
Hierarchical Planning
On Solving Planning Problems by Task

Decompositions and Beyond
Roman Barták

Charles University, Faculty of Mathematics and Physics
Czech Republic

Models of Agent Behaviour

Finite state machines Behaviour Trees

Hierarchical Representations

Classification of objects
Structure of sentences

Description of processes

Grammar

The grammar (art of letters) of a
natural language is its set of
logical and structural rules on
speakers' or writers' usage and
creation of clauses, phrases, and
words.

γραμματικὴ τέχνη

Formal grammar

Formal grammar describes how to form strings from a language's
alphabet that are valid according to the language's syntax.

A formal grammar is a set of rules for rewriting strings, along with a
"start symbol" from which rewriting starts.
• non-terminal (phrases) and terminal (letters) symbols
• initial non-terminal symbol to start with
• rewriting rules in the form u → v (u and v are strings of symbols)

usage: x u y => x v y (substring is rewritten according to a rule)

Context-free grammars

Rewriting rules have a specific form: N → u

Example:
S → A.B.C
A → a
A → a.A
B → b
B → b.B
C → c
C → c.C

Derivation of word:
S => ABC => aABC => aaBC => aabC => aabcC => aabcc

{aibjck}

S

A B C

a

A

a b

C

c c

parsing tree

Beyond context-free languages

What if we want the numbers of symbols a,b,c to be identical? The
language is {anbncn} and this cannot be generated by CFG!

S → aSBC | aBC
CB → BC
aB → ab
bB → bb
bC → bc
cC → cc

S(n) → A(k).B(l).C(m) [n=k=l=m]
A(n) → a [n=1]
A(n) → a.A(m) [n=m+1]
B(n) → b [n=1]
B(n) → b.B(m) [n=m+1]
C(n) → c [n=1]
C(n) → c.C(m) [n=m+1]

context-sensitive grammar attribute grammar

Automated planning
Classical planning looks for a sequence of actions (plan) to achieve
some goal state, where actions are connected via causal relations
(action effect prepares precondition for later action).

…, go(Rob1,PosA,PosB), load(Rob1,Obj1,PosB),…

Hierarchical planning solves a goal task by decomposing it to sub-
tasks until primitive tasks (actions) are obtained.

deliver(O,B) → move(R,A), load(R,O,A), move(R,B), unload(R,O,B)
move(R,Z) → [at(R,Z)]
move(R,Z) → go(R,X,Y), move(R,Z)

at(Rob1,PosB)

Decomposition method

T → T1...Tk [C]
where C are decomposition constraints:
• Ti < Tj: ordering of tasks
• before(U,p): a precondition constraint (p is true right before

the first task from U)
• after(U,p): a postcondition constraint (p is true right after

the last task from U), not an effect!!
• between(U,p,V): prevailing constraints (p is true between

the last task of U and the first task of V)
Note: the state constraints are defined between tasks but must
be true between the actions obtained from the tasks

Holler, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.; Pellier, D.; and Alford, R. 2019. HDDL – A Language to Describe Hierarchical Planning
Problems. arXiv:1911.05499.

Decomposition tree

deliver(o1,p4) deliver(o2,p5)

move(r,p2)

load(r,o1,p2) unload(r,o1,p4) load(r,o2,p3) unload(r,o2,p5)

goal

move(r,p4)

move(r,p5) move(r,p3)

task interleaving causal links
at(r,p3)

go(r,p2,p3) go(r,p1,p2)

move(r,p2)

move(r,p3)

go(r,p3,p4) go(r,p4,p5)

move(r,p5)

empty task

move(r,p4)

Planning Task
Given a goal task and initial state, find decomposition to an
executable sequence of actions (a plan).
Why?

• to achieve a distant goal, agent needs a plan
• faster than classical planning
• better control over the generated plan

How?
• task decomposition and search
• SHOP2, PANDA, …

What if the task model is not enough to achieve a goal?
HTN with task insertion (TIHTN) allows inserting tasks/actions beyond the
hierarchical structure

Nau, D. S.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Planning System. J. Artif. Intell. Res., 20: 379–
404.

Plan (Goal) Recognition

Given a plan prefix (observed sequence of actions) and initial
state, find a goal task (and missing future actions).

Why?
• deduce goals (and actions) of other agent(s) in cooperative and

competitive environments

How?
• via parsing (like in grammars)
• via planning (comparing plans to achieve various goals with observed

actions)

Pantůčková, K.; and Barták, R. 2023. Using Earley Parser for Recognizing Totally Ordered Hierarchical Plans. In ECAI 2023, pp.1819-1826, IOS Press.

Plan Verification

Given a plan (action sequence) and initial state, check that the
plan is valid:

• verify plan executability
• find a decomposition tree (and a goal task)

Why?
• verify that action sequence complies with the formal model

How?
• simulate action execution (plan executability)
• parsing (reconstruct a decomposition tree)

Barták, R.; Maillard, A.; and Cardoso, R. C. 2018. Validation of Hierarchical Plans via Parsing of Attribute Grammars. In Proc. of the 28th Int. Conf. on
Automated Planning and Scheduling (ICAPS 2018), 11–19. AAAI Press.

Plan Correction

Given a plan (action sequence) and initial state, modify the plan
to be valid with respect to hierarchical model.

Why?
• extension of plan verification for invalid plans
• plan recognition (correct a partially observed action sequence)
• planning („correct“ empty plan for a given goal task)
Ultimate planning-related technique

How?
• add and delete actions in the plan (via parsing)

Barták, R.; Ondrčková, S.; Behnke, G.; and Bercher, P.: Correcting Hierarchical Plans by Action Deletion. In18th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2021, 2021, 99–109.

Model Correction

Given a plan (action sequence) and initial state, modify the
hierarchical model such that the plan is valid with respect to the
model.

Why?
• automated construction of formal models from observations
Ultimate technique to bridge the knowledge acquisition gap.

How?
• machine learning approaches
• HTN Maker, HPNL, …

Hogg, C.; Munoz-Avila, H.; and Kuter, U. 2016. Learning Hierarchical Task Models from Input Traces. Comput. Intell., 32(1): 3–48.

Plan verification by parsing

Plan verification problem:
Given an action sequence, is it a valid HTN plan?

• causally consistent (executable)
• proper structure

Method:
1. Calculate all states
2. Verify plan executability
3. Group actions to tasks

Up to O(T x 2N) pairs (task, subplan) generated
T – number of ground tasks
N – plan length

1 1 1 1 1 1 1

T0 ⇢ T1 T2
T1 ⇢ T3 T4

T2 ⇢ a2 a7
T3 ⇢ a1 a3 a5
T4 ⇢ a4 a6

a1 a2 a3 a4 a5 a6 a7T0

a1 a2 a3 a4 a5 a6 a7plan

a4 a5 a6T4

a2 a3 a4 a5 a6 a7
T2

T3 a1 a2 a3 a4 a5

T1 a1 a2 a3 a4 a5 a6

s1 s2 s3 s4 s5 s6 s7s0

CYK (Cocke-Younger-Kasami) parsing
• bottom-up parsing for context–free grammars

in Chomsky Normal Form exploiting
dynamic programming

Application to plan verification:
• 2-regularization (ChNF)
• grounding
• restriction to totally-ordered domains

S ® AB | BC
A ® BA | a
B ® CC | b
C ® AB | a

X15
X14 X25
X13 X24 X35
X12 X23 X34 X45
X11 X22 X33 X44 X55

a1 a2 a3 a4 a5

CYK-based Plan Verification
Xi,j = {A | A Þ* aiai+1…aj}

{S,A,C}
- {S,A,C}
- {B} {B}
{S,A} {B} {S,C} {S,A}
{B} {A,C} {A,C} {B} {A,C}

b a a b a

Fi
rs

t
ite

ra
tio

n

Se
co

nd

ite
ra

tio
n

Se
co

nd

ite
ra

tio
n

T0 ⇢ T1 T2
T1 ⇢ T3 T4

T2 ⇢ a2 a7
T3 ⇢ a1 a3 a5
T4 ⇢ a4 a6

a1 a2 a3 a4 a5 a6 a7T0

a7a1 a2 a3 a4 a5 a6plan prefix

a4 a5 a6T4

a2 a3 a4 a5 a6 a7 T2

T3 a1 a2 a3 a4 a5

T1 a1 a2 a3 a4 a5 a6

a5

T‘3a1 a2 a3 a4 a5a4 a4

T‘1a1 a2 a3 a4 a5a4 a6

Plan recognition by parsing

Earley parser
Developed for context-free grammars

• restricted to totally-ordered HTN domains

Works top-down (from the root symbol towards the word)
• may support planning as well

Processes parsing states:

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

already processed part
covering actions ap,…,aq

part to be processed

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

ap aq

Earley parser: approach
Start with the initial parsing state(s):

Move the dot to the right as generating the decomposition
(parsing) tree and scanning the input word by processing the
parsing states:
• predictor (move down by applying a decomposition method)
• scanner (move right by reading an action from input plan)
• completer (move up by completing part of the tree)

where p is the index of the first and q is the index of the
last action covered by this state, i.e., the tasks Ti1 , ..., Tij�1

decompose into the actions ap, ..., aq from the plan.
As the goal task is not given as part of the input, the algo-

rithm starts by generating a dummy starting state

[G ! •T ; 0; 0]

for each uninstantiated abstract task T from the domain, e.g.:

[G ! •put on(?, ?); 0; 0], [G ! •clear(?); 0; 0].

Iteration 0: Predictor expands all starting states by ap-
plying all available decomposition rules to the first unpro-
cessed subtask. One of the new states will be the following
state:

[put on(?, ?) ! •clear(?)stack(?, ?); 0; 0].

Then, it will expand also the newly generated states:

[clear(?) ! •unstack(?, ?); 0; 0].

As unstack(?, ?) is an action, the last state will be pro-
cessed by scanner, which will read the first action and create
a corresponding instantiated state:

[clear(a) ! unstack(c, a)•; 1; 1],

which covers the action at the position 1. The new state will
be processed in iteration 1 along with other generated states
with the end index 1.

Iteration 1: The previous state will be processed by
completer, which will use it to decompose the first subtask
in the state [put on(?, ?) ! •clear(?)stack(?, ?); 0; 0] as
clear(?) is compatible with the instantiation clear(a) and
the end index (0) precedes the index 1. As a result, it will
create the following state:

[put on(?, a) ! clear(a) • stack(?, a); 0; 1].

As stack(?, a) is an action, this state will be processed by
scanner, which will read the second action from the plan,
thus creating the following state:

[put on(b, a) ! clear(a)stack(b, a)•; 0; 2].

Iteration 2: The states with the end index equal to 2 will
be processed, along with the previous state, which will be
used by completer to complete one of the dummy starting
states, creating the corresponding state:

[G ! put on(b, a)•; 0; 2].

As the leaves of the decomposition AND/OR tree of this
state contain all actions, this state represents a candidate goal
task.

As we remember which rule was used to decompose each
subtask of each state (e.g., clear(a) ! unstack(c, a) was
used to decompose the first subtask of put on(b, a) !
clear(a)stack(b, a)), we may now attempt to extract a so-
lution from the AND/OR tree of the candidate goal. We tra-
verse the tree using the post-order depth-first search, firstly
visiting the root task put on(b, a). The decomposition rule
that decomposes this task into clear(a) and stack(b, a) can

be used only if all subtasks can be decomposed. Hence, we
have to firstly visit the task clear(a). We will now verify
that clear(a) can be decomposed into unstack(c, a), i.e.,
that no constraint of the decomposition rule is violated and
all preconditions of the action unstack(c, a) are satisfied in
the initial state (since it is the first action in the plan), e.g.,
that the block c is on the block a and no block is on the block
c. If the decomposition is verified, we return back to the task
put on(b, a) and verify that it can be decomposed into the
abstract task clear(a) and the action stack(b, a). For ex-
ample, we have to verify that the preconditions of the ac-
tion stack(b, a) are satisfied in the state after the first action
unstack(c, a) is executed, i.e., no block is on the block b
and no block is on the block a. If this decomposition is valid,
the root task is the goal that decomposes into the given plan;
therefore, the plan is valid. If no such goal can be found, the
plan is invalid.

The grounded parsing progresses in a similar manner. In-
stead of using uninstantiated or instantiated rules, we se-
lect rules with the required variables. If the goal is given
as part of the input, we create only one dummy starting state
[G ! •T ; 0; 0] for the given goal task T .

Empirical evaluation
We have compared the performance of the Earley verifier
with three state of the art hierarchical plan verifiers: the
compilation-based approach (Höller et al. 2022), the bottom-
up parsing-based approach (Ondrčková et al. 2023), and the
CYK-based approach (Lin et al. 2023). We have compared
the performance of the Earley parser on grounded and lifted
domains. All three existing approaches and the grounded
Earley parser use the grounder from (Behnke et al. 2020).

As benchmarks, we have used three totally ordered do-
mains from IPC 2020: Satellite, Transport and Blocksworld.
As valid plans, we have used the valid plans from IPC 2020.
We have used 45 valid plans of length 5 - 28 from the do-
main Satellite, 50 plans of length 8 - 225 from the domain
Transport and 28 plans of length 22 - 357 from the do-
main Blocksworld and the same number of invalid plans that
were created by deleting trailing actions from valid plans.
The benchmarks used for experiments will be accessible on-
line after the paper is accepted. All experiments were per-
formed on a computer with the Intel Core i7-8550U CPU @
1.80GHz processor and 16 GB of RAM. Maximum allowed
runtime was set to five minutes for one problem.

Figures 2, 3, 4, 5, 6 and 7 show the results. We have
compared how the number of problems solved by each ver-
ifier increases with runtime separately for valid and invalid
plans from each domain. In each figure, Earley denotes the
lifted Earley parser, CYK denotes the CYK-based approach
(Lin et al. 2023), compilation denotes the compilation-based
approach (Höller et al. 2022), BFS denotes the bottom-
up parsing-based approach (Ondrčková et al. 2023), and
grounded Earley denotes the grounded Earley parser.

Generally, the grounded Earley parser was usually slightly
slower than both bottom-up parsing-based approaches; how-
ever, the differences of runtimes were usually counted only
in hundreds of milliseconds. The compilation-based ap-
proach was faster on invalid plans, but slower than all three

Earley Parser: Predictor

If Tij is a compound task, then
create parsing states corresponding to all decomposition
methods for task Tij (moving top-down)

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

; q; q][

Earley Parser: Scanner

If Tij is a primitive task (action) then
unify it with action a at position q+1 in the input plan
if unification is successful, then

create a new parsing state (moving left-to-right)

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

; p; q+1][

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

Earley Parser: Completer

If task Ti has been processed completely, then
for each parsing state, where Ti unifies with Tjk

create a new state (moving up)

; p; q][

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

[; r; p]

domain model results in a context-free grammar with rewrit-
ing rules of the form T ! T1, ..., Tn, where T is an abstract
task and T1, ..., Tn is a totally ordered sequence of abstract
and primitive subtasks.

The Earley parser is based on three procedures: predictor
decomposes abstract tasks, scanner reads actions from the
input plan, and completer processes one subtask from a de-
composition rule. The parser processes the input word from
the left to the right. The computation is divided into iter-
ations, each of which processes a prefix of the input word
of an iteratively increasing length. In iteration i, the parser
finds decompositions for the prefix of length i. We will not
describe the Earley parser in detail as the complete algorithm
can be found in (Earley 1970). Instead, we provide an expla-
nation how the parser can be used for HTN plan verification.

Earley parser on grounded problems
On a grounded plan verification problem we can use the
Earley parser algorithm directly – as described in (Earley
1970). As the input, the parser receives a sequence of ac-
tions (a plan) and a set of CFG rewriting rules. The parser
decides whether the given word (the plan) belongs to the
given CFG. The Earley parser finds all possible proofs – all
abstract tasks which decompose into the given plan along
with their decomposition trees. The decomposition trees can
be ambiguous as there may be more ways how some abstract
tasks can be decomposed. All possible decompositions of a
task can be described by an AND/OR tree. OR-nodes cor-
respond to abstract tasks, for each of which we must select
one decomposition rule. AND-nodes represent decomposi-
tion rules, which decompose the compound task (the pre-
decessor node) into the subtasks (the descendant nodes).
Leaves correspond to primitive tasks (actions).

Each such task is a candidate goal. To decide whether a
candidate goal can be decomposed into the given plan with
respect to the decomposition rules of the original planning
domain, we traverse its decomposition tree in a post-order
DFS-like manner. For each abstract task, we successively
visit all decomposition rules until we find a rule which can
be used to decompose the task, or all rules are visited and
rejected. A decomposition rule can be selected once all of
its subtasks were visited, for each of which one decomposi-
tion rule has been selected. In order to select a decomposi-
tion rule, we have to verify that all rule constraints are sat-
isfied. The complete algorithm verifying whether the rule
constraints are satisfied can be found in (Barták, Maillard,
and Cardoso 2020).

Earley parser on lifted problems
Our approach does not require a problem to be grounded.
The Earley parser progresses from the top downwards, de-
composing abstract tasks using all available rules until the
actions are reached. If a problem is not grounded and the
goal task is not given, the algorithm starts from the dummy
root task G by using uninstantiated dummy rules G ! •Ti,
for each possible goal task Ti. When an action is reached, its
attributes are propagated upwards to the rules higher in the
decomposition tree. The partial instantiation of these rules

will then be propagated downwards as the Earley parser pro-
gresses in order to reach the next action in the plan.

The predictor processes the state

Ti ! Ti1 ...Tij�1 • Tij ...Tin ,

which represents a rule decomposing the task Ti into the
subtasks Ti1 , ..., Tin , where the tasks before • have already
been processed and the next subtask to be processed is the
abstract task Tij . The predictor creates a new state

Tj ! •Tj1 ...Tjm ,

for each decomposition rule of Tj and it propagates the at-
tributes from tasks Ti, Ti1 , ..., Tij�1 to this new state Tj !
•Tj1 ...Tjm .

The scanner processes the state

Ti ! Ti1 ...Tij�1 • TijTij+1 ...Tin ,

where Tij is a primitive task, whose instantiation is com-
patible with the action a, which is in the plan at the required
position (based on the current iteration). The scanner creates
a new state

T 0
i ! T 0

i1 ...T
0
ij�1

a • T 0
ij+1

...T 0
in ,

where the relevant attributes are instantiated based on the
attributes of a and the original instantiation of the state.

The completer processes the state

Ti ! Ti1 ...Tin•,

using the completed decomposition to decompose the next
task (the task right after •) in all states, where the next task
Tjk is of the same type as Ti and with a compatible instanti-
ation. For each such state

Tj ! Tj1 ... • Tjk ...Tjm ,

the completer creates a new state

T 0
j ! T 0

j1 ...T
0
jk • ...T 0

jm ,

with the instantiation resulting from merging the instantia-
tions of Tj , Tj1 , ..., Tjm and Ti.

If any attribute of any decomposition rule remains unin-
stantiated while extracting a solution from the AND/OR
graph, we try all possible instantiations until a valid
grounded rule is found. If no such grounding exists, the rule
is rejected.

Example
We provide now an example of the usage of the Earley parser
for plan verification. Consider again the plan from Figure 1:
unstack(c,a), stack(b,a) and consider the most difficult set-
ting – lifted plan verification with unknown goal task.

The Earley parser successively generates states, each of
which covers a continuous subsequence of the input plan.
Apart from the rewriting rule with • separating decomposed
and undecomposed subtasks, the Earley parser keeps for
each state the index of the first and last action covered by
the state. Therefore, a state is written in the following form:

[Ti ! Ti1 ...Tij�1 • Tij ...Tin ; p; q],

[; r; q]

Complete vision
Autonomous, adaptable agent with explainable and verifiable behavior
• Start with some initial hierarchical and action model (possibly empty)
• Plan for a given goal task, for example using TIHNT (i.e. using also classical

planning)
• If the plan does not work, then re-plan, repair the plan
• If the plan is correct, update the model accordingly (learn new tasks and

actions)
• In multi-agent environment

• Use the model to predict actions of other agents
• Update the model based on observations of

other agents (learning by observation)

