What is the course about?

Constraint satisfaction problems
Algorithms for solving constraint satisfaction problems

- Local search

HC, MC, RW, Tabu Search

- Search algorithms

GT, BT, BJ, BM, DB, LDS

- Consistency techniques

NC, AC, DAC, PC, DPC, RPC, SC

- Search and constraint propagation

FC, PLA, LA

- Optimisation problems
- B\&B
- Over-constrained problems

PCSP, constraint hierarchies

What is a constraint?

Constraint is an arbitrary relation over the set of variables.

- every variable has a set of possible values - a domain
this course covers discrete finite domains only
- the constraint restricts the possible combinations of values

Some examples:

- the circle C is inside a square S
- the length of the word W is 10 characters
$-X$ is less than Y
- a sum of angles in the triangle is 180°
- the temperature in the warehouse must be in the range $0-5^{\circ} \mathrm{C}$ - John can attend the lecture on Wednesday after 14:00

Constraint can be described:

- intentionally (as a mathematical/logical formula) - extensionally (as a table describing compatible tuples)

Constraint Satisfaction Problem

CSP (Constraint Satisfaction Problem) consists of:

- a finite set of variables
- domains - a finite set of values for each variable - a finite set of constraints

A solution to CSP is a complete assignment of variables satisfying all the constraints.
CSP is often represented as a (hyper)graph. Example:
variables $\mathrm{x}_{1}, \ldots, \mathrm{x}^{2}$
domain $\{0,1\}$
$c_{1}: x_{1}+x_{2}+x_{6}=1$
c_{2} : $\mathrm{x}_{1}-\mathrm{x}_{3}+\mathrm{x}_{4}=1$
$\mathrm{c}_{3}: \mathrm{x}_{4}+\mathrm{x}_{5}-\mathrm{x}_{6}>0$
$\mathrm{c}_{4}: \mathrm{x}_{2}+\mathrm{x}_{5}-\mathrm{x}_{6}=0$

A bit of history

Artificial Intelligence
Scene labelling (Waltz 1975)
Interactive graphics
Sketchpad (Sutherland 1963)
ThingLab (Borning 1981)
Logic programming
unification \rightarrow constraint solving (Gallaire 1985, Jaffar, Lassez 1987)

Operations research and discrete mathematics NP-hard combinatorial problems

Foundations of constraint satistaction, Roman Bar

Some toy problems

SEND + MORE = MONEY
assign different numerals to different letters S and M are not zero
A constraint model (with a carry bit):
$\mathrm{E}, \mathrm{N}, \mathrm{D}, \mathrm{O}, \mathrm{R}, \mathrm{Y}$ in $0 . .9$, S, M in 1..9, $\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3:: 0 . .1$
all_different ($\mathrm{S}, \mathrm{E}, \mathrm{N}, \mathrm{D}, \mathrm{M}, \mathrm{O}, \mathrm{R}, \mathrm{Y}$)
$\mathrm{D}+\mathrm{E}=10 * \mathrm{P} 1+\mathrm{Y}$
$\mathrm{P} 1+\mathrm{N}+\mathrm{R}=10 * \mathrm{P} 2+\mathrm{E}$
$\mathrm{P} 3+\mathrm{S}+\mathrm{M}=10 * \mathrm{M}+\mathrm{O}$

N-queens problem
allocate N queens to the chessboard the queens do not attack each other
A constraint model:
queens in columns $\forall i x(i)$ in $1 \ldots N$
no conflict
$\forall i \neq j \quad r(i) \neq r(j) \&|i-j| \neq|r(i)-r(j)|$
 Foundations of constraint satistaction, Roman Ban

Solving constraints by enumeration

Constraints are used only as a test assign values to variables ..
... and see what happens

systematic search
explores the space of all assignments systematically GT, BT, BJ, BM, DB, LDS
non-systematic search
some assignments may be skipped during search Credit Search, Bounded Backtrack

local search

explore the search space by small steps
HC, MC, RW, Tabu, GSAT, Genet, simulated annealing

Systematic search

Explore systematically the space of all assignments systematic = every valuation will be explored sometime

Features:

+ complete (if there is a solution, the method finds it)
- it could take a lot of time to find the solution

Basic classification:
Explore complete assignments
0606006000
generate and tes
such search space is used by local search (non-systematic)
Extending partial assignments tree search

Generate and test (GT)

The most general problem solving method

1) generate a candidate for solution
2) test if the candidate is really a solution

How to apply GT to CSP?

1) assign values to all variables
2) test whether all the constraints are satisfied

GT explores complete but inconsistent assignments until a (complete) consistent assignment is found.

Procedure GT(X:variables, C:constraints)

$\mathrm{V} \leftarrow$ construct a first complete assignment of X while V does not satisfy all the constraints C do
$\mathrm{V} \leftarrow$ construct systematically a complete assignment next to V end while
return V
Foundations of constraint satistaction Roman

Weaknesses and improvements of GT
 The greatest weakness of GT is exploring too many "visibly" wrong assignments.
 Example:
 $X, Y, Z::\{1,2\} \quad X=Y, X \neq Z, Y>Z$

How to improve generate and test? smart generator
smart (perhaps non-systematic) generator that uses result of test \Leftrightarrow local search techniques
earlier detection of clash
constraints are tested as soon as the involved variables are instantiated \rightarrow backtracking-based search

Local search
Generate and test explores complete but inconsistent assignments until a complete consistent assignment is found.

Weakness of GT - the generator does not use result of test The next assignment can be constructed in such a way that constraint violation is smaller.

- only "small" changes of the assignment are allowed - next assignment should be "better" than previous better = more constraints are satisfied
- assignments are not necessarily generated systematically
we lost completeness but we (hopefully) get better efficiency
Local search is a technique of searching solution by small changes (local steps) to the solution candidate.

Local search - Terminology

state - a complete assignment of values to variables evaluation - a value of the objective function (\# violated constraints) neighbourhood - a set of states locally different from the current state (the states differ from the current state in the value of one variable)
local optimum - a state that is not optimal and there is no state with better evaluation in its neighbourhood
strict local optimum - a state that is not optimal and there are only states with worse evaluation in its neighbourhood non-strict local optimum - local optimum that is not strict global optimum - the state with the best evaluation plateau - a set of neighbouring states with the same evaluation

Hill Climbing

Hill climbing is perhaps the most known technique of local search start at randomly generated state
look for the best state in the neighbourhood of the current state neighbourhood = differs in the value of any variable neighbourhood size $=\Sigma_{\mathrm{i}=1 . . . \mathrm{n}}\left(\mathrm{D}_{\mathrm{i}}-1\right)\left(=\mathrm{n}^{\star}(\mathrm{d}-1)\right.$)
"escape" from the local optimum via restart
Algorithm Hill Climbing
procedure hill-climbing(Max_Flips)
restart: $\mathbf{s} \leftarrow$ random assignment of variables;
for $\mathrm{j}:=1$ to Max_Flips do $\quad \%$ restricted number of steps
if eval(s) $=0$ then return s
if s is a strict local minimum then go to restart
else $s \leftarrow$ neighbourhood with the smallest evaluation valu end if end for
go to restart
d hill-climbing

Min-Conflicts(Minton, Johnston, Laird 1997)
Observation:

- the hill climbing neighbourhood is pretty large ($\mathrm{n}^{\star}(\mathrm{d}-1)$)
- only change of a conflicting variable may improve the valuation Min-conflicts method
select randomly a varible in conflict and try to improve it neighbourhood $=$ different values for the selected variable i

Random walk

How to leave the local optimum without a restart (i.e. via a local step)?

By adding some "noise" to the algorithm!

Random walk

a state from the neighbourhood is selected randomly (e.g., the value is chosen randomly)
such technique can hardly find a solution
so it needs some guide

Random walk can be combined with the heuristic guiding the search via probability distribution:

- probability of using the random walk (1-p)-probability of using the heuristic guide

Steepest Descent Random Walk

Random walk can be combined with the hill climbing heuristic too. Then, no restart is necessary.

Algorithm Steepest-Descent-Random-Walk

```
procedure SDRW(Max_Moves,p)
    s}\leftarrow\mathrm{ random assignment of variables
    nb_moves}\leftarrow
        while eval(s)>0 & nb_moves<Max_Moves do
            if probability p
                choose randomly a variable V in conflict
                choose randomly a value v' for V
            else
            else
            end if
            if }\mp@subsup{\textrm{v}}{}{\prime}\not=\mathrm{ current value of }V\mathrm{ then
                assign v' to v
                nb_moves & nb_moves+1
        end if
    end while
    end SDRW
```


Tabu search (Galinier, HaO 1997)

The tabu list prevents short cycles.
It allows only the moves out of the tabu list or the moves satisfying the aspiration criterion.

Min-Conflicts Random Walk
MC guides the search (i.e. satisfaction of all the constraints) and RW allows us to leave the local optima.

Tabu list

Observation:
Being trapped in local optimum is a special case of cycling.
How to avoid cycles in general?
Remember already visited states and do not visit them again. - memory consuming (too many states)

It is possible to remember just few last states.
prevents ,,short" cycles
Tabu list = a list of forbidden states
the state can be represented by a selected attribute
(variable, value) - describes the change of the state (a previous value) tabu list has a fix length \boldsymbol{k} (tabu tenure)
"old" states are removed from the list when a new state is added state included in the tabu list is forbidden (it is tabu)
Aspiration criterion $=$ enabling states that are tabu
i.e., it is possible to visit the state even if the state is tabu example: the state is better than any state visited so far

Binary constraints

World is not binary ...
but it could be transformed to a binary one!

Each CSP can be transformed to an equivalent binary CSP - many CSP algorithms designed for binary problems

- still open efficiency issues

Projection technique (Montanary 1974):

- straightforward but
- does not give an equivalent problem
- bound consistency
- better efficiency
- weaker pruning

Dual encoding

Swapping variables and constraints.
\mathbf{k} - ary constraint \mathbf{c} is converted to
a dual variable v_{c} with the domain consisting of compatible tuples
for each pair of constraints \mathbf{c} a \mathbf{c}^{\prime} sharing some variables there is
a binary constraint between $v_{c} a v_{c}$, restricting the dual variables
to tuples in which the original shared variables take the same value

Example:

variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{6}$ with domain $\{0,1\}$
$c_{1}: x_{1}+x_{2}+x_{6}=1$
c_{2} : $x_{1}-x_{3}+x_{4}=1$
$c_{3}: x_{4}+x_{5}-x_{6}>0$
$\mathrm{C}_{4}: \mathrm{x}_{2}+\mathrm{x}_{5}-\mathrm{x}_{6}=0$

Hidden variable encoding

New dual variables for (non-binary) constraints.
k - ary constraint c is translated to
a dual variable v_{c} with the domain consisting of compatible tuples
for each variable \mathbf{x} in the constraint \mathbf{c} there is a constraint between
$x a v_{c}$ restricting tuples of dual variable to be compatible with x

Example:
variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{6}$
with domains $\{0,1\}$
$c_{1}: x_{1}+x_{2}+x_{6}=1$
$c_{2}: x_{1}-x_{3}+x_{4}=1$
$c_{3}: x_{4}+x_{5}-x_{6}>0$
c_{4} : $\mathrm{x}_{2}+\mathrm{x}_{5}-\mathrm{x}_{6}=0$

[^0]
Algorithm chronological backtracking

A recursive definition
Algorithm BT(X:variables, V:assignment, C:constraints) if $\mathrm{X}=\{ \}$ then return V
$\mathrm{x} \leftarrow$ select a not-yet assigned variable from X
for each value h from the domain of x do
if constraints C are satisfied over $V+x / h$ then
$\mathrm{R} \leftarrow \mathrm{BT}(\mathrm{X}-\mathrm{x}, \mathrm{V}+\mathrm{x} / \mathrm{h}, \mathrm{C})$
if $\mathbf{R} \neq$ fail then return \mathbf{R}
end for
return fail
top call $\operatorname{BT}(X,\{ \}, C)$

Backtracking is always better than generate and test!
Foundations of constraint satistaction, Roman Bar

Weaknesses of backtracking

thrashing
throws away the reason of the conflict

Example: A,B,C,D,E:: 1..10, A>E
$B T$ tries all the assignments for B, C, D before finding that $A \neq 1$
Solution: backjumping (jump to the source of the failure)
redundant work
unnecessary constraint checks are repeated
Example: A,B,C,D,E:: $1 . .10, B+8<D, C=5 * E$
when labelling C, E the values $1, . ., 9$ are repeatedly checked for D
Solution: backmarking, backchecking (remember (no-)good assignments)
late detection of the conflict
constraint violation is discovered only when the values are known Example: A,B,C,D,E::1..10, A=3*E
the fact that $\mathrm{A}>2$ is discovered when labelling E
Solution: forward checking (forward check of constraints)

Backjumping_(Gaschnig 1979)

Backjumping is used to remove thrashing.
How?

1) identify the source of the conflict (impossible to assign a value)
2) jump to the past variable in conflict

The same run like in backtracking, only the back-jump can be longer, i.e. irrelevant assignments are skipped!

How to find a jump position? What is the source of the conflict?
select the constraints containing just the currently assigned variable and the past variables select the closest variable participating in the selected constraints
\qquad

Enhancement: use only the violated constraints
Foundations of constraint satise

Conflict-directed backjumping in practice

N-queens problem

Queens in rows are allocated to columns.

6th queen cannot be allocated!

1. Write a number of conflicting queens to each position. 2. Select the farthest conflicting queen for each position.
2. Select the closest conflicting queen among positions.

Note:
Graph-directed backjumping has no effect here (due to complete graph)!

Identification of the conflicting variable

How to find out the conflicting variable?

Situation:

assume that the variable no. 7 is being assigned (values are 0,1) the symbol • marks the variables participating the violated constraints (two constraints for each value)

Consistency check for backjumping

In addition to the test of satisfaction of the constraints, the closest conflicting level is computed
procedure consistent(Labelled, Constraints, Level)
$J \leftarrow$ Level \quad \% the level to which we will jump
NoConflict \leftarrow true \% remember if there is any conflict
for each C in Constraints do
if all variables from C are Labelled then
if C is not satisfied by Labelled then NoConflict \leftarrow false
$\mathrm{J} \leftarrow \min \{\mathrm{J}, \max \{\mathrm{L} \mid \mathrm{X}$ in $\mathrm{C} \& \mathrm{X} / \mathrm{V} / \mathrm{L}$ in Labelled \& L<Level $\}$ end if
end if
end for
if NoConflict then return true
end consistent
else return fail(J)

Weakness of backjumping

When jumping back the in-between assignment is lost!

Example:

colour the graph in such a way that the connected vertices have different colours

node	vertex	
A	1	1
B	2	1
C	12	12
D	123	12
E	123	123

During the second attempt to label C superfluous work is done - it is enough to leave there the original value 2 , the change of B does not influence C.

Dynamic backtracking - example

The same graph (A,B,C,D,E), the same colours $(1,2,3)$ but a different approach. Backjumping

+ remember the source of the conflic
+ carry the source of the conflict
+ change the order of variables
= DYNAMIC BACKTRACKING

$A B$ a source of the conflict
The vertex C (and the possible sub-graph connected to C) is not re-coloured

Foundations of constraint satistaction, Roman Bartak

Algorithm dynamic backtracking (Ginsberg 1993)
procedure DB (Variables, Constraints)
Labelled $\leftarrow\}$; Unlabelled \leftarrow Variables
while Unlabelled $\neq\{ \}$ do
select X in Unlabelled
Values ${ }_{x} \leftarrow D_{x}$ - \{values inconsistent with Labelled using Constraints $\}$
if Values $x=\{ \}$ then
let E be an explanation of the conflict (set of conflicting variables) if $\mathrm{E}=\{ \}$ then failure
else
let
the most recent variable in E
unassign Y (from Labelled) with eliminating explanation $\mathrm{E}-\{\mathrm{Y}\}$ remove all the explanations involving Y
end i
else
select V in Values S_{x}
Unlabelled \leftarrow Unlabelled - $\{\mathrm{X}\}$ Labelled \leftarrow Labelled $\cup\{\mathrm{X} / \mathbf{V}\}$
end if
end while
return Labelled
end DB

Redundant work in backtracking

What is redundant work?
repeated computation whose result has already been obtained

Example:

Backmarking_(Haralick, Elliot 1980)

Removes redundant constraint checks by memorising negative and positive tests:
$\operatorname{Mark}(X, V)$ is the farthest (instantiated) variable in conflict with the assignment $\mathrm{X}=\mathrm{V}$
$\operatorname{BackTo}(X)$ is the farthest variable to which we backtracked since the last attempt to instantiate X
Now, some constraint checks can be omitted

Consistency check for backmarking

Only the constraints where any value is changed are re-checked, and the farthest conflicting level is computed.
procedure consistent(X / V, Labelled, Constraints, Level)
for each Y/VY/LY in Labelled such that LY \geq BackTo(X) do $\%$ only possible changed variables Y are explored \% in the increasing order of LY (first the oldest one) if X / V is not compatible with Y/VY using Constraints then Mark $(\mathrm{X}, \mathrm{V}) \leftarrow \mathrm{LY}$
return fail end if
end for
Mark $(\mathrm{X}, \mathrm{V}) \leftarrow$ Level-1
return true
end consistent

Tree search and heuristics

Observation 1:

The search space for real-life problems is so huge that it cannot be fully explored.

Heuristics - a guide of search
they recommend a value for assignment

- quite often leads to solution

What to do upon a failure of the heuristics?
BT cares about the end of search (a bottom part of the search tree)

- so it rather repairs later assignments than the earliest ones
- it assumes that the heuristic guides it well in the top part

Observation 2:
The heuristics are less reliable in the earlier parts of the search (as search proceeds, more information for better decision is available)
Observation 3 :
The number of heuristic violations is usually small.

Limited Discrepancy Search

Discrepancy = heuristic is not followed
(a value different from the heuristic is chosen)
Idea of Limited Discrepancy Search (LDS):

- first, follow the heuristic
- when a failure occurs then explore the paths when the heuristic
is not followed maximally once (start with earlier violations)
after next failure occurs then explore the paths when the heuristic is not followed maximally twice...

Example:

the heuristic proposes to use the left branches

Algorithm LDS (Harvey, Ginsberg 1995)
procedure LDS-PROBE(Unlabelled,Labelled,Constraints,D)
if Unlabelled $=\{ \}$ then return Labelled
select X in Unlabelled
Values ${ }_{x} \leftarrow \mathrm{D}_{\mathrm{x}}$ - \{values inconsistent with Labelled using Constraints $\}$
Values $_{x}=\{ \}$ then return fail
else select HV in Values x_{x} using heuristic
if $\mathrm{D}=0$ then return LDS-PROBE(Unlabelled-\{X\}, Labelled $\cup\{\mathrm{X} / \mathrm{HV}\}$, Constraints, 0) for each value V from Values $x_{x}-\{\mathrm{HV}\}$ do
$R \leftarrow$ LDS-PROBE(Unlabelled-\{X\}, Labelled $\cup\{X / V\}$, Constraints, $D-1)$ if $\mathrm{R} \neq$ fail then return R
end for
return LDS-PROBE(Unlabelled- $\{\mathrm{X}\}$, Labelledu\{X/HV \}, Constraints, D)
end if
end LDS-PROBE
procedure LDS(Variables,Constraints)
for $\mathrm{D}=0$ to |Variables| do $\quad \% \mathrm{D}$ is a number of allowed discrepancies $\mathrm{R} \leftarrow$ LDS-PROBE(Variables, $\}$, Constraints, D) if $R \neq$ fail then return R
end for
return fai
end LDS

Introduction to consistency techniques

So far we used constraints in a passive way (as a test)in the best case we analysed the reason of the conflict. Cannot we use the constraints in a more active way?
Example:

A in 3..7, B in 1..5 the variables' domains	
$A<B$	the constraint

many inconsistent values can be removed
we get A in 3..4, B in $4 . .5$
Note: it does not mean that all the remaining combinations of the values are consistent (for example $A=4, B=4$ is not consistent)
How to remove the inconsistent values from the variables domains in the constraint network?

Node consistency (NC)

Unary constraints are converted into variables' domains.

Definition:

- The vertex representing the variable X is node consistent iff every value in the variable's domain D_{x} satisfies all the unary constraints imposed on the variable X.
- CSP is node consistent iff all the vertices are node consistent.

Algorithm NC

procedure $\mathrm{NC}(\mathrm{G})$

for each variable X in nodes (G)
for each value V in the domain D_{x}
if unary constraint on X is inconsistent with V then delete V from D_{X}
end for
end for
end NC

Arc consistency (AC)

Since now we will assume binary CSP only i.e. a constraint corresponds to an arc (edge) in the constraint network.

Definition:

- The arc $\left(V_{i}, V_{j}\right)$ is arc consistent iff for each value x from the domain D_{i} there exists a value y in the domain D_{j} such that the valuation $V_{i}=x$ a $V_{j}=y$ satisfies all the binary constraints on V_{i}, V_{j}
Note: The concept of arc consistency is directional, i.e., arc consistency of $\left(V_{i}, V_{j}\right)$ does not guarantee consistency of $\left(V_{j}, V_{i}\right)$.
CSP is arc consistent iff every arc $\left(V_{i}, V_{j}\right)$ is arc consistent (in both directions)

Example:
A $3 . .7=1<B$

(A, B) and (B, A) are consisten
\qquad
$A \quad 3.4 \xrightarrow{\sim} 4 . .5$

Algorithm for arc revisions
How to make $\left(\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{j}}\right)$ arc consistent?
Delete all the values x from the domain D_{i} that are inconsistent with all the values in D_{i} (there is no value y in D_{i} such that the valuation $V_{i}=x, V_{j}=y$ satisfies all the binary constrains on V_{i} a V_{j}).

Algorithm of arc revision

Algorithm AC-1 (Mackworth 1977)

How to make CSP arc consistent?
Do revision of every arc.
But this is not enough! Pruning the domain may make some already revised arcs inconsistent again.
$A<B, B<C:(3 . .7,1 . .5,1 . .5)(3.4,1 . .5,1 . .5)(3 . .4,4 . .5,1 . .5)(3 . .4,4,1 . .5)(3 . .4,4,5)(3,4,5)$
Thus the arc revisions will be repeated until any domain is changed.

What is wrong with AC-1?

If a single domain is pruned then revisions of all the arcs are repeated even if the pruned domain does not influence most of these arcs.

What arcs should be reconsidered for revisions?
The arcs whose consistency is affected by the domain pruning
i.e., the arcs pointing to the changed variable.

We can omit one more arc!
Omit the arc running out of the variable whose domain has been changed
(this arc is not affected by the domain change).

Algorithm AC-2 (Mackworth 1977)

A generalised version of the Waltz's labelling algorithm.
In every step, the arcs going back from a given vertex are processed (i.e. a sub-graph of visited nodes is AC)

Algorithm AC-3 (Mackworth 1977)

Re-revisions can be done more elegant than in AC-2.

1) one queue of arcs for (re-)revisions is enough
2) only the arcs affected by domain reduction are added to the queue (like AC-2)

Algorithm AC-3
procedure $\mathrm{AC}-3(\mathrm{G})$
$\mathrm{Q} \leftarrow\{(\mathrm{i}, \mathrm{j}) \mid(\mathrm{i}, \mathrm{j}) \in \operatorname{arcs}(\mathrm{G}), \mathrm{i} \neq \mathrm{j}\} \quad \%$ queue of arcs for revision
while Q non empty do
select and delete (k, m) from Q if REVISE((k, m)) then $\mathbf{Q} \leftarrow \mathbf{Q} \cup\{(\mathbf{i}, \mathbf{k}) \mid(\mathbf{i}, \mathbf{k}) \in \operatorname{arcs}(\mathrm{G}), \mathbf{i} \neq \mathbf{k}, \mathbf{i} \neq \mathbf{m}\}$
end AC-3
AC-3 is the most widely used consistency algorithm but it is still not optimal.

Foundations of constraint satistacion

Looking for (and remembering of) the support

Observation (AC-3):

Many pairs of values are tested for consistency in every arc revision.
These tests are repeated every time the arc is revised.

Observation:
The values a, b, c need not be checked again because they still have a support in V_{2} different from a.

The support set for $a \in D_{i}$ is the set $\left\{<j, b>\mid b \in D_{j},(a, b) \in C_{i, j}\right\}$
Cannot we compute the support sets once and then use them during re-revisions?

Computing supports and how to use them

Situation:

we have just processed the arc (i, j) in INITIALIAZE

Using the support sets:

1. Let b 3 is deleted from the domain of j (for some reason).
2. Look at $\mathrm{S}_{\mathrm{i}, \mathrm{b} 3}$ to find out the values that were supported by b3 (i.e. <i,a2>,<i,a3>).
3. Decrease the counter for these values (i.e. tell them that they lost one support).
4. If any counter is zero (a3) then delete the value and repeat the procedure with the respective value (i.e., go to 1).

Algorithm AC-4 (Mohr, Henderson 1986)

The algorithm AC-4 has the optimal worst case!
Algorithm AC-4

```
procedure AC-4(G)
    Q\leftarrow INITIALIZE(G)
    while Q non empty do
```

 select and delete any pair <j,b> from \(Q\)
 for each \(\left\langle i, a>\right.\) from \(S_{i b}\) do
 counter[(i,j),a] \(\leftarrow \operatorname{counter}[(i, j)\), a] - 1
 if counter \([(\mathrm{i}, \mathrm{j}), \mathrm{a}]=0\) \& "a" is still in \(\mathrm{D}_{\mathrm{i}}\) then
 delete "a" from \(D\)
 delete "a" from \(D\)
 $Q \leftarrow Q \cup\{<i, a>\}$
end if
end for
end while
end AC-4

Unfortunately the average efficiency is not so good ... plus there is a big memory consumption! Foundations of constraint satistaction, Ro

Directional arc consistency (DAC)

Observation 1: AC has a directional character but CSP is not directional.
Observation 2: AC has to repeat arc revisions; the total number of revisions depends on the number of arcs but also on the size of domains (while cycle).

Is it possible to weaken AC in such a way that every arc is revised just once?

Definition: CSP is directional arc consistent using a given order of variables iff every arc (i, j) such that $\mathrm{i}<\mathrm{j}$ is arc consistent.

Again, every arc has to be revised, but revision in one direction is enough now.

Foundations of constraint satistaction,

Other arc consistency algorithms

AC-5 (Hentenryck, Deville, Teng 1992)

- a generic arc-consistency algorithm
- can be reduced both to AC-3 and AC-4
- exploits semantic of the constraint
functional, anti-functional, and monotonic constraints

AC-6 (Bessiere 1994)

- improves memory complexity and average time complexity of AC-4
- keeps one support only, the next support is looked for when the current support is lost

AC-7 (Bessiere, Freuder, Regin 1999)

- based on computing supports (like AC-4 and AC-6)
- exploits symmetry of the constraint

Algorithm DAC-1

1) Consistency of the arc is required just in one direction.
2) Variables are ordered
\& there is no directed cycle in the graph!

If the arc are explored in a „good" order, no revision has to be repeated!
procedure $\operatorname{DAC}-1(G)$
for $j=|\operatorname{nodes}(G)|$ to 1 by -1 do
for $\mathrm{j}=|\operatorname{nodes}(\mathrm{G})|$ to 1 by $\mathbf{- 1}$ do
for each $\operatorname{arc}(i, j)$ in G such that $i<j$ REVISE($(\mathrm{i}, \mathrm{j}))$
end for
end for
end DAC-1

Relation between DAC and AC

Observation: CSP is arc consistent iff for some order of the variables, the problem is directional arc consistent in both directions.
Is it possible to achieve AC by applying DAC in both primal and reverse direction?
In general NO, but ...
Example:
X in $\{1,2\}, Y$ in $\{1\}, Z$ in $\{1,2\}, \quad X \neq Z, Y<Z$
using the order $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$
there is no domain
change

using the order $\mathbf{Z , Y}, \mathrm{X}$, the domain of Z is changed but the graph is not AC

However if the order $\mathbf{Z}, \mathbf{Y}, \mathbf{X}$ is used then we get $\mathbf{A C}$

From DAC to AC for tree-structured CSP

If we apply DAC to tree-structured CSP first using the order from the root to the leaf nodes and second in the reverse direction then we get (full) arc consistency.

Proof:

the first run of DAC ensures that any value in the parent node has a support (a compatible value) in all the child nodes

if any value is deleted during the second run of DAC (in the reverse direction) then this value does not support any value in the parent node (the values in the parent node does not lose any support)
together: every value has some support in the child nodes (the first run) as well as in the parent node (the second run), i.e., we have AC

Foundations of constraint satistaction, Roman Bart

Is arc consistency enough?

By using AC we can remove many incompatible values

- Do we get a solution?
- Do we know that there exists a solution?

Unfortunately, the answer to both above questions is NO! Example:

CSP is arc consistent but there is no solution

So what is the benefit of AC?
Sometimes we have a solution after AC

- any domain is empty \rightarrow no solution exists
- all the domains are singleton \rightarrow we have a solution

In general, AC prunes the search space.

Consistency techniques in practice

N -ary constraints are processed directly!
The constraint C_{Y} is arc consistent iff for every variable i constrained by C_{Y} and for every value $v \in D_{i}$ there is an assignment of the remaining variables in C_{Y} such that the constraint is satisfied.
Example: $\mathrm{A}+\mathrm{B}=\mathrm{C}, \mathrm{A}$ in 1..3, B in 2..4, C in $3 . .7$ is AC
Constraint semantics is used!
interval consistency
working with intervals rather than with individual values interval arithmetic
Example: after change of A we compute $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}, \mathrm{C}-\mathrm{A} \rightarrow \mathrm{B}$ bounded consistency
only lower and upper bound of the domain are propagated Such techniques do not provide full arc consistency!
It is possible to use different levels of consistency for different constraints!

Base propagation algorithm

Based on generalisation of AC-3.
Repeat constraint revisions until any domain is changed.

```
procedure AC-3(C)
            Q while Q non empty do
                select and delete c from Q
                REVISE(c,Q)
            REVISE
    end AC-3
```

The REVISE procedure is customised for each constraint. we get algorithms with various consistency levels
Constraint planning
How to choose the order of constraints for revisions (a queue Q)? Event driven programming
event $=$ domain change
REVISE generates new events that evoke further filtering

Design of consistency algorithms

The user can often define the code of REVISE procedure.
How to do it?

1) Decide about the event to evoke the filtering when the domain of involved variable is changed

- whenever the domain changes
- when minimum/maximum bound is changed
- when the variable becomes singleton
different suspensions for different variables Example: $\mathrm{A}<\mathrm{B}$ filtering evoked after change of $\min (\mathrm{A})$ or $\max (\mathrm{B})$ - directional consistency

2) Design the filtering algorithm for the constraint the result of filtering is the change of domains more filtering procedures for a single constraint are allowed Example: A<B
$\min (A): B$ in $\min (A)+1$. .sup
$\max (\mathrm{B})$: A in inf.max(B)-1

Definition of a constraint (SICStus Prolog)
How to describe propagation through $\mathrm{A}<\mathrm{B}$?
bound consistency is enough for full consistency!
less_then (A, B) :-
fd_global (a2b (A, B), no_state, [min(A)]),
fd_global (b2a(A, B), no_state, [max (B)]).
dispatch_global (a2b (A, B) , S, S, Actions) :-
fd_min (A, MinA), fd_max (A, MaxA), fd_min(B, MinB),
(MaxA<MinB \rightarrow
Actions $=$ [exit]
LowerBoundB is MinA+1,
Actions $=$ [B in LowerBoundB..sup]).
dispatch_global (b2a (A, B) , S, S, Actions) :-
fd_max (A, MaxA), fd_min(B,MinB), fd_max (B, MaxB) (MaxA<MinB ->

Actions $=$ [exit]
; UpperBoundA is MinB-1, Actions $=$ [A in inf. . UpperBound $A]$)

Path consistency (PC)
How to strengthen the consistency level?
More constraints are assumed together!

Definition:

The path $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}}\right)$ is path consistent iff for every pair of values $\mathbf{x} \in \mathrm{D}_{0}$ a $\mathbf{y} \in \mathrm{D}_{\mathrm{m}}$ satisfying all the binary constraints on V_{0}, V_{m} there exists an assignment of variables $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}-1}$ such that all the binary constraints between the neighbouring variables $\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}+1}$ are satisfied.
CSP is path consistent iff every path is consistent

Attention!

Path consistency does not guarantee that all the constraints among the variables on the path are satisfied; only the constraints between the neighbouring variables must be satisfied.

PC and paths of length 2 (Montanari)

It is not very practical to ensure consistency of all paths fortunately, only the paths of length 2 can be explored!

Theorem: CSP is PC iff every path of length 2 is PC. Proof:

1) $P C \Rightarrow$ paths of length 2 are $P C$
2) (paths of length 2 are $P C \Rightarrow \forall N$ paths of length N are $P C$) $\Rightarrow P C$ induction using the path length
a) $\mathrm{N}=2$ visibly satisfied
b) $\mathrm{N}+1$ (proposition already holds for N) i) take arbitrary $\mathrm{N}+1$ vertices $\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$
ii) take arbitrary pair of compatible values $x_{0} \in D_{0}$ a $x_{n} \in D$ iii) from a) we can find $x_{n-1} \in D_{n-1}$ s.t. constraints $C_{0, n-1}$ a $G_{n-1, n}$ hold $i v)$ from the induction we can find the values for $V_{0}, v_{1}, \ldots, v_{n-1}$

Relation between PC and AC

Does PC subsumes AC (i.e. if CSP is PC, is it AC as well)?
the arc (i, j) is consistent (AC) if the path ($\mathrm{i}, \mathrm{j}, \mathrm{i}$) is consistent (PC)

- thus PC implies AC

Is PC stronger than AC (is there any CSP that is AC but not PC)?
Example: \mathbf{X} in $\{1,2\}, Y$ in $\{1,2\}, \mathbf{Z}$ in $\{1,2\}, \quad X \neq Z, X \neq Y, Y \neq Z$ it is $A C$, but not $P C(X=1, Z=2$ cannot be extended to $X, Y, Z)$
$A C$ removes incompatible values from the domains, what will be done in PC?

> - PC removes pairs of values

- PC makes constraints explicit ($A<B, B<C \Rightarrow A+1<C$)
- a unary constraint $=$ a variable's domain

Foundations of constraint satistaction

Composing the constraints on the path

A, B, C in $\{1,2,3\}, B>1$
$A<C, A=B, B>C-2$

How to improve PC-1?

Is there any inefficiency in PC-1?
just a few „bits"

- it is not necessary to keep all copies of γ^{k} one copy and a bit indicating the change is enough some operations produce no modification ($Y_{k k}^{k}=Y^{\mathrm{k}-1}{ }_{\mathrm{kk}}$)
- half of the operations can be removed ($\mathrm{Y}_{\mathrm{ji}}=\mathrm{Y}_{\mathrm{ij}}$)
the grand problem
- after domain change all the paths are re-revised it is enough to revise just the influenced paths

Algorithm of path revision

Algorithm PC-1 (Mackworth 1977)

How to make the path ($\mathrm{i}, \mathrm{k}, \mathrm{j}$) consistent?
$R_{i j} \leftarrow R_{i j}$ \& $\left(R_{i k}{ }^{*} R_{k k}{ }^{*} R_{k j}\right)$
How to make a CSP consistent?
Repeated revisions of all paths (of length 2) while any domain changes.

Which paths are influenced by the revision?

Because $\mathrm{Y}_{\mathrm{ij}}=\mathrm{Y}_{\mathrm{ij}}$ it is enough to revise only the paths ($\mathrm{i}, \mathrm{k}, \mathrm{j}$) where $\mathrm{i} \leq \mathrm{j}$. Let the domain of the constraint (i, j) is changed when revising ($i, k, j)$:
Situation a: i<j
all the paths containing (i, j) or (j, i) must be re-revised
the paths (i,j,j), (i,i,j) are not revised again (no change)
$S_{a}=\quad\{(i, j, m) \mid i \leq m \leq n \& m \neq j\}$
$\cup \quad\{(m, i, j) \mid 1 \leq m \leq j \& m \neq i\}$
$\cup \quad\{(\mathrm{j}, \mathrm{i}, \mathrm{m}) \mid \mathrm{j}<\mathrm{m} \leq \mathrm{n}\}$
$\cup \quad\{(m, j, i) \mid 1 \leq m<i\}$
$\left|S_{a}\right|=2 n-2$
Situation b: $i=j$
all the paths containing i in the middle of the path are re-revised the paths ($\mathbf{i}, \mathrm{i}, \mathrm{i}$) and ($\mathrm{k}, \mathrm{i}, \mathrm{k}$) are not revised again
$\mathrm{S}_{\mathrm{b}}=\quad\{(\mathrm{p}, \mathrm{i}, \mathrm{m}) \mid \mathbf{1} \leq \mathrm{m} \leq \mathrm{n} \& 1 \leq \mathrm{p} \leq \mathrm{m}\}-\{(\mathrm{i}, \mathrm{i}, \mathrm{i}),(\mathrm{k}, \mathrm{i}, \mathrm{k})\}$
$\left|S_{b}\right|=n^{\star}(n-1) / 2-2$

$$
\left|\mathrm{S}_{\mathrm{b}}\right|=\mathrm{n}^{*}(\mathrm{n}-1) / 2-2
$$

Algorithm PC-2 (Mackworth 1977)

Paths in one direction only (attention, this is not DPC!)
After every revision, the affected paths are re-revised

```
    procedure PC-2(G)
        n}\leftarrow|\mathrm{ nodes(G)|
```

 \(\mathrm{Q} \leftarrow\{(\mathrm{i}, \mathrm{k}, \mathrm{j}) \mid \mathbf{1} \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{n} \& \mathrm{i} \neq \mathrm{k} \& \mathrm{j} \neq \mathrm{k}\}\)
 while Q non empty do
 select and delete (\(\mathbf{i}, \mathbf{k}, \mathrm{j}\)) from Q
 if REVISE_PATH(\((i, k, j))\) then
 \(\mathbf{Q} \leftarrow \mathbf{Q} \cup R E L A T E D\) PATHS \(((i, k, j))\)
 end while
 end PC-2

```
procedure RELATED_PATHS((i,k,j))
    if i<j then return }\mp@subsup{\overline{S}}{\textrm{a}}{}\mathrm{ else return }\mp@subsup{\textrm{S}}{\textrm{b}}{
    end RELATED_PATHS
```


Other path consistency algorithms

PC-3 (Mohr, Henderson 1986)

- based on computing supports for a value (like AC-4)
- this algorithm is not sound!

If the pair (a, b) at the arc (i, j) is not supported by another
variable, then a is removed from D_{i} and b is removed from D_{i}.

PC-4 (Han, Lee 1988)

- correction of the PC-3 algorithm
- based on computing supports of pairs (b, c) at $\operatorname{arc}(i, j)$

PC-5 (Singh 1995)

- uses the ideas behind AC-6
- only one support is kept and a new support is looked for when the current support is lost

Drawbacks of path consistency

Memory consumption
because PC eliminates pairs of values，we need to keep all the compatible pairs extensionally，e．g．using $\{0,1\}$－matrix
Bad ratio strength／efficiency
PC removes more（or same）inconsistencies than AC，but the strength／efficiency ratio is much worse than for AC

Modifies the constraint network

－PC adds redundant arcs（constraints）and thus it changes connectivity of the constraint network
this complicates using heuristics derived from the structure of the constraint network（like tightness，graph width etc．）
$P C$ is still not a complete technique A, B, C, D in $\{1,2,3\}$
$A \neq B, A \neq C, A \neq D, B \neq C, B \neq D, C \neq D$
is PC but has not solution

Half way between AC and PC

Can we make an algorithm：
stronger than AC，
without drawbacks of PC（memory consumption，changing the constraint network）？
Restricted path consistency（Berlandier 1995） based on AC－4（uses the support sets）
as soon as a value has only one support in another variable，PC is evoked for this pair of values

k－consistency

Is there a common formalism for AC and PC？
$A C$ ：a value is extended to another variable
PC：a pair of values is extended to another variable ．．．we can continue

Definition：CSP is k－consistent iff any consistent valuation of（ $k-1$ ）different variables can be extended to a consistent valuation of one additional variable．

Strong k－consistency

Definition：CSP is strongly k－consistent iff it is j －consistent for every $\mathrm{j} \leq \mathrm{k}$ ．
Visibly：\quad strong k－consistency \Rightarrow k－consistency
Moreover：strong k－consistency $\Rightarrow \mathbf{j}$－consistency $\forall \mathbf{j} \leq \mathbf{k}$
In general：$\neg \mathbf{k}$－consistency \Rightarrow strong k－consistency
NC＝strong 1－consistency＝1－consistency
AC＝（strong ）2－consistency
PC＝（strong ）3－consistency sometimes we call $\mathrm{NC}+\mathrm{AC}+\mathrm{PC}$ together strong path consistency

What k－consistency is enough？

Assume that the number of vertices is n ．What level of consistency do we need to find out the solution？
Strong n－consistency for graphs with n vertices！ n －consistency is not enough－see the previous example strong \mathbf{k}－consistency where $\mathbf{k}<n$ is not enough as well

graph with n vertices domains 1．．（ $n-1$ ）

It is strongly k－consistent for $k<n$ but it has no solution

And what about this graph？
 $1,2,3$
（D）AC is enough！ （D）AC is enough．
Because this a tree．

Backtrack－free search

Definition：CSP is solved using backtrack－free search if for some order of variables we can find a value for each variable compatible with the values of already assigned variables．

How to find out a sufficient consistency level for a given graph？
Some observations：
－variable must be compatible with all the＂former＂variables

> i.e., across the "backward" edges
－for \boldsymbol{k} ，，backward＂edges we need（ $k+1$ ）－consistency
－let m be the maximum of backward edges for all the vertices， then strong（ $m+1$ ）－consistency is enough
－the number of backward edges is different for different variable order －of course，the order minimising m is looked for

Foundations of constraint satistan

Graph width

Ordered graph is a graph with a given total order of vertices.
Vertex width in the ordered graph is the number of edges going back from this vertex.
Width of the ordered graph is maximum among the width of vertices Graph width is the maximum among the widths of its ordered graphs.

$\begin{array}{ll}\text { (a) } \\ \text { (b) } \\ \text { (c) } \\ 1 & \text { (b) } \\ \text { (b) } \\ 1\end{array}$
©
@
©
1
$\begin{array}{lll}\text { () } & \text { © } & 0 \\ \text { (9) } & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 1 & 2\end{array}$

```
procedure MinWidthOrdering((V,E))
    Q\leftarrow{}
    while V not empty do
        N}\leftarrow\mathrm{ select and delete node with the smallest #edges from (V,E)
        enqueue N to Q
    return Q
end MinWidthOrdering
```


(i,j)-consistency

\mathbf{k}-consistency extends instantiation of ($\mathbf{k}-1$) variables to a new variable, we remove ($k-1$)- tuples that cannot be extended to another variable

Definition: CSP is (i,j)-consistent iff every consistent instantiation of i variables can be extended to a consistent instantiation of any j additional variables.
CSP is strongly (i, j)-consistent, iff it is (\mathbf{k}, j)-consistent for every $\mathbf{k} \leq \mathrm{i}$.

k-consistency	$=(k-1,1)$ consistency
AC	$=(1,1)$ consistency

$\mathrm{AC} \quad=(1,1)$ consistency

$$
\text { PC } \quad=(2,1) \text { consistency }
$$

Graph width and consistency level

Theorem: Let w be the width of the constraint graph. If the constrain graph is strongly k -consistent for any $\mathrm{k}>\mathrm{w}$ then there exists an order of variables giving backtrack-free solution
Proof:
w is a graph width, i.e., there is some ordered graph of this width thus the max. number of backward edges for each vertex is \mathbf{w} let us assign the variables in the order given by this ordered graph now, if the variable is being labelled:
we must find a value compatible with the labelled variables connected with the current variable
let there is m such variables, then $\mathrm{m} \leq \mathrm{w}$
the graph is $(m+1)$-consistent, thus a compatible value must exist

Inverse consistencies

Worst case time and space complexity of (i,j)-consistency is exponential in i, moreover we need to record forbidden i-tuples extensionally (see PC).
What about keeping $i=1$ and increasing j ?
We already have such an example RPC is (1,1)-consistency and sometimes (1,2)-consistency

Definition: ($1, \mathrm{k}-1$)-consistency is called k -inverse consistency.
We remove values from the domain that cannot be consistently extended to additional ($\mathbf{k}-1$) variables.
Inverse path consistency (PIC) = (1,2)-consistency
Neighbourhood inverse consistency (NIC) (Freuder , Elfe 1996)
We remove values of v that cannot be consistently extended to the set of variables directly linked to v.

Singleton consistencies

Can we strengthen any consistency technique? YES! Let's assign a value and make the rest of the problem consistent.
Definition: CSP P is singleton A-consistent for some notion of A-consistency iff for every value h of any variable X the problem $\mathbf{P}_{|\mathrm{X}=\mathrm{h}|}$ is A-consistent.

Features:

+ we remove only values from variable's domain - like NIC and RPC
+ easy implementation (meta-programming)
- not so good time complexity (be careful when using SC)

1) singleton A-consistency \geq A-consistency
2) A-consistency \geq B-consistency \Rightarrow
singleton A-consistency \geq singleton B -consistency
3) singleton (i,j)-consistency > (i,j+1)-consistency (SAC>PIC)
4) strong ($\mathrm{i}+1, \mathrm{j}$)-consistency $>$ singleton (i, j)-consistency (PC>SAC)

Consistency techniques at glance
NC = 1- consistency
$A C=2-$ consistency $=(1,1)-$ consistency
PC = 3- consistency $=(2,1)$ - consistency PIC = (1,2)- consistency

How to solve the constraint problems?

So far we have two methods: search

- complete (finds a solution or proves its non-existence)
- too slow (exponential)
explores "visibly" wrong valuations
consistency techniques
- usually incomplete (inconsistent values stay in domains)
- pretty fast (polynomial)

Share advantages of both approaches - combine them! - label the variables step by step (backtracking) - maintain consistency after assigning a value

Do not forget about traditional solving techniques! Linear equality solvers, simplex ...
such techniques can be integrated to global constraints!

Look back techniques

"Maintain" consistency among the already labelled variables. "look back" = look to already labelled variables
What's result of consistency maintenance among labelled variables? a conflict (and/or its source - a violated constraint)
Backtracking is the basic method of look back.

Backjumping \& comp. uses information about violated constraints.

Forward checking

It is better to prevent failures than to detect them only!
Consistency techniques can remove incompatible values for future (=not yet labelled) variables.
Forward checking ensures consistency between the currently labelled variables and the variables connected to it via constraints.

Forward consistency checks
$Q \leftarrow\left\{\left(\mathrm{~V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{cv}}\right)\right.$ in $\left.\operatorname{arcs}(\mathrm{G}), \mathrm{i}>\mathrm{cv}\right\} \quad \%$ arcs to future variables
consistent \leftarrow true
while not Q empty \& consistent do select and delete any arc $\left(V_{k}, V_{m}\right)$ from Q if REVISE $\left(\mathrm{V}_{\mathrm{k}}, \mathrm{V}_{\mathrm{m}}\right)$ then

end while
return consisten
end AC-FC

Partial look ahead

We can extend the consistency checks to more future variables! The value assigned to the current variable can be propagated to all future variables.

```
    procedure DAC-LA(G,cv)
        for i=cv+1 to n do
            for each arc ( }\mp@subsup{V}{i}{},\mp@subsup{V}{j}{})\mathrm{ ) in arcs(G) such that i>j & j>cv do
                if REVISE(V
                if empty }\mp@subsup{D}{i}{}\mathrm{ then return fail
            end for
            end for
            return true
    end DAC-LA
Notes:
    In fact DAC is maintained (in the order reverse to the labelling order).
        Partial Look Ahead or DAC - Look Ahead
    It is not necessary to check consistency of arcs between the future
    variables and the past variables (different from the current variable)!
                                    Fondaboren
```


Full look ahead

Knowing more about far future is an advantage! Instead of DAC we can use a full AC (e.g. AC-3).

Full look ahead consistency checks

```
    procedure AC3-LA(G,cv)
        Q}\leftarrow{(\mp@subsup{V}{\textrm{i}}{\prime},\mp@subsup{\textrm{V}}{\mathrm{ cv }}{})\mathrm{ in arcs(G),i>cv} } % start with arcs going to cv
        consistent }\leftarrow\mathrm{ true
        while not Q empty & consistent do
            select and delete any arc ( }\mp@subsup{V}{k}{},\mp@subsup{V}{m}{})\mathrm{ from Q
                Q\leftarrowQu{{(\mp@subsup{V}{i}{},\mp@subsup{V}{k}{})|(\mp@subsup{V}{i}{},\mp@subsup{V}{k}{\prime}) in arcs(G),i\not=k,i\not=m,i>cv}
                consistent }\leftarrow\mathrm{ not empty D
            end if
        end while
        return consistent
    end AC3-LA
Notes:
    The arcs going to the current variable are checked exactly once.
    The arcs to past variables are not checked at all.
    It is possible to use other than AC-3 algorithms (e.g. AC-4)
```


Constraint propagation at glance

- Propagating through more constraints remove more inconsistencies (BT < FC < PLA < LA), of course it increases complexity of the step.
- Forward Checking does no increase complexity of backtracking, the constraint is just checked earlier in FC (BT tests it later).
- When using AC-4 in LA, the initialisation is done just once.
- Consistency can be ensured before starting search Algorithm MAC (Maintaining Arc Consistency)

AC is checked before search and after each assignment

- It is possible to use stronger consistency techniques (e.g. use them once before starting search).

Variable ordering

Variable ordering in labelling influence significantly efficiency of solvers (e.g. in tree-structured CSP).

What variable ordering should be chosen in general?
FIRST-FAIL principle
„select the variable whose instantiation will lead to failure"
it is better to tackle failures earlier, they can be become even harder

- prefer the variables with smaller domain (dynamic order)
a smaller number of choices \sim lower probability of success the dynamic order is appropriate only when new information appears during solving (e.g., in look ahead algorithms)
"solve the hard cases first, they may become even harder later" - prefer the most constrained variables
it is more complicated to label such variables (it is possible to assume complexity of satisfaction of the constraints) this heuristic is used when there is an equal size of the domains
- prefer the variables with more constraints to past variables a static heuristic that is useful for look-back techniques-

Value ordering

Order of values in labelling influence significantly efficiency (if we choose the right value each time, no backtrack is necessary). What value order for the variable should be chosen in general? SUCCEED FIRST principle
„prefer the values belonging to the solution"
if no value is part of the solution then we have to check all values
if there is a value from the solution then it is better to find it soon
SUCCEED FIRST does not go against FIRST-FAIL!

- prefer the values with more supporters this information can be found in AC-4
- prefer the value leading to less domain reduction this information can be computed using singleton consistency - prefer the value simplifying the problem solve approximation of the problem (e.g. a tree)
Generic heuristics are usually too complex for computation. It is better to use problem-driven heuristics that propose the value!

Constraint optimisation

So far we have looked for feasible assignments only.
In many cases the users require optimal assignments where optimality is defined by an objective function.
Definition: Constraint Satisfaction Optimisation Problem (CSOP) consists of the standard CSP P and an objective function f mapping feasible solutions of P to numbers.

Solution to CSOP is a solution of P minimising / maximising the value of the objective function f.
To find a solution of CSOP we need in general to explore all the feasible valuations. Thus, the techniques capable to provide all the solutions of CSP are used.

Branch and bound

Branch and bound is perhaps the most widely used optimisation technique based on cutting sub-trees where there is no optimal (better) solution.
It is based on the heuristic function h that approximates the objective function
a sound heuristic for minimisation satisfies $h(x) \leq f(x)$
[in case of maximisation $f(x) \leq h(x)$]
a function closer to the objective function is better
During search, the sub-tree is cut if

- there is no feasible solution in the sub-tree
- there is no optimal solution in the sub-tree bound $\leq \mathrm{h}(\mathrm{x})$, where bound is max. value of feasible solution
How to get the bound?
It could be an objective value of the best solution so far.

BB and constraint satisfaction

Objective function can be modelled as a constraint looking for the "optimal value" of v, s.t. $v=f(x)$

- first solution is found without any bound on v
- next solutions must be better then so far best ($v<B$ Bound)
- repeat until no more feasible solution exist

Algorithm Branch \& Bound
procedure BB-Min(Variables, V, Constraints)
Bound \leftarrow sup
NewSolution \leftarrow fail
repeat
Solution \leftarrow NewSolution
NewSolution \leftarrow Solve(Variables, Constraints $\cup\{\mathrm{V}<$ Bound $\}$) Bound \leftarrow value of V in NewSolution (if any) until NewSolution $=$ fail return Solution
end BB-Min

A motivation - robot dressing problem

Dress a robot using minimal wardrobe and fashion rules.
Variables and domains:
shirt: \{red, white\}
footwear: \{cordovans, sneakers\}
trousers: \{blue, denim, grey\}

Constraints:
shirt x trousers: red-grey, white-blue, white-denim
footwear x trousers: sneakers-denim, cordovans-grey
shirt x footwear: white-cordovans

We call the problems where no feasible solution exists over-constrained problems.

Partial constraint satisfaction

First let us define a problem space as a partially ordered set of CSPs (PS, \leq), where $\mathrm{P}_{1} \leq \mathrm{P}_{2}$ iff the solution set of P_{2} is a subset of the solution set of P_{1}

The problem space can be obtained by weakening the original problem. Partial Constraint Satisfaction Problem (PCSP) is a quadruple〈 $\mathrm{P},(\mathrm{PS}, \leq$), M,(N,S) $)$

- \mathbf{P} is the original problem
- (PS, \leq) is a problem space containing P
- M is a metric on the problem space defining the problem distance $M\left(P, P^{\prime}\right)$ could be a number of different solutions of P a P^{\prime} or the number of different tuples in the constraint domains
- N is a maximal allowed distance of the problems
- S is a sufficient distance of the problems $(S<N)$

Solution to PCSP is a problem $P^{‘}$ and its solution such that $P^{\prime} \in P S$ and $M\left(P, P^{\prime}\right)<N$. A sufficient solution is a solution s.t. $M\left(P, P^{\prime}\right) \leq S$. The optimal solution is a solution with the minimal distance to P.

Partial constraint satisfaction in practice

When solving PCSP we do not explicitly generate the new problems

- an evaluation function g is used instead; it assigns a numeric value to each (even partial) valuation - the goal is to find assignments minimising/maximising g

PCSP is a generalisation of CSOP: $g(x)=f(x)$, if the valuation x is a solution to CSP $g(x)=\infty, \quad$ otherwise
PCSP is used to solve:

- over-constrained problems
- too complicated problems
- problems using given resources (e.g. time) - problems in real time (anytime algorithms)

PSCP can be solved using local search, branch and bound, or special propagation algorithms.

Second solution of the robot dressing problem

It is possible to assign a preference to each constraint to describe priorities of satisfaction of the constraints.
The preference describes a strict priority.
a stronger constraint is preferred to arbitrary number of weaker constraints
shirt x trousers @ required
footwear x trousers @ strong shirt x footwear @ weak

Constraints marked by a preference make a hierarchy, thus we are speaking about constraint hierarchies.

Constraint hierarchies
Every constraint is labelled by a preference (the set of preferences is totally ordered)

- there is a special preference required, marking constraints that must be satisfied (hard constraints)
the other constraints are preferential, their satisfaction is not required (soft constraints)

Constraint hierarchy H is a finite (multi)set of labelled constraints. H_{0} is a set of the required constraints (the label is removed) H_{1} is a set of the most preferred soft constraints
...
A solution to the hierarchy is an assignment satisfying all the required constraints and satisfying best the preferential constraints.
$\mathrm{S}_{\mathrm{H}, 0}=\left\{\sigma \mid \forall \mathbf{c} \in \mathrm{H}_{0}, \mathbf{c} \sigma\right.$ holds $\}$
$\mathrm{S}_{\mathrm{H}}=\left\{\sigma \mid \sigma \in \mathrm{S}_{\mathrm{H}, 0} \& \forall \omega \in \mathrm{~S}_{\mathrm{H}, 0} \neg \operatorname{better}(\omega, \sigma, \mathrm{H})\right\}$
为

Comparators

Comparing the assignments according to a given hierarchy.
anti-reflexive, transitive relation that respects the hierarchy

- if any assignment satisfies all the constraints till the level \mathbf{k}, then every better assignment must satisfy these constraints as well
Error function e(c, σ) - how good the constraint is satisfied predicate error function (satisfied/violated) metric error function - distance from solution, $e(X>5,\{X / 3\})=2$

Local comparators
compare the assignments using the constraint individually locally_better $(\omega, \sigma, H) \equiv \exists \mathbf{k}>0$
$\forall i<k \forall c \in H_{i} e(c, \omega)=e(c, \sigma) \& \forall c \in H_{k} e(c, \omega) \leq e(c, \sigma) \& \exists c \in H_{k} e(c, \omega)<e(c, \sigma)$
Global comparators
aggregate the individual errors at the level via the function g globally_better $(\omega, \sigma, H) \equiv \exists k>0 \forall i<k \quad g\left(H_{i}, \omega\right)=g\left(H_{i}, \sigma\right) \& g\left(H_{k}, \omega\right)<g\left(H_{k}, \sigma\right)$ weighted-sum, least-squares, and worst-case methods....

Why should we use CP?

Close to real-life (combinatorial) problems - everyone uses constraints to specify problem properties - real-life restriction can be naturally described using constraints

A declarative character
concentrate on problem description rather than on solving
Co-operative problem solving

- unified framework for integration of various solving techniques - simple (search) and sophisticated (propagation) techniques

Semantically pure

- clean and elegant programming languages - roots in logic programming

Applications

CP is not another academic framework, it is already used in many applications

Final notes
Constraints

- arbitrary relations over the problem variables - express partial local information in a declarative way Solution technology
- search combined with constraint propagation - local search

It is easy to state combinatorial problems in terms of CSP ... but it is more complicated to design solvable models.

We still did not reach the Holy Grail of computer programming: the user states the problem, the computer solves it.

Constraint Programming is one of the closest approaches to the Holly Grail of programming!

[^0]: Backtracking
 Probably the most widely used systematic search algorithm basically it is depth-first search
 Using backtracking to solve CSP

 1) assign values gradually to variables
 2) after each assignment test the constraints over the assigned variables (and backtrack upon failure)

 Extends a partial consistent assignment until a complete consistent assignment is found.

 Open questions:
 what is the order of variables?

 - variables with a smaller domain first
 - variables participating in more constraints first
 "key" variables first
 what is the order of values?
 - problem dependent
 Foundations of constraint satistaction. Rom Bar

