
1

FoundationsFoundations
of constraint satisfactionof constraint satisfaction

Roman Barták
Charles University in Prague

bartak@ktiml.mff.cuni.cz
http://ktiml.mff.cuni.cz/~bartak

Foundations of constraint satisfaction, Roman Barták

What is the course about?What is the course about?

Constraint satisfaction problems
Algorithms for solving constraint satisfaction problems

l Local search
– HC, MC, RW, Tabu Search

l Search algorithms
– GT, BT, BJ, BM, DB, LDS

l Consistency techniques
– NC, AC, DAC, PC, DPC, RPC, SC

l Search and constraint propagation
– FC, PLA, LA

l Optimisation problems
– B&B

l Over-constrained problems
– PCSP, constraint hierarchies

Foundations of constraint satisfaction, Roman Barták

What is a constraint?What is a constraint?

Constraint is an arbitrary relation over the set of variables.
– every variable has a set of possible values - a domain

• this course covers discrete finite domains only

– the constraint restricts the possible combinations of values

Some examples:
– the circle C is inside a square S
– the length of the word W is 10 characters
– X is less than Y
– a sum of angles in the triangle is 180°
– the temperature in the warehouse must be in the range 0-5°C
– John can attend the lecture on Wednesday after 14:00

Constraint can be described:
– intentionally (as a mathematical/logical formula)
– extensionally (as a table describing compatible tuples)

Foundations of constraint satisfaction, Roman Barták

Constraint Satisfaction ProblemConstraint Satisfaction Problem

CSP (Constraint Satisfaction Problem) consists of:

– a finite set of variables
– domains - a finite set of values for each variable
– a finite set of constraints

A solution to CSP is a complete assignment of variables
satisfying all the constraints.

CSP is often represented as a (hyper)graph.
Example:

variables x1,…,x6

domain {0,1}

c1: x1+x2+x6=1
c2: x1-x3+x4=1
c3: x4+x5-x6>0
c4: x2+x5-x6=0

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

c2

x1 x2 x3 x4 x6x5

c1

c3

c4

Foundations of constraint satisfaction, Roman Barták

A bit of historyA bit of history

Artificial Intelligence
Scene labelling (Waltz 1975)

Interactive graphics
Sketchpad (Sutherland 1963)

ThingLab (Borning 1981)

Logic programming
unification →→ constraint solving (Gallaire 1985,

Jaffar, Lassez 1987)

Operations research and discrete mathematics
NP-hard combinatorial problems

Foundations of constraint satisfaction, Roman Barták

Some toy problemsSome toy problems

SEND + MORE = MONEY

assign different numerals to different letters
S and M are not zero

A constraint model (with a carry bit):
E,N,D,O,R,Y in 0..9, S,M in 1..9, P1,P2,P3::0..1

all_different(S,E,N,D,M,O,R,Y)

 D+E = 10*P1+Y
P1+N+R = 10*P2+E
P2+E+O = 10*P3+N
P3+S+M = 10*M +O

N-queens problem
allocate N queens to the chessboard

the queens do not attack each other
A constraint model:

queens in columns ∀∀i r(i) in 1..N
no conflict

∀∀i≠≠j r(i)≠≠r(j) & |i-j|≠≠|r(i)-r(j)|

2

Foundations of constraint satisfaction, Roman Barták

Constraints in scene labelling (WaltzConstraints in scene labelling (Waltz 19751975))

Looking for feasible interpretation of 3D lines in 2D drawing

First usage of constraint propagation techniques

+
-

-
+

+ +

-

+

-

+

+
+ +

+

+

Foundations of constraint satisfaction, Roman Barták

Constraints in interactive graphicsConstraints in interactive graphics

How to manipulate a graphical object described by
constraints?

http://kti.mff.cuni.cz/~bartak/diploma/downloads.html

http://www.cs.washington.edu/research/constraints/

Foundations of constraint satisfaction, Roman Barták

Constraints in A.I. planning and schedulingConstraints in A.I. planning and scheduling

Scheduling problem =
a set of activities has to be
processed by a limited number
of resources in a limited
amount of time.

Combinatorial optimisation

Planning problem =
find a set of activities to
achieve a given goal

Deep Space One
– autonomous planning of

spacecraft activities

Foundations of constraint satisfaction, Roman Barták

Constraints in Constraints in bioinformaticsbioinformatics

Design of a 3D protein structure from the sequence of
amino-acids (3D structure determines features of
proteins)

Analysing a sequence of DNA, estimating a distance
between DNAs, comparing DNAs

http://www.soi.city.ac.uk/~drg/bioinformatics/

Foundations of constraint satisfaction, Roman Barták

Solving constraints by enumerationSolving constraints by enumeration

Constraints are used only as a test
assign values to variables ...

… and see what happens

systematic search

explores the space of all assignments systematically
GT, BT, BJ, BM, DB, LDS

non-systematic search

some assignments may be skipped during search
Credit Search, Bounded Backtrack

local search

explore the search space by small steps
HC, MC, RW, Tabu, GSAT, Genet, simulated annealing

Foundations of constraint satisfaction, Roman Barták

Systematic searchSystematic search

Explore systematically the space of all assignments
systematic = every valuation will be explored sometime

Features:

+ complete (if there is a solution, the method finds it)
- it could take a lot of time to find the solution

Basic classification:

Explore complete assignments
generate and test
such search space is used by local search (non-systematic)

Extending partial assignments
tree search

3

Foundations of constraint satisfaction, Roman Barták

Generate and test (GT)Generate and test (GT)

The most general problem solving method
1) generate a candidate for solution
2) test if the candidate is really a solution

How to apply GT to CSP?
1) assign values to all variables
2) test whether all the constraints are satisfied

GT explores complete but inconsistent assignments until a (complete)
consistent assignment is found.

Procedure GT(X:variables, C:constraints)
V ←← construct a first complete assignment of X
while V does not satisfy all the constraints C do

V ←← construct systematically a complete assignment next to V
end while
return V

Foundations of constraint satisfaction, Roman Barták

Weaknesses and improvements of GTWeaknesses and improvements of GT

The greatest weakness of GT is exploring too many
“visibly” wrong assignments.

Example:
X,Y,Z::{1,2} X = Y, X ≠≠ Z, Y > Z

How to improve generate and test?

smart generator
smart (perhaps non-systematic) generator that uses result of test

åå local search techniques

earlier detection of clash
constraints are tested as soon as the involved variables are

instantiated →→ backtracking-based search

X
Y
Z

1
1
1

1
1
2

1
2
1

1
2
2

2
1
1

2
1
2

2
2
1

Foundations of constraint satisfaction, Roman Barták

Local searchLocal search

Generate and test explores complete but inconsistent
assignments until a complete consistent assignment is
found.

Weakness of GT - the generator does not use result of test
The next assignment can be constructed in such a way
that constraint violation is smaller.
– only “small” changes of the assignment are allowed
– next assignment should be “better” than previous

better = more constraints are satisfied

– assignments are not necessarily generated
systematically

we lost completeness but we (hopefully) get better efficiency

Local search is a technique of searching solution by small
changes (local steps) to the solution candidate.

Foundations of constraint satisfaction, Roman Barták

Local search - TerminologyLocal search - Terminology

state - a complete assignment of values to variables
evaluation - a value of the objective function (# violated constraints)
neighbourhood - a set of states locally different from the current state

(the states differ from the current state in the value of one variable)
local optimum - a state that is not optimal and there is no state with

better evaluation in its neighbourhood
strict local optimum - a state that is not optimal and there are only

states with worse evaluation in its neighbourhood
non-strict local optimum - local optimum that is not strict
global optimum - the state with the best evaluation
plateau - a set of neighbouring states with the same evaluation

plateau
local
minimum

local minimum

global
minimum

evalu
atio

n

non-strict local
minimum

Foundations of constraint satisfaction, Roman Barták

Hill ClimbingHill Climbing
Hill climbing is perhaps the most known technique of local search.

start at randomly generated state
look for the best state in the neighbourhood of the current state

neighbourhood = differs in the value of any variable
neighbourhood size = ΣΣi=1..n(Di-1) (= n*(d-1))

“escape” from the local optimum via restart

Algorithm Hill Climbing
procedure hill-climbing(Max_Flips)

restart: s ←← random assignment of variables;
for j:=1 to Max_Flips do % restricted number of steps

if eval(s)=0 then return s
if s is a strict local minimum then

go to restart
else

s ←← neighbourhood with the smallest evaluation value
end if

end for
go to restart

end hill-climbing
Foundations of constraint satisfaction, Roman Barták

Min-ConflictsMin-Conflicts ((MintonMinton, Johnston, , Johnston, LairdLaird 19971997))
Observation:

– the hill climbing neighbourhood is pretty large (n*(d-1))
– only change of a conflicting variable may improve the valuation

Min-conflicts method

select randomly a varible in conflict and try to improve it
neighbourhood = different values for the selected variable i
neighbourhood size = (Di-1) (= (d-1))

Algorithm Min-Conflicts
procedure MC(Max_Moves)

s ←← random assignment of variables
nb_moves ←← 0
while eval(s)>0 & nb_moves<Max_Moves do

choose randomly a variable V in conflict
choose a value v' that minimises the number of conflicts for V
if v' ≠≠ current value of V then

assign v' to V
nb_moves ←← nb_moves+1

end if
end while
return s

end MC

It cannot leave
a local optimum

4

Foundations of constraint satisfaction, Roman Barták

Random walkRandom walk

How to leave the local optimum without a restart
(i.e. via a local step)?

By adding some “noise” to the algorithm!

Random walk

a state from the neighbourhood is selected randomly
(e.g., the value is chosen randomly)

such technique can hardly find a solution
so it needs some guide

Random walk can be combined with the heuristic guiding
the search via probability distribution:

p - probability of using the random walk
(1-p) - probability of using the heuristic guide

Foundations of constraint satisfaction, Roman Barták

Min-Conflicts Random WalkMin-Conflicts Random Walk

MC guides the search (i.e. satisfaction of all the constraints) and RW
allows us to leave the local optima.

Algorithm Min-Conflicts-Random-Walk

procedure MCRW(Max_Moves,p)
s ←← random assignment of variables
nb_moves ←← 0
while eval(s)>0 & nb_moves<Max_Moves do

if probability p verified then
choose randomly a variable V in conflict
choose randomly a value v' for V

else
choose randomly a variable V in conflict
choose a value v' that minimises the number of conflicts for V

end if
if v' ≠≠ current value of V then

assign v' to V
nb_moves ←← nb_moves+1

end if
end while
return s

end MCRW

0.02 ≤≤ p ≤≤ 0.1

Foundations of constraint satisfaction, Roman Barták

Steepest Descent Random WalkSteepest Descent Random Walk

Random walk can be combined with the hill climbing heuristic too.
Then, no restart is necessary.

Algorithm Steepest-Descent-Random-Walk

procedure SDRW(Max_Moves,p)
s ←← random assignment of variables
nb_moves ←← 0
while eval(s)>0 & nb_moves<Max_Moves do

if probability p verified then
choose randomly a variable V in conflict
choose randomly a value v' for V

else
choose a move <V,v'> with the best performance

end if
if v' ≠≠ current value of V then

assign v' to V
nb_moves ←← nb_moves+1

end if
end while
return s

end SDRW

Foundations of constraint satisfaction, Roman Barták

Tabu Tabu listlist
Observation:

Being trapped in local optimum is a special case of cycling.
How to avoid cycles in general?

Remember already visited states and do not visit them again.
• memory consuming (too many states)

It is possible to remember just few last states.
• prevents „short“ cycles

Tabu list = a list of forbidden states
the state can be represented by a selected attribute

〈〈variable, value〉〉 - describes the change of the state (a previous value)

tabu list has a fix length k (tabu tenure)
„old“ states are removed from the list when a new state is added

state included in the tabu list is forbidden (it is tabu)
Aspiration criterion = enabling states that are tabu

i.e., it is possible to visit the state even if the state is tabu
example: the state is better than any state visited so far

Foundations of constraint satisfaction, Roman Barták

Tabu Tabu search (search (GalinierGalinier, , HaoHao 19971997))

The tabu list prevents short cycles.
It allows only the moves out of the tabu list or the moves satisfying

the aspiration criterion.

Algorithm Tabu Search
procedure tabu-search(Max_Iter)

s ←← random assignment of variables

nb_iter ←← 0
initialise randomly the tabu list
while eval(s)>0 & nb_iter<Max_Iter do

choose a move <V,v'> with the best performance among the non-tabu
moves and the moves satisfying the aspiration criteria

introduce <V,v> in the tabu list, where v is the current value of V
remove the oldest move from the tabu list
assign v' to V
nb_iter ←← nb_iter+1

end while
return s

end tabu-search

Foundations of constraint satisfaction, Roman Barták

Localizer (Michel, Van Localizer (Michel, Van Hentenryck Hentenryck 19971997))

The local search algorithms have a similar structure that can be
encoded in the common skeleton. This skeleton is filled by
procedures implementing a particular technique.

Local Search Skeleton

procedure local-search(Max_Tries,Max_Moves)
s ←← random assignment of variables
for i:=1 to Max_Tries while Gcondition do

for j:=1 to Max_Moves while Lcondition do
if eval(s)=0 then

return s
end if
select n in neighbourhood(s)
if acceptable(n) then

s ←← n
end if

end for
s ←← restartState(s)

end for
return best s

end local-search

