Planning & Scheduling

Planning problem P is a triple (%,s,,8)

— 2 is a planning domain describing possible world states and
actions (state transitions)

— Sy is an initial state
— g describes the goal states

Set representation
— state is as set of propositions

— action is a triple of proposition sets (precond,effects, effects*)
precond C s — (s — effects’) U effects*

Classical representation
— state is a set of instantiated atoms

— operator is a triple (name, precond, effects), where precond
and effects are sets of literals

— action is a fully instantiated operator
precond*C s A precond N s = — (s —effects”) U effects*

NSNS

Constants Actions
— blocks: a,b,c,d,e unstack(s,)
Precond: on(x,y), clear(x), handempty
. . Effects: —on(x,y), ~clear(x), clear(y),
Predicates: —handempty, holding(x),
— ontable(x) o)
H stack(x,y
block x is on a table Precond: holding(x), clear(y)
- on(x,y) Effects: —holding(x), ~clear(y),
block x is on y on(x,y), clear(x), handempty
- clear(x_) pickup(x)
block x is free to move Precond: ontable(x), clear(x), handempty
— holdina(x Effects: —ontable(x), —-clegr(x),
th% crl1a ngd(h())Ids block x —handempty, holding(x)
— handempty putdown()zl) Lol
; Precond: holding(x)
the hand is empty Effects: —holding(x), ontable(x),
clear(x), handempty
Propositions: Actions
36 propositions for 5 blocks 50 actions for 5 blocks
* ontable-a unstack-c-a
blOCk ais on tab|e (SX) Pre: on-c-a, clear-c, handempty
Del: on-c-a, clear-c, handempty
e oOn-Cc-a Add: holding-c, clear-a

block ¢ is on block a (20x)

clear-c

block c is free to move (5x)

holding-d

the hand holds block d (5x)

handempty
the hand is empty (1x)

stack-c-a
Pre: holding-c, clear-a
Del: holding-c, clear-a
Add: on-c-a, clear-c, handempty

pickup-b
Pre: ontable-b, clear-b, handempty
Del: ontable-b, clear-b, handempty
Add: holding-b

putdown-b
Pre: holding-b
Del: holding-b
Add: ontable-b, clear-b, handempty

SO

What is the complexity to solve a planning problem
in the classical representation?

Decidability
Function symbols Plan existence Plan of given length
no yes yes
yes partially o9 __—~—~—) yes
. Halting
Complexity W
Negative Negative Plan existence | Plan of given
effects preconditions length
yes yes/no EXPSPACE-c NEXPTIME-c
no yes NEXPTIME-c NEXPTIME-c
no EXPTIME-c NEXPTIME-c

Almost all planning algorithms are based on
some form of search.

The algorithms differ in the search space to be
explored and in the way of exploration.
— State Space Planning

 search nodes directly correspond to world states

— Plan Space Planning
* search nodes correspond to partial plans

* The search space corresponds to the state space of the
planning problem.
— search nodes correspond to world states
— arcs correspond to state transitions by means of actions

— the task is to find a path from the initial state to some goal
state

* Basic approaches
— forward search

— backward search
* lifting
* STRIPS
— problem dependent (blocks world)

Note: all algorithms will be presented for the classical
representation

Start in the initial state and go towards some goal
state.

We need to know:
— whether a given state is a goal state

— how to find a set of applicable actions for a given
state

— how to define a state after applying a given action

Forward-search(O, sg, g)

S « 8

m «— the empty plan

loop
if s satisfies ¢ then return 7w
E < {ala is a ground instance of an operator in O,

and precond(a) is true in s}

if £ = () then return failure
nondeterministically choose an action a € F
s «— v(s,a)

T — .0 cranel

(o1
i]) >
take c3 5—“—x
cranel locl loc2
= o1,
cl b2
ST : S take c2
locl ’ loc2
move r1
{belong(cranel,locl), adjacent(loc2,locl) == || LV
holding(cranel,c3), unloaded(rl),
at(r1,loc2), , <1 - A
occupied(loc2),...} > s
locl loc2
move(rl,loc2,locl) — move(r,,m) | |
;; robot 7 moves from location [to location m
’ precond: adjacent(l,m),at(r, 1), ~ occupied(m)
effects: r.m),occupied(m), —~occupied(l), = at(r,!
{belong(cranel,locl), 15 2l occupted(m). moceupied(l). 7t
adjacent(loc2,loc1), holding(cranel,c3), unloaded(rl),
at(r1,locl), occupied(locl), ...}
load(k,l,¢c,7)
Ioad(cra ne1,|oc1,c3lr1) ;; crane k at location / loads container ¢ onto robot 7

precond: belong(k,1), holding(k, c),at(r,), unloaded(r)
effects: empty(k), = holding(k, ¢), loaded(r, ¢), = unloaded(r)

{belong(cranel,locl), adjacent(loc2,locl),
empty(cranel), loaded(r1,c3),
at(r1,locl), occupied(locl), ...}

Cil = {at(r1,loc1),loaded(r1,c3)}

Forward planning algorithm is sound.
— If some plan is found then it is a solution plan.
— It is easy to verify by using s = y(s,).

Forward planning algorithm is complete.

— If there is any solution plan then at least one search
branch corresponds to this plan.

— induction by the plan length

— at each step, the algorithm can select the correct action
from the solution plan (if correct actions were selected
in the previous steps)

We need to implement the presented algorithm
in a deterministic way:
— breadth-first search
* sound, complete, but memory consuming
— depth-first search

* sound, completeness can be guaranteed by loop checks
(no state repeats at the same branch)

— A*
* if we have some admissible heuristic
* the most widely used approach

What is the major problem of forward planning?
Large branching factor — the number of options

50 possible N Q QI—I—I initial state goal | &
blocks to |f|> a,
pick up a4 ay a3 aso a,

* This is a problem for deterministic algorithm that needs
to explore the possible options.

Possible approaches:
— heuristic recommends an action to apply

— pruning of the search space

* For example, if plans ;t; and &, reached the same state then we know
that plans m,t; and m,mt; will also reach the same state. Hence the
longer of the plans i, and i, does not need to expanded.

We need to remember the visited states ©.

Start with a goal (not a goal state as there might
be more goal states) and through sub-goals try
to reach the initial state.

We need to know:
— whether the state satisfies the current goal
— how to find relevant actions for any goal

— how to define the previous goal such that the
action converts it to a current goal

Action a is relevant for a goal g if and only if:
— action a contributes to goal g: g N effects(a) = O
— effects of action a are not conflicting goal g:
« g'N effects*(a) = I
» gt N effects’(a) =

A regression set of the goal g for (relevant) action ais
v(g,a) = (g - effects(a)) U precond(a)

Example: Sackon)
. Precond: holding(x), clear(y)
go d l ’ {0 n (a’ b)’ on (b,C)} Effects: ~holding(x), ~clear(y),
action stack(a,b) is relevant Gi{EA)) GGG, 7 Sl

by backward application of the action we get a new goal:
{holding(a), clear(b), on(b,c)}

Backward-search(O, sg, g)

m «— the empty plan

loop
if sq satisfies g then return «
A «— {ala is a ground instance of an operator in O

and 77 1(g,a) is defined}

if A= () then return failure
nondeterministically choose an action a € A
T Q.7

g —v"(g,a)

..

-

[N
I
Q

52 —
cl |7 move r1
pl O 0

Z
take c3,c1
locl loc2
cranel
a3 take c3,c2

locl loc2

locl o
(=3

Cil = {at(r1,locl),loaded(r1,c3)} (=]

load(k, 1, ¢,7)

Ioad (Cra nel Ioc 1,C3 r1)4 . crane k at location [loads container ¢ onto robot r

1)1((0111 belong(k, 1), holding(k, ¢), at(r,), unloaded(r)
effects: empty(k), ~holding(k, ¢), loaded(r, ¢), =~ unloaded(r)

{at(r1,locl), belong(cranel,locl),
holding(cranel,c3), unloaded(rl)}
m

move(r, 1, m)
ove(rl,loc2,loc1)% S e
effects: at(r,m), occupied(m), —~occupied(l), - at(r,[)
{belong(cranel,locl), holding(cranel,c3),
unloaded(rl),

adjacent(loc2,locl),
at(r1,loc2),

locl loc2

* Backward planning is sound and complete.

* We can implement a deterministic version of the
algorithm (via search).

— For completeness we need loop checks.

* Let (g,,..,8) be a sequence of goals. If di<k g,C g, then we can stop
search exploring this branch.

* Branching

— The number of options can be smaller than for the forward
planning (less relevant actions for the goal).

— Still, it could be too large.

* |If we want a robot to be at the position loc51 and there are direct
connections from states locl,...,loc50, then we have 50 relevant
actions. However, at this stage, the start location is not important!

* We can instantiate actions only partially (some variables remain
free. This is called lifting.

Lifted-backward-search(O, sq, g)
7 «— the empty plan
loop
if s¢ satisfies g then return 7
A — {(0,0)|o is a standardization of an operator in O,
6 is an mgu for an atom of g and an atom of effects (o),
and v 1(0(g),6(0)) is defined}
if A =0 then return failure
nondeterministically choose a pair (0,60) € A
7 «— the concatenation of #(0) and é(m)

g ~"1(0(g),0(0))

Notes:
* standardization = a copy with fresh variables
* mgu = most general unifier

* by using the variables we can decrease the branching factor
but the trade off is more complicated loop check

* How can we further reduce the search space?

e STRIPS algorithm reduces the search space of backward
planning in the following way:

— only part of the goal is assumed in each step, namely the
preconditions of the last selected action

* instead of y!(s,a) we can use precond(a) as the new goal
* the rest of the goal must be covered later
* This makes the algorithm incomplete!

— If the current state satisfies the preconditions of the selected
action then this action is used and never removed later upon

backtracking.

« The original STRIPS algorithm is a lifted
version of the algorithm below.

Ground-STRIPS(O, s, g)

7 < the empty plan

loop

"~ if s satisfies g then return &
A < {a | ais a ground instance of an operator in O,

and a is relevant for g}

if A = @ then return failure
nondeterministically choose any action a € A
7' <« Ground-STRIPS(O, s, precond(a))
if ' = failure then return failure
;; if we get here, then m' achieves precond(a) from s
s <« y(s,m’)
5 s now satisfies precond(a)
s < y(s,a)
n<«nn.a

K—’ g, = (g - effects(a,)) U precond(a,)
n" ={a, a,) is a plan for precond(a,)

s =y(y(spag).a,) is a state satisfying precond(a,)

86

satisfied in s,

e Sussman anomaly is a famous example that causes
troubles to the STRIPS algorithm (the algorithm can

only find redundant plans).
* Block world initial state I_|_I

a|lb

goal

d

A plan found by STRIPS may look like this:

> unstack(c,a),putdown(c),pickup(a),stack(a,b)

now we satisfied subgoal on(a,b)

~ unstack(a,b),putdown(a),pickup(b),stack(b,c)

now we satisfied subgoal on(b,c),
but we need to re-satisfy on(a,b) again

° picku p(a),stack(a,b) red actions can be deleted

e Solving Sussman anomaly
— interleaving plans

* plan-space planning
— using domain dependent information

* When does a solution plan exist for a blocks world?

— all blocks from the goal are present in the initial state
— no block in the goal stays on two other blocks (or on itself)

* How to find a solution plan?
Actually, it is easy and very fast!
— put all blocks on the table (separately)
— build the requested towers
We can do it even better with additional knowledge!

When do we need to move block x?
Exactly in one of the following situations:

— s contains ontable(x) and g contains on(x,y)

— s contains on(x,y) and g contains ontable(x)

— s.contains on(x,y) and g contains on(x,z) for some y#z
— s.contains on(x,y) and y must be moved

e
Bl

initial state goal

|Q<><fm

Stack-containers(O, s,):
if g does not satisfy the consistency conditions then
return failure :+ the planning problem is unsolvable
7 <« the empty plan
§ <%
loop
if s satisfies g then return 7
if there are containers b and ¢ at the tops of their piles such that
position(c, s) is consistent with g and on(b,¢) € ¢
then
append actions to 7 that move bto ¢
s < the result of applying these actions to s
:: we will never need to move b again
else if there is a container b at the top of its pile
such that position(b, s) s inconsistent with g
and there is no ¢ such that on(b,c) € g
then
append actions to s that move b to an empty auxiliary pite
s <« the result of applying these actions to s
=+ we will never need to move b again
else
nondeterministically choose any container ¢ such that c is
at the top of a pile and position(c, 5} is inconsistent with g
append actions to 7 that move ¢ to an empty auxiliary patlet
s < the result of applying these actions to s

Initial state l_l_l

j

olo]~]

unstack(c,a)

ke

[al[b]

=

a
b

putdown(c)@

G stack(a,b)

15

o

o]

pickup(b)

D

pickup(a)

HE}@

Position is consistent with block cif there is no reason to move c.

© 2014 Roman Bartak

D

stack(b,c)

Department of Theoretical Computer Science and Mathematical Logic

bartak@ktiml.mff.cuni.cz

