Hierarchical Planning

On Solving Planning Problems by Task
Decompositions and Beyond

Roman Bartak

Charles University, Faculty of Mathematics and Physics
Czech Republic

< —
LX)

™)
o}
g

Models of Agent Behaviour

Finite state machines

Waitina

I

Runnind

Qﬁed

stopped

Behaviour Trees

Sel

eeeeee

Hierarchical Representations

Description of processes

Process

Structure of sentences _— L - L
Classification of objects
Inputs Ac:\i:ity Ac:\i\zlity Acg:ity - l
/ \ / \ A

Det Warm-Blooded Cold-Blooded With Jointed Legs Without Legs
| \ / \ 1 11
the boy V Prep/ \ Manls mids Fh epues Amphbans WIBNT WIS oy Moo

LN N “'m‘J&M‘ s (/‘Q
) S

e @ Js i ¢ ;S
Cockroch : Leech 1:;;.1,."

Grammar

S

The grammar (art of letters) of a Np/ \VP

" 7N\
natural language is its set of VERB NP

: VAN

logical and structural rules on ART NOUN ;p\
speakers' or writers' usage and ARET NOUN PREP NP
creation of clauses, phrases, and } / ATT NU’UN

A DOG BIT THE BOY ON THE PORCH
words.

Formal grammar

Formal grammar describes how to form strings from a language's
alphabet that are valid according to the language's syntax.

A formal grammar is a set of rules for rewriting strings, along with a
"start symbol" from which rewriting starts.

* non-terminal (phrases) and terminal (letters) symbols

* initial non-terminal symbol to start with

* rewriting rules in the form u > v (u and v are strings of symbols)
usage: xXuy=>xvy (substring is rewritten according to a rule)

Context-free grammars

Rewriting rules have a specific form: N2> u parsing tree

Example:

S>A.B.C

A->a

A->a.A {a'bick}
B->b

B->Db.B

C->c

C->c.C e

Derivation of word:
S =>ABC =>aABC =>aaBC => aabC => aabcC => aabcc

Beyond context-free languages

What if we want the numbers of symbols a,b,c to be identical? The
language is {a"b"c"} and this cannot be generated by CFG!

S aSBC | aBC S(n)e A(k).B()).C(m) [n=k=l=m]
aB - ab A(n)éa A(m) [n=m+1]
bB > bb B(n) > n=1]
B(n) > b B(m) ‘n=m+1]
bC -> bc Cin) > -
n —_—
cC>cce &{n) > 0.C(m) n=m+1]

context-sensitive grammar attribute grammar

Automated planning

Classical planning looks for a sequence of actions (p/lan) to achieve
some goal state, where actions are connected via causal relations
(action effect prepares precondition for later action).

..., 80(Rob1,PosA,RosB), load(Rob1,0bj1,PosB),...

at(Rob1,PosB)

Hierarchical planning solves a goal task by decomposing it to sub-
tasks until primitive tasks (actions) are obtained.

deliver(O,B) — move(R,A), load(R,0,A), move(R,B), unload(R O,B)

move(R,Z) — [at(R,Z)]
move(R,Z) — go(R,X,Y), move(R,Z)

Decomposition method

T T,..T. [C]

where C are decomposition constraints:
* T; < T;: ordering of tasks

 before(U,p): a precondition constraint (p is true right before
the first task from U)

- after(U,p): a postcondition constraint (p is true right after
the last task from U), not an effect!!

« between(U,p,V): prevailing constraints (p is true between
the last task of U and the first task of V)

Note: the state constraints are defined between tasks but must
be true between the actions obtained from the tasks

Holler, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.; Pellier, D.; and Alford, R. 2019. HDDL — A Language to Describe Hierarchical Planning
Problems. arXiv:1911.05499.

Decomposition tree

goal

/\

deliver(o1,p4) deliver(o2,p5)
move(r,p2) move(r,p4) empty task
move(r,p3) move(r p4d) i move(r,p5)
\ """"""
"IEQY?([EEQHE nﬂove(rpS) :
o NG Ty NG N
go(r,p1,p2) | load(r,01,p2) | go(r,p2,p3) | load(r,02,p3) Igo(r,p3,p4) unload(r,01,p4) | go(r,p4,p5) | unload(r,02,p5)

task interleaving

at(r,p3)

causal links

Planning Task

Given a goal task and initial state, find decomposition to an
executable sequence of actions (a plan).

Why?
* to achieve a distant goal, agent needs a plan
* faster than classical planning
* better control over the generated plan

How?
* task decomposition and search
« SHOP2, PANDA, ...

What if the task model is not enough to achieve a goal?

HTN with task insertion (TIHTN) allows inserting tasks/actions beyond the
hierarchical structure

D

Nau, D. S.; Au, T.; lighami, O.; Kuter, U.; Murdock, J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Planning System. J. Artif. Intell. Res., 20: 379—
404.

Plan (Goal) Recognition

Given a plan prefix (observed sequence of actions) and initial
state, find a goal task (and missing future actions).

»

Why?

* deduce goals (and actions) of other agent(s) in cooperative and
competitive environments

How?

* via parsing (like in grammars)

* via planning (comparing plans to achieve various goals with observed
actions)

Pantuckova, K.; and Bartak, R. 2023. Using Earley Parser for Recognizing Totally Ordered Hierarchical Plans. In ECAI 2023, pp.1819-1826, IOS Press.

Plan Verification

Given a plan (action sequence) and initial state, check that the
planis valid:

* verify plan executability ‘

* find a decomposition tree (and a goal task)

Why?
* verify that action sequence complies with the formal model
How?

* simulate action execution (plan executability)
* parsing (reconstruct a decomposition tree)

Bartak, R.; Maillard, A.; and Cardoso, R. C. 2018. Validation of Hierarchical Plans via Parsing of Attribute Grammars. In Proc. of the 28th Int. Conf. on
Automated Planning and Scheduling (ICAPS 2018), 11-19. AAAI Press.

Plan Correction

Given a plan (action sequence) and initial state, modify the plan
to be valid with respect to hierarchical model.

»

Why?
* extension of plan verification for invalid plans
* plan recognition (correct a partially observed action sequence)
* planning (,correct* empty plan for a given goal task)
Ultimate planning-related technique

How?
* add and delete actions in the plan (via parsing)

Bartak, R.; Ondrckova, S.; Behnke, G.; and Bercher, P.: Correcting Hierarchical Plans by Action Deletion. In18th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2021, 2021, 99—-109.

Model Correction

Given a plan (action sequence) and initial state, modify the
hierarchical model such that the plan is valid with respect to the

model.
e automated construction of formal models from observations A

Ultimate technique to bridge the knowledge acquisition gap.

How?
* machine learning approaches
« HTN Maker, HPNL, ...

Hogg, C.; Munoz-Avila, H.; and Kuter, U. 2016. Learning Hierarchical Task Models from Input Traces. Comput. Intell., 32(1): 3—48.

Plan verification by parsing

e] To| a; | a, | a3 | a, | a5 | ag | a
Plan verification problem: NN E & i Hhi e i M
Given an action sequence, is it a valid HTN plan? \
* causally consistent (executable) Ty a, a;
* proper structure
To—-T,T,
T,»>T;T, T, a ag
Method: T, ayay
T;-» a;azag
1. Calculate all states T,~> a,
. op e a
2. Verify plan executability @ °
3. Group actions to tasks T3 | a, as as
Up to O(T x 2N) pairs (task, subplan) generated
T-number of ground tasks
N - plan length plan | @ | @ | @ | 8 | @5 | A | a7
So Sq Sy S3 Sy S5 Se

CYK-based Plan Verification

Xi,j = {A | A =* aiai+1...aj}

CYK (Cocke-Younger-Kasami) parsing
* bottom-up parsing for context-free grammars ﬁ
in Chomsky Normal Form exploiting t éﬁﬁ,C}
dynamic programming ASETR (< I
i:@f\faBC $5A) 985 I8C) 8w
B CC|b B WL ML) B WL}
C >AB|a
7 h, a, a; b, a;
Application to plan verification:

* 2-regularization (ChNF)

T1 T1 S1
* grounding = _%
T2 T4 T2 S2

* restriction to totally-ordered domains ,flb

T3

Plan recognition by parsing

plan prefix

Second
iteration

T

T3

a;lay|asg|las|as|ag|ay
a, a,
a, as | a, | as | ag
a, ag
a, a, asg
a;la,|az|las|as|ag|ay

Earley parser

Developed for context-free grammars
* restricted to totally-ordered HTN domains

Works top-down (from the root symbol towards the word)
* may support planning as well

Processes parsing states:
[Tz — Til ---Tz'j_

o T;...T;, v q]

1

Earley parser: approach

Start with the initial parsing state(s):
G — oT;0;0]

Move the dot to the right as generating the decomposition
(parsing) tree and scanning the input word by processing the
parsing states:

« predictor (move down by applying a decomposition method)
e scanner (move right by reading an action from input plan)
« completer (move up by completing part of the tree)

Earley Parser: Predictor

[Tz — T’il ---Tz'j_ ® Tij Tzn , D; Q]

1

If T;; is a compound task, then

create parsing states corresponding to all decomposition
methods for task T; (moving top-down)

| Tj — Ole ...ijQ q;q |

Earley Parser: Scanner

[Tz — Til '“Tij—1 ® Tij --~Tin;p§ Q]

If T;; is a primitive task (action) then
unify it with action a at position g+1 in the input plan
If unification is successful, then

create a new parsing state (moving left-to-right)

[T, =T, .. T, aeT; ..T;;:p;q+l]

1j—1 141" in

Earley Parser: Completer
| 1 — Til Tzn‘ ;P q]

If task T; has been processed completely, then
for each parsing state, where T; unifies with T

| Tj — le ... @ Tjk ...ij; rp]
create a new state (moving up)

(T) — T, ..T, o..T. :riq)

Jm’

Complete vision

Autonomous, adaptable agent with explainable and verifiable behavior
e Start with some initial hierarchical and action model (possibly empty)

* Plan for a given goal task, for example using TIHNT (i.e. using also classical
planning)

* If the plan does not work, then re-plan, repair the plan

* Ifthe planis correct, update the model accordingly (learn new tasks and
actions)

* In multi-agent environment

* Use the model to predict actions of other agents =

* Update the model based on observations of
other agents (learning by observation)

