
Introduction to
Artificial Intelligence

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

Machine learning

Learning is about improving agent’s performance on future tasks after
making observations about the world.

Why is learning useful (instead of direct programming)?
• designer cannot anticipate all possible situations
• designer cannot anticipate all changes over time
• designer may have no idea how to program a solution

Feedback to learn from:
• unsupervised learning

agent learns patterns in the input even though no explicit feedback
is supplied

• reinforcement learning
agent learns from a series of reinforcements
(rewards or punishments)

• supervised learning
agent observes examples input-output and
learns a function that maps from input to output

Introduction to Artificial Intelligence, Roman Barták 2

Supervised learning

Given a training set of N example input-output pairs
(x1,y1),…,(xN,yN), where yi = f(xi) for some unknown function f

Discover a function h, that approximates the true function f.
• function h – hypothesis – is selected from a hypothesis space

(for example linear functions)
• hypothesis is consistent (with example), if h(xi) = yi

How do we choose from among multiple consistent hypotheses?
• prefer the simplest hypothesis consistent

with the same data (Ockham’s razor)

Types of tasks:
– classification: the set of outputs yi is a finite set (such as

sunny, cloudy or rainy)
– regression: outputs are numbers (such as temperature)

Introduction to Artificial Intelligence, Roman Barták 3

(c)(a) (b) (d)
x x x x

f(x) f(x) f(x) f(x)

Decision trees

Decision tree is one of the simplest and yet most successful
forms of learned functions – it takes as input a vector of attribute
values and returns a „decision“ – a single output value.
• a decision tree reaches its

decisions by performing a
sequence of tests

• each internal node corresponds
to a test of the value of one of
the input attributes

• branches are labeled with possible
values of that attribute

• each leaf node specifies a value
returned by the function

The hypothesis space is defined by a set of decision trees and we
are looking for a tree that is consistent with the examples and is
as small as possible.

Introduction to Artificial Intelligence, Roman Barták 4

No Yes

No Yes

No Yes

No Yes

None Some Full

>60 30-60 10-30 0-10

No Yes
Alternate?

Hungry?

Reservation?

Bar? Raining?

Alternate?

Patrons?

Fri/Sat?

No Yes

No Yes

Yes

Yes
No Yes

No Yes

YesNoYes
No Yes

YesNo

WaitEstimate?

Decision tree learning

We will construct a small consistent decision tree by adopting a greedy divide-and-
conquer strategy:
• select the most important attribute
• divide the examples based on the

attribute values
• when the remaining examples are

in the same category, then we are
done; otherwise solve smaller
sub-problems recursively

What is the “most important attribute”?
• that one that makes the most difference to the classification of examples
• we will use the notion of information gain, which is defined in terms of entropy
• entropy is a measure of the uncertainty of a random variable (measured in ”bits” of

information that we obtain after knowing the value of the random variable)
H(V) = - 𝚺k p(vk) log2(p(vk)), where vk are values of random variable V
B(q) = - q.log2 q - (1-q).log2(1-q) entropy of a Boolean variable

• the information gain from the attribute test on A is the expected reduction of
entropy (p – the number of positive examples, n – the number of negative examples)

Remainder(A) = 𝚺k B(pk /(pk +nk)).(pk +nk)/(p+n)
Gain(A) = B(p/(p+n)) - Remainder(A)

Introduction to Artificial Intelligence, Roman Barták 5

Gain(Patrons) ≈ 0.541 Gain(Type) = 0

bad attributegood attribute

Logical formulation of learning
Hypotheses, example descriptions, and classification will be represented using
logical sentences.
Examples
– attributes become unary predicates

Alternate(X1) ∧ ¬Bar(X1) ∧ ¬ Fri/Sat(X1) ∧ Hungry(X1) ∧ …
– classification is given by literal using the goal predicate

WillWait(X1) or ¬ WillWait(X1)
Hypothesis will have the form

∀x Goal(x) ⇔ Cj(x),
where Cj is called the extension of the predicate

Hypothesis space is the set of all hypothesis.

The learning algorithm believes that one hypothesis is correct, that is, it believes
the sentence h1 ∨ h2 ∨ h3 ∨ … ∨ hn
Hypotheses that are not consistent with the examples can be ruled out.
There are two possible ways to be inconsistent with an example (the notions
originated in medicine to describe erroneous results from lab tests):
– false negative – hypothesis says the example should be negative but in fact it is

positive
– false positive – hypothesis says the example should be positive but in fact it is

negative

∀r WillWait(r)⇔ Patrons(r,Some)
∨ (Patrons(r,Full) ∧ Hungry(r) ∧ Type(r,French))

∨ (Patrons(r,Full) ∧ Hungry(r) ∧ Type(r,Thai) ∧ Fri/Sat(r))

∨ (Patrons(r,Full) ∧ Hungry(r) ∧ Type(r,Burger))

Introduction to Artificial Intelligence, Roman Barták 6

None Some Full

Patrons?

No Yes
No Yes

Hungry?

No

No Yes
Fri/Sat?

YesNo

Yes

Type?

French Italian Thai Burger
Yes No

Current-best-hypothesis search

The idea is to maintain a single hypothesis, and to adjust it as
new examples arrive in order to maintain consistency
• if the example is consistent with the hypothesis

then do not change it
• if false negative

then generalize the hypothesis
by dropping conditions
or by adding disjuncts

• if false positive
then specialize the hypothesis

by adding extra conditions
or by removing disjuncts

Introduction to Artificial Intelligence, Roman Barták 7

• the first example is positive, attribute Alternate(X1) is true, so let the initial hypothesis be
h1: ∀x WillWait(x) ⇔Alternate(x)

• the second example is negative, hypothesis predicts it to be positive, so it is a false positive;
we need to specialize by adding extra condition

h2: ∀x WillWait(x) ⇔Alternate(x) ∧ Patrons(x,Some)

• the third example is positive, the hypothesis predicts it to be negative, so it is a false negative;
we need to generalize by dropping the condition Alternate

h3: ∀x WillWait(x) ⇔ Patrons(x,Some)

• the fourth example is positive, the hypothesis predicts it to be negative, so it is a false positive;
we need to generalize by adding a disjunct (we cannot drop the Patrons condition)

h4: ∀x WillWait(x) ⇔ Patrons(x,Some) ∨ (Patrons(x,Full) ∧ Fri/Sat(x))

Least-commitment search

Rather that keeping a single hypothesis, we can keep all hypotheses consistent with
examples (so called version space).
The version space learning algorithm
(also the candidate elimination algorithm)
updates the version space after each new example.

How to represent version space compactly?
We have an ordering of hypothesis space (generalization/specialization) so we can specify
boundaries, where each boundary will be a set of hypothesis (a boundary set).

G-set = a most general boundary
– initially True
– for each new example:

if false positive for Gi
then replace Gi in the G-set by all its immediate specializations

if false negative for Gi
then throw Gi out of the G-set

S-set = a most specific boundary
– initially False
– for each new example:

if false positive for Si
then throw Si out of the S-set

if false negative for Si
then replace Si in the S-set by all its immediate generalizations

Everything in between G-set and S-set is guaranteed to be consistent with the examples and nothing else is consistent.

This region all inconsistent

This region all inconsistent

More general

More specific
S1

G1

S2

G2 G3 . . . Gm

 . . . Sn

Linear models

Let us now look at the class of linear functions of continuous-valued inputs.

A univariate linear function (a straight line) with input x and output y has
the form: y = w1.x + w0

A hypothesis space consists of functions
hw(x) = w1.x + w0, where w = [w0,w1]

A multivariate linear function has the form:
y = w0 + 𝚺i wixi

A hypothesis space consists of functions
hw(x) = w0 + 𝚺i wixi

We are looking for a hypothesis hw, that fits best the given examples (in
univariate linear regression, we are looking for weights w1 and w0).

How to measure the error with respect to data?
• square loss function, L2, is traditionally used:

Loss(hw) = 𝚺j (yj – hw(xj))2 = 𝚺j (yj – (w1.xj + w0))2

Introduction to Artificial Intelligence, Roman Barták

 300

 400

 500

 600

 700

 800

 900

 1000

 500 1000 1500 2000 2500 3000 3500

H
ou

se
 p

ric
e

in
 $

10
00

House size in square feet

w0

w1

Loss

9

Univariate linear regression
Given a set of examples (points) in the form [xj,yj], find the hypothesis hw* such that
w* = argminw Loss(hw) = argminw Σj (yj – hw(xj))2.

This can be done by solving:
𝝏/𝝏w0

𝚺j (yj – (w1.xj + w0))2 = 0

𝝏/𝝏w1
𝚺j (yj – (w1.xj + w0))2 = 0

These equations can be solved analytically, with a unique solution:
w1 = (N 𝚺j xj yj – 𝚺j xj𝚺j yj) / (N 𝚺j xj

2 – (𝚺j xj)2)

w0 = (𝚺j yj – w1. 𝚺j xj) / N

Or, we can use the gradient descent method (useful, if the hypothesis space is defined by non-
linear functions):

– choose any starting point in the weight space
– move to a neighboring point that is downhill

wi ←wi – 𝜶 𝝏/𝝏wi
Loss(hw), where 𝜶 is called the learning rate (or a step size); it can

be a fixed constant, or it can decay over time as the learning process proceeds)
– repeat until convergence

For univariate linear regression we will get:
w0 ←w0 + 𝜶 𝚺j (yj – hw(xj))
w1 ←w1 + 𝜶 𝚺j (yj – hw(xj)).xj

Introduction to Artificial Intelligence, Roman Barták 10

w0

w1

Loss

𝜕/𝜕wi Loss(hw) = 𝜕/𝜕wi (y – hw(x))2

= 2(y – hw(x)). 𝜕/𝜕wi (y – hw(x))
= 2(y – hw(x)). 𝜕/𝜕wi (y – (w1.x + w0))

𝜕/𝜕w0 Loss(hw) = – 2(y – hw(x))
𝜕/𝜕w1 Loss(hw) = – 2(y – hw(x)).x

Linear classification
Assume points in 2D space representing two classes. The task of
classification is to learn a hypothesis h that will take a new point
and return 0 or 1 based on the class of that point.

For a linear classifier, the decision boundary is a line (or surface,
in higher dimensions) that separates two classes (data are
linearly separable).
Formally, we are looking for hw such that hw(x) = 1 if w.x ≥ 0, otherwise 0
Alternatively, we can think of h as the result of passing
the linear function w.x through a threshold function:

hw(x) = Threshold(w.x), where Threshold(z) = 1, if z≥ 0, otherwise 0

How to find the linear separator?
Present examples in a random order and update weights according to perceptron learning rule:
wi ←wi + 𝜶 (y – hw(x)).xi

What if the classes are not linearly separable?
– perceptron learning rule does not converge, but we can decay 𝜶 as O(1/t), where t is the iteration

number, to get a minimum-error solution

We can also soften the threshold function by using a logistic threshold function
Threshold(z) = 1 / (1+e-z)

It returns a probability of belonging to class 1.
One of the most popular classification techniques.
Gradient descent is used to find weights:
wi ←wi + 𝜶 (y – hw(x)). hw(x).(1-hw(x)).xi

Introduction to Artificial Intelligence, Roman Barták 11

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

 0

 0.5

 1

-8 -6 -4 -2 0 2 4 6 8

 0

 0.5

 1

-6 -4 -2 0 2 4 6

𝜕/𝜕wi Loss(hw) = 𝜕/𝜕wi (y – hw(x))2

= 2(y – hw(x)). 𝜕/𝜕wi (y – hw(x))
= 2(y – hw(x)). 𝜕/𝜕wi (y – Threshold(w.x))
= – 2(y – hw(x)).Threshold’(w.x). 𝜕/𝜕wi (w.x)
= – 2(y – hw(x)).Threshold’(w.x). xi

Derivative for the logistic function:
Threshold’(z) = Threshold(z).(1 – Threshold(z))

Artificial neural networks

Neural networks are composed of nodes (or units) connected by weighted
directional links.

Each unit first computes a weighted sum of its inputs:
inj = Σi wi,j.ai

Then it applies an activation function g to this sum to derive the output:
aj = g(inj)

perceptron – hard threshold activation function
sigmoid perceptron – logistic threshold activation function

Neural network structures:
a feed-forward network

• connections only in one direction (DAG)
• represents a function that transfers input to output
• no internal state (memory) except weights

a recurrent network
• feeds output back into its inputs
• represents a dynamic system that may reach a stable state

or exhibit oscillations or even chaotic behavior
• supports short-term memory

Introduction to Artificial Intelligence, Roman Barták 12

Learning in feed-forward multilayer networks

Weights are updated using the gradient descent method (wi,j← wi,j – 𝛼 𝜕/𝜕wi,j Loss(hw)).
Error (loss) at the output layer is clear (y – hw) = Σk (yk – ak)2, where ak is output of k-th neuron at the
output layer.
What about the error at the hidden nodes, where training data do not say the value?
– We can back-propagate the error from the output layer to the hidden layers.
– Hidden node j is responsible for some fraction of error in node k, the fraction is given by weight wj,k.

Introduction to Artificial Intelligence, Roman Barták 13

Start with random weights

Calculate network output based on input for a given
example.

Calculate a modified error for output neurons
△j = g’(inj).Errj = g’(inj).(yj – aj)
g’ is derivative of threshold function g

g’(z) = g(z).(1 – g(z)) for the logistic function

Propagate △ values back to the previous layer.
△i = g’(ini). Σj wi,j . △j

Update the weights.

Nonparametric models

After we learn the hypothesis, we can throw away the training data as they
are represented by parameters (weights) of fixed size (independent of the
number of training examples) of the model – a parametric model.
A nonparametric model uses (a fraction of) of original data to represent the
hypothesis.
Nearest neighbor models
Find the k examples that are nearest to x (k-nearest neighbors lookup) and
compose the answer from their y values.

– to do classification take the plurality
vote for the neighbors (which is a
majority vote in the case of binary
classification)

– to do regression connect the dots
or use average

Distances are typically measured with a Minkowski distance defined as
Lp(xj,xq) = (Σi |xj,i – xq,i|p)1/p
– p = 1: Manhattan distance
– p = 2: Euclidian distance
– with Boolean attribute values, the number of attributes on which two points

differ is called the Hamming distance

Introduction to Artificial Intelligence, Roman Barták 14

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x1

x2

k=1

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x1

x2

k=5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14

3-nearest neighbors average
 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14

connect the dots

Be careful about the scale!
it is common to apply normalization instead of xj,i we can use (xj,i – 𝜇i)/𝜎i,
where 𝜇i je is the mean value and 𝜎i is standard deviation

Support Vector Machines

The support-vector machine (SVM) is currently the most
popular approach of „off-the-shelf“ supervised learning.
• SVMs construct a maximum

margin separator – a decision
boundary with the largest
possible distance to example
points (leads to better generalization)

• SVMs create a linear separating
hyperplane, but if the examples
are not linearly separable, they
can be mapped by a kernel function
to a higher-dimensional space, where
the examples are linearly separable

• SVMs are a nonparametric method – examples closer to the
separator are more important, these examples are called
support vectors and they define the maximum margin
separator

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1

0
0.5

1
1.5

2x1
2 0.5

1
1.5

2
2.5

x2
2

-3
-2
-1
0
1
2
3

32x1x2

f1 = (x1)2

f2 = (x2)2

f3 = 𝟐 x1x2

Support vector

Support vector

Support vector

Introduction to Artificial Intelligence, Roman Barták 15

© 2020 Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

