm{V}) \leftarrow \mathrm{LY}$
return fail end if
end for
Mark $(\mathrm{X}, \mathrm{V}) \leftarrow$ Level-1
return true
end consistent

Tree search and heuristics

Observation 1:
The search space for real-life problems is so huge that it cannot be fully explored.

Heuristics - a guide of search
they recommend a value for assignment

- quite often leads to solution

What to do upon a failure of the heuristics?
BT cares about the end of search (a bottom part of the search tree)

- so it rather repairs later assignments than the earliest ones
- it assumes that the heuristic guides it well in the top part

Observation 2:
The heuristics are less reliable in the earlier parts of the search (as search proceeds, more information for better decision is available)
Observation 3 :
The number of heuristic violations is usually small.

Limited Discrepancy Search

Discrepancy = heuristic is not followed
(a value different from the heuristic is chosen)
Idea of Limited Discrepancy Search (LDS):

- first, follow the heuristic
- when a failure occurs then explore the paths when the heuristic
is not followed maximally once (start with earlier violations)
after next failure occurs then explore the paths when the heuristic is not followed maximally twice...

Example:

the heuristic proposes to use the left branches

Algorithm LDS (Harvey, Ginsberg 1995)
procedure LDS-PROBE(Unlabelled,Labelled,Constraints,D)
if Unlabelled $=\{ \}$ then return Labelled
select X in Unlabelled
Values ${ }_{\mathrm{x}} \leftarrow \mathrm{D}_{\mathrm{x}}$ - \{values inconsistent with Labelled using Constraints\}
Values $_{x}=\{ \}$ then return fail
else select HV in Values x_{x} using heuristic
if $\mathrm{D}=0$ then return LDS-PROBE(Unlabelled-\{X\}, Labelled $\cup\{\mathrm{X} / \mathrm{HV}\}$, Constraints, 0) for each value V from Values $x_{x}-\{\mathrm{HV}\}$ do
$R \leftarrow$ LDS-PROBE(Unlabelled-\{X\}, Labelled $\cup\{X / V\}$, Constraints, D-1)
if $\mathrm{R} \neq$ fail then return R
end for
return LDS-PROBE(Unlabelled-\{X\}, Labelled $\mathcal{\{ X / H V}\}$, Constraints, D)
end if
end LDS-PROBE
procedure LDS(Variables,Constraints)
for $\mathrm{D}=0$ to |Variables| do \quad \% D is a number of allowed discrepancies $\mathrm{R} \leftarrow$ LDS-PROBE(Variables, $\}$, Constraints, D) if $\mathrm{R} \neq$ fail then return R
end for
return fai
end LDS

[^0]: Backtracking
 Probably the most widely used systematic search algorithm basically it is depth-first search
 Using backtracking to solve CSP

 1) assign values gradually to variables
 2) after each assignment test the constraints over the assigned variables (and backtrack upon failure)

 Extends a partial consistent assignment until a complete consistent assignment is found

 Open questions:
 what is the order of variables?

 - variables with a smaller domain first
 - variables participating in more constraints first
 "key" variables first
 what is the order of values?
 - problem dependent

