

Incremental Filtering Algorithms for Precedence and Dependency Constraints

Roman Barták, Ondřej Čepek
Charles University in Prague, Faculty of Mathematics and Physics

Malostranské nám. 2/25, 118 00 Praha 1, Czech Republic
E-mail: roman.bartak@mff.cuni.cz, ondrej.cepek@mff.cuni.cz

Abstract

Precedence constraints play a crucial role in planning
and scheduling problems. Many real-life problems also
include dependency constraints expressing logical
relations between the activities – for example, an activity
requires presence of another activity in the plan. For
such problems a typical objective is a maximization of the
number of activities satisfying the precedence and
dependency constraints. In the paper we propose new
incremental filtering rules integrating propagation
through both precedence and dependency constraints. We
also propose a new filtering rule using the information
about the requested number of activities in the plan. We
demonstrate efficiency of the proposed rules on the log-
based reconciliation problems and min-cutset problems.

1. Introduction

Planning and scheduling belong among the most
successful application areas of constraint satisfaction.
Solving these problems depends on efficient handling of
temporal and resource constraints. The simplest but
popular form of a temporal constraint is a precedence
relation expressing that one activity must appear before
another activity in the plan. In addition to precedence
relations, many problems also include dependency
constraints between the activities. This is typical for
planning problems where existence of activity in the plan
depends on presence of other activities in the plan.
Similar constraints appear in oversubscribed problems
where the task is to schedule the maximal number of
activities and inclusion of an activity in the schedule may
require presence of other activities in the schedule [6].
Such problems can be modelled using optional activities;
the system then decides about validity or invalidity of
optional activities respecting all the constraints.

In this paper we focus on modelling precedence
constraints using a precedence graph and on integrating
reasoning on dependency constraints in this model. In
particular, we propose a new constraint-based model of
the precedence graph with optional activities and we

design new filtering rules for incremental maintenance of
transitive closure for such precedence graphs. In the
filtering we also use information about dependency
constraints. This is, we believe, the first time when
filtering through precedence and dependency constraints
is realised in an integrated way. We also propose new
objective-based filtering for these problems. This filtering
uses information about the requested number of valid
activities in the final plan.

The paper is organized as follows. We will first
introduce the problem more formally and survey the
existing solving approaches. Then we will describe the
filtering rules for maintaining a transitive closure of the
precedence graph with optional activities. We will also
show their theoretical time complexity and prove their
soundness. After that, we will describe the propagation
rule doing filtering based on requested number of valid
activities. We will conclude the paper with experimental
comparison of our approach with the existing model.

2. Problem description and related works

In this paper we address the problem of modelling
precedence constraints between the activities in over-
subscribed problems. The precedence constraint A « B
specifies that activity A must be before activity B in the
schedule. To model over-subscribed problems, we assume
optional activities. An optional activity has one of the
following three statuses. If the activity is not yet known to
be or not to be included in the schedule then it is called
undecided. If the activity is included in the schedule then
it is called valid. If the activity is known not to be
included in the schedule then it is called invalid. We also
assume dependency constraints between the activities.
The dependency constraint A => B specifies that if
activity A is valid then activity B must be valid as well. In
other words, if activity A is included in the schedule then
activity B must be included as well. This is one of the
dependency constraints proposed in the general model for
manufacturing scheduling [6]. The scheduling task is to
decide about (in)validity of the undecided activities and
to find a sequence of valid activities satisfying the

precedence and dependency constraints. Usually, the
problem is formulated as an optimization problem, where
the task is to find a feasible solution in the above sense
that maximizes the number of valid activities.

Though our motivation is mainly in the area of
scheduling, the above problem is also known as a log-
based reconciliation problem in databases. The
straightforward constraint model for this problem has
been proposed in [2]. The model uses n integer variables
p1,…, pn giving the position of activities in the schedule
(n is the number of activities). The initial domain of these
variables is 1,…,n. There are also n Boolean (0/1)
variables a1,…, an describing whether the activity is valid
(1) or invalid (0). The precedence constraint between
activities i and j is then described using the formula:

(ai ∧ aj) => (pi < pj) or equivalently (ai * aj * pi < pj).
The dependency constraint between activities i and j can
be formulated as:

ai => aj.
The solver uses standard constraint propagation over

above constraints combined with enumeration of the
Boolean variables ai‘s. The paper [2] also proves that the
log-based reconciliation problem is NP-hard – if there are
no dependency constraints then the problem reduces to
the problem of finding the smallest cutset in a directed
graph (that is, the smallest set of vertices whose remove
makes the input graph acyclic) [4].

In [3] an improvement of the above precedence
constraint has been proposed using the reasoning on
graph properties. Namely a global cutset constraint has
been proposed that uses graph contraction techniques to
infer some simple Boolean constraints. Still, this model
assumes the dependency constraints separately; in
particular the constraints are modelled in the above
implication form.

The paper [5] also studies the log-based reconciliation
problem, but rather than proposing a new filtering
algorithm, a decomposition technique is used. The
technique is again motivated by the minimal cutset
problem and the dependency constraints are handled
separately. Moreover, as opposed to the above described
models, the technique from [5] is incomplete – meaning
that it does not guarantee optimality.

Our approach is different from the above techniques
by integrating reasoning on both precedence and
dependency constraints. We cannot use the contraction
techniques from [3], because our aim is to eventually use
the designed filtering algorithm in a scheduler where the
precedence graph is used by other constraints like the
constraint that integrates reasoning on precedence
relations and time windows [1].

3. Filtering rules for precedence and
dependency constraints

Precedence relations among activities define a
precedence graph that is an acyclic directed graph where
nodes correspond to activities and there is an arc from A
to B if A « B. If access to all predecessors and successors
of a given activity is frequently requested, like in [1], then
it is more efficient to keep a transitive closure of the
graph where this information is available in time O(1),
rather than to look for predecessors/successors on
demand. We propose the following definition of transitive
closure of the precedence graph with optional activities.

Definition 1: We say that a precedence graph G with
optional activities is transitively closed if for any two arcs
A to B and B to C such that B is a valid activity and A
and C are either valid or undecided activities there is also
an arc A to C in G.

It is easy to prove that if there is a path from A to B
such that A and B are either valid or undecided and all
inner nodes in the path are valid then there is also an arc
from A to B in a transitively closed graph (by induction
on the path length). Hence, if no optional activity is used
(all activities are valid) then Definition 1 corresponds to a
standard definition of the transitive closure.

We propose to realise reasoning on precedence
relations using constraint satisfaction technology. This
allows integration of our model with other constraint
reasoning techniques, namely the one proposed in [1].
This integration requires the model to provide full
information about precedence relations to all other
constraints. We index each activity by a unique number
from the set 1,..,n, where n is the number of activities. For
each activity we use a 0/1 variable Valid indicating
whether the activity is valid (1) or invalid (0). If the
activity is undecided – not yet known to be valid or
invalid – then the domain of Valid is {0,1}. The
precedence graph is encoded in two sets attached to each
activity. CanBeBefore(A) is a set of indices of activities
that can be before activity A. CanBeAfter(A) is a set of
indices of activities that can be after activity A. For
simplicity reasons we will write A instead of the index of
A. To simplify description of the propagation rules we
also define for every activity A the following derived
sets:
MustBeAfter(A) = CanBeAfter(A) \ CanBeBefore(A)
MustBeBefore(A) = CanBeBefore(A) \ CanBeAfter(A)
Unknown(A) = CanBeBefore(A) ∩ CanBeAfter(A).

MustBeAfter(A) and MustBeBefore(A) are sets of those
activities that must be after and before the given activity
A respectively. Unknown(A) is a set of activities that are
not yet known to be before or after activity A (Figure 1).

Figure 1. Representation of the precedence graph

Note on representation. The main reason for using
sets to model the precedence graph is their possible
representation as domains of variables in constraint
satisfaction packages. Recall that domains of variables
can only shrink as problem solving proceeds. The sets in
our model are also shrinking as new arcs « are added to
the precedence graph. Hence a special data structure is
not necessary to describe the graph in constraint
satisfaction packages. Moreover, these packages usually
provide tools to manipulate the domains, for example
membership and deletion operations. In the subsequent
complexity analysis, we will assume that these operations
require time O(1), which can be realised for example by
using a bitmap representation of the sets. Note finally,
that empty domain implies inconsistency that may be a
problem for the very first and very last activity which has
no predecessors and successors respectively. To solve the
problem we can simply leave activity A in both sets
CanBeAfter(A) and CanBeBefore(A). Then no domain of
CanBeBefore and CanBeAfter will ever be empty but we
can detect inconsistency via the empty domain of Valid
variables.

The goal of propagation rules is to remove inconsistent
values from the above described sets – this is called
domain filtering in constraint satisfaction. First, we will
focus on making a transitive closure of the precedence
graph according to Definition 1. Note that the transitive
closure of the precedence graph also simplifies detection
of inconsistency of the graph. The precedence graph is
inconsistent if there is a cycle of valid activities. In a
transitively closed graph, each such cycle can be detected
by finding two valid activities such that A « B and B « A.
Our propagation rules prevent cycles by making invalid
the last undecided activity in each cycle. This propagation
is realised by using an exclusion constraint. As soon as
there is a cycle A « B and B « A detected, the following
exclusion constraint can be posted:

Valid(A) = 0 ∨ Valid(B) = 0.
This constraint ensures that each cycle is broken by

making at least one activity in the cycle invalid. Instead
of posting the constraint directly to the constraint solver,
we propose keeping the set Ex of exclusions. The above
exclusion constraint is modelled as a set {A,B} ∈ Ex.
Now, the propagation of exclusions is realised explicitly –

if activity A becomes valid then all activities C such that
{A,C} ∈ Ex are made invalid (see rule /1/ below).

In addition to precedence constraints, there are also
dependency constraints in the problem. The dependency
A => B can be easily described using the constraint:

(Valid(A) = 1) => (Valid(B) = 1).
Similarly to exclusions, we propose to keep the set

Dep of dependencies instead of posting the above
constraints, and to realise the propagation of
dependencies explicitly. In particular, if activity A
becomes valid then all activities C such that
(A=>C) ∈ Dep are made valid. Reversely, if activity A
becomes invalid then all activities C such that
(C=>A) ∈ Dep are made invalid (see rule /1/ below).

Keeping exclusions and dependencies explicitly has
the advantage of stronger filtering. In particular, if
exclusion {A,B} is to be added to Ex and there is a
dependency (A=>B) ∈ Dep then we can make activity A
invalid because A must be invalid in any solution
satisfying the above exclusion and dependency
constraints (the exclusion is resolved so it can be
removed from Ex). Moreover, if {A,B} is added to Ex
and there is an activity C such that (C=>A) ∈ Dep and
(C=>B) ∈ Dep then we can make activity C invalid.
Again, C must be invalid in any solution satisfying the
above exclusion and dependency constraints.

The above reasoning is realised by the following
propagation rule that is invoked when the validity status
of the activity becomes known. “Valid(A) is instantiated”
is its trigger. The part after is a propagator describing
pruning of domains. “exit” means that the constraint
represented by the propagation rule is entailed so the
propagator is not further invoked (its invocation does not
cause further domain pruning). We will use the same
notation in all rules.

Valid(A) is instantiated /1/
 if Valid(A) = 0 then
 for each C s.t. (C=>A)∈Dep do Valid(C) ← 0
 Ex := Ex \ {{A,X} | X is an activity}
 else // Valid(A)=1
 for each C s.t. (A=>C)∈Dep do Valid(C) ← 1
 for each C s.t. {A,C}∈Ex do Valid(C) ← 0
 for each B∈MustBeBefore(A) s.t. Valid(B)≠0 do
 for each C∈MustBeAfter(A)\MustBeAfter(B)
 s.t. Valid(C)≠0 do
 CanBeAfter(C) ← CanBeAfter(C) \ {B}
 CanBeBefore(B) ← CanBeBefore(B) \ {C}
 if C∉CanBeAfter(B) then // break cycle
 if (C=>B)∈Dep then Valid(C) ← 0
 else if (B=>C)∈Dep then Valid(B) ← 0
 else
 Ex ← Ex ∪ {{B,C}}
 for each X s.t. (X=>B)∈Dep and
 (X=>C)∈Dep do
 Valid(X) ← 0
exit

A
MustBeBefore(A)

MustBeAfter(A)

Unknown(A)

CanBeBefore(A)

CanBeAfter(A)

Note that rule /1/ maintains symmetry of sets
modelling the precedence graph for all valid and
undecided activities because the domains are pruned
symmetrically in pairs. We shall show now, that if the
entire precedence graph is known in advance (no arcs are
added during the solving procedure), then rule /1/ is
sufficient for keeping the transitive closure according to
Definition 1.

Proposition 1: Let A0, A1, … , Am be a path in the
precedence graph such that Valid(Aj)=1 for all 1≤j≤m-1
and Valid(A0)≠0 and Valid(Am)≠0 (that is, the endpoints
of the path are not invalid and all inner points of the path
are valid). Then A0 « Am, that is, A0∉CanBeAfter(Am)
and Am∉CanBeBefore(A0).

Proof: We shall proceed by induction on m. The base
case m=1 is trivially true after initialisation (we assume
that for every arc (X,Y) in the precedence graph X is
removed from CanBeBefore(Y) and Y is removed from
CanBeAfter(X) in the initialisation phase). For the
induction step let us assume that the statement of the
lemma holds for all paths (satisfying the assumptions of
the lemma) of length at most m-1. Let 1 ≤ j ≤m-1 be an
index such that Valid(Aj) ← 1 was set last among all
inner points A1, … , Am-1 on the path. By the induction
hypothesis we get

• A0∉CanBeAfter(Aj) and Aj∉CanBeBefore(A0)
using the path A0, … , Aj

• Aj∉CanBeAfter(Am) and Am∉CanBeBefore(Aj)
using the path Aj, … , Am

We shall distinguish two cases. If
Am∈MustBeAfter(A0) (and by symmetry also
A0∈MustBeBefore(Am)) then by the definition (of the
MustBeBefore sets) we get Am∉CanBeBefore(A0) and
A0∉CanBeAfter(Am) and so the claim is true trivially.
Thus let us in the remainder of the proof assume that
Am∉MustBeAfter(A0).

Now let us show that A0∈CanBeBefore(Aj) must hold,
which in turn (together with A0∉CanBeAfter(Aj))
implies A0∈MustBeBefore(Aj). Let us assume by
contradiction that A0∉CanBeBefore(Aj). However, at the
time when both A0∉CanBeAfter(Aj) and
A0∉CanBeBefore(Aj) became true, that is, when the
second of these conditions was made satisfied by rule /1/,
rule /1/ must have done one the following things

• in case of a dependency constraint between A0
and Aj, make one of these activities invalid

• in case of no dependency between A0 and Aj,
add the pair (A0,Aj) into the set Ex of exclusions.

The latter case moreover implies that at the moment
when Aj is made valid A0 is made invalid and hence both
cases contradict the assumptions of the lemma.

By a symmetric argument we can prove that
Am∈MustBeAfter(Aj). Thus when rule /1/ is triggered by

setting Valid(Aj)←1 both A0∈MustBeBefore(Aj) and
Am∈MustBeAfter(Aj) hold (and Am∉MustBeAfter(A0) is
assumed), and therefore rule /1/ removes Am from the set
CanBeBefore(A0) as well as A0 from the set
CanBeAfter(Am), which finishes the proof.

Q.E.D.

Proposition 2: If implemented properly, the worst-
case time complexity of the propagation rule /1/ including
all possible recursive calls is O(n3), where n is a number
of activities.

Proof: If an activity A is made invalid then it is
necessary to find all the activities it is dependent on. This
can be done in O(n) if the dependency graph as well as its
transposed graph (where edges are reversed) is
represented by adjacency lists, or if it is represented by an
adjacency matrix (one matrix is then sufficient as it is
easy to read out both predecessors and successors of A).
Also the removal of all exclusion pairs that include A can
be done in O(n) if the exclusion pairs are kept in memory
as a symmetric n x n binary matrix. The recursive calls
that make other activities invalid thus take O(n) per
activity and at most n activities can be made invalid, so
the total time for all the recursive calls is O(n2).

If activity A becomes valid then the detection of
dependencies and exclusions (not counting the recursive
calls) can be handled in O(n) as above. The recursive
calls that make activities invalid take O(n) per activity (as
proved above), which gives a total O(n2) for all such
activities. The recursive calls that make activities valid
take O(n2) per activity (as will be proved below), which
gives a total O(n3) for all such activities.

In the two nested loops where new arcs may be added
to the graph up to Θ(n2) pairs B,C may be inspected for
activity A, so this inspection (deciding for which pairs
B,C an arc should be added) can take up to Θ(n2) for each
activity A. This gives the O(n2) bound used above for
each recursive call that makes an activity valid.

It is important to note, that only O(n2) arcs can be
added to the graph during all recursive calls, so the part of
the code inside the two nested loops is executed O(n2)
times over all recursive calls (using this bound
individually for each activity A which is made valid
would yield an overall O(n4) time bound). The part of the
code inside the two nested loops (excluding the recursive
calls) takes O(n) time (because of the for loop, all other
tests can be performed in O(1) time). Thus we get a total
O(n3) bound for all executions of the code inside the two
nested loops (excluding the recursive calls) and a total
O(n2) bound for all recursive calls that make activities
invalid.

Q.E.D.

In some situations arcs may be added to the
precedence graph during the solving procedure, either by
the user, by the scheduler/planner, or by other filtering

algorithms like in [1]. The following rule /2/ updates the
precedence graph to keep transitive closure when an arc is
added to the precedence graph. We can also use the same
rule for the initialisation of precedence graph – the known
arcs are added using this rule rather than added by
explicit changes of sets CanBeBefore and CanBeAfter.
A«B is added /2/
 if A∈MustBeBefore(B) then exit
 CanBeAfter(B) ← CanBeAfter(B) \ {A}
 CanBeBefore(A) ← CanBeBefore(A) \ {B}
 if A∉CanBeBefore(B) then // break the cycle
 if (A=>B)∈Dep then Valid(A) ← 0
 else if (B=>A)∈Dep then Valid(B) ← 0
 else
 Ex ← Ex ∪ {{A,B}}
 for each X s.t. (X=>A)∈Dep and
 (X=>B)∈Dep do
 Valid(X) ← 0
 else // transitive closure
 for each C∈MustBeBefore(A)\MustBeBefore(B) do
 if Valid(A)=1 or
 (C=>A)∈Dep or (B=>A)∈Dep then
 add C«B
 for each C∈MustBeAfter(B)\MustBeAfter(A) do
 if Valid(B)=1 or
 (C=>B)∈Dep or (A=>B)∈Dep then
 add A«C
exit

The rule /2/ does the following. If a new arc A«B is
added then we first check whether the arc is not already
present in the graph. If it is a new arc then the
corresponding sets are updated and a possible cycle is
detected (we use the same reasoning as in rule /1/).
Finally, if any end point of the arcs is valid, then
necessary arcs are added to update the transitive closure
according to Definition 1. Moreover, we can add more
arcs using information about dependencies – this is useful
for earlier detection of possible cycles. Assume that arc
A«B has been added. If (B=>A) ∈ Dep then all
predecessors of A can be connected to B like in the case
when A is valid. This is sound because if B becomes
valid then A must be valid as well and such arcs will be
added anyway and if B becomes invalid then any arc
related to B is irrelevant. For the same reason, if there is
any predecessor C of A such that (C=>A) ∈ Dep then C
can be connected to B. The same reasoning can be
applied to successors of B. Note that the propagators for
new arcs are evoked after the propagator of the current
rule finishes. The following proposition shows that all
necessary arcs are added by rule /2/.

Proposition 3: If the precedence graph G is
transitively closed (in the sense specified by Definition 1)
and arc A « B is added to G then rule /2/ updates the
precedence graph G to be transitively closed again.

Proof: Assume that arc A « B is added into G at a
moment when arc B « C is already present in G.
Moreover assume that Valid(A)≠0, Valid(B)=1, and

Valid(C)≠0. We want to show that A « C is in G after rule
/2/ is fired by the addition of A « B. The presence of arc
B « C implies that C∈MustBeAfter(B) (and by symmetry
also B∈MustBeBefore(C)). Now there are two
possibilities. Either C∉MustBeAfter(A) in which case
rule /2/ adds the arc A « C into G, or C∈MustBeAfter(A)
(and by symmetry A∈MustBeBefore(C)) which means
that arc A « C was already present in G when arc A « B
was added.

The case when arc A « B is added into G at a moment
when arc C « A is already present in G and Valid(C)≠0,
Valid(A)=1, Valid(B)≠0 holds can be handled similarly.

Thus when an arc is added into G, all paths of length
two with a valid midpoint which include this new arc are
either already spanned by a transitive arc, or the transitive
arc is added by rule /2/. In the latter case this may invoke
adding more and more arcs. However, this process is
obviously finite (cannot cycle) as an arc is added into G
only if it is not present in G, and no arc is ever removed
from G. More on the time complexity of arc additions
follows in Proposition 4.

Therefore, it is easy to see, that when the process of
recursive arc additions terminates, the graph G is
transitively closed. Indeed, for every path of length two in
G with a valid midpoint one of the arcs on the path is
added later than the other, and we have already seen that
at a moment of such an addition the transitive arc is either
already in G or is added by rule /2/ in the next step.

Q.E.D.

Proposition 4: The worst-case time complexity of the
propagation rule /2/ (adding a new arc) including all
recursive calls to rules /1/ and /2/ is O(n3), where n is a
number of activities.

Proof: Every recursive call to rule /1/ is making some
activity invalid, so following the arguments from the
proof of Proposition 2, we get that the total time needed
to process all such calls is O(n2). The rest of the code,
excluding the recursive calls to itself (to rule /2/), can be
executed in O(n) time. To see this it is enough to realize
that each test for dependency or exclusion can be handled
in O(1) time (if the dependency graph and exclusion pairs
are stored using a matrix representation as in the proof of
Proposition 2) and therefore each of the three “for each”
loops can be handled in O(n) time. Because only O(n2)
arcs can be added over all recursive calls the total O(n3)
time bound follows.

Q.E.D.

4. Objective-based filtering rule

As we mentioned in the introduction, a typical
objective in problems with optional activities is a
maximization of the number of valid activities. Such
objective can be converted into the following constraint:

Obj = ΣA Valid(A)
where the task is to maximize the value of variable Obj.
This constraint can be realized as it stands, that is, as the
sum of variables Valid. In this section, we will present a
filtering rule realizing stronger propagation through this
constraint. Namely, the rule can deduce better bounds for
variable Obj and the rule can also deduce values of some
not-yet decided Valid variables.

The proposed filtering rule is based on ideas of
constructive disjunction. If activity A is still undecided,
we will explore both alternatives, namely Valid(A) = 1
and Valid(A) = 0, to find out their influence on variable
Obj and vice versa. Recall, that variables Valid participate
in dependency and exclusion constraints and these
constraints are explicitly available via sets Dep and Ex.
We will use these constraints to estimate bounds of
variable Obj. In particular, if activity A becomes valid
(Valid(A) = 1) then all undecided activities B such that
(A=>B) ∈ Dep must also become valid and, similarly, all
undecided activities C such that {A,C} ∈ Ex must
become invalid. Symmetrically, if activity A becomes
invalid (Valid(A) = 0) then all undecided activities B such
that (B=>A) ∈ Dep must also become invalid. Using this
deduction and taking into account the numbers of known
valid and invalid activities we can estimate bounds for
variable Obj. These computed bounds are then used to
define better bounds for Obj and vice versa, by
comparing the computed bounds with the current bounds
of Obj, we can deduce that one of the alternatives is not
viable and hence the remaining alternative is forced
(unless, both alternatives are not viable and then a failure
is detected). For example, if the computed lower bound of
Obj for Valid(A) = 1 is greater than the current upper
bound of Obj then it is not possible to assign value 1 to
Valid(A).

The following filtering rule /3/ realises the above
described reasoning (N is a number of activities there).
Note, that the filtering rule is not idempotent, that is, the
rule is expected to be called again if it proposes a change
to any Valid variable or a change to Obj variable. An
idempotent version of the rule would be possible but then
the rule should integrate propagation rule /1/ and the code
would become more complicated (while the pruning
power would be the same).

It may seem that the filtering power of rule /3/ can be
further strengthen by the following deduction.
Irrespectively of assigning 0 or 1 to Valid(A), the
activities from the set { C : Valid(C)={0,1} ∧ {A,C}∈Ex
∧ (A=>C)∈Dep } must become invalid and hence their
Valid variables can be set to 0. This is surely true but
notice that exclusion {X,Y} is added to set Ex by rules /1/
and /2/ only if neither (X=>Y) nor (Y=>X) are elements
of Dep. If this is ensured for any exclusion {X,Y} then
the above mentioned set will always be empty and hence
the deduction based on this set is useless.

bounds of Obj changed or
any Valid(X) instantiated /3/
 NumValid ← |{X : Valid(X)=1}|
 NumInvalid ← |{X : Valid(X)=0}|
 MinObj ← lb(Obj) // current lower bound
 MaxObj ← ub(Obj) // current upper bound
 LB ← max(MinObj, NumValid)
 UB ← min(MaxObj, N – NumInvalid)
 for each A s.t. Valid(A)={0,1} do
 ValidLB ← 1+ NumValid +
 |{C : Valid(C)={0,1} ∧ (A=>C)∈Dep }|
 ValidUB ← N – NumInvalid –
 |{C : Valid(C)={0,1} ∧ {A,C}∈Ex }|
 InvalidLB ← NumValid
 InvalidUB ← N – 1 - NumInvalid –
 |{C : (C=>A)∈Dep }|
 if ValidLB ≤ MaxObj & ValidUB ≥ MinObj then
 if InvalidLB ≤ MaxObj & InvalidUB ≥ MinObj
 then
 LB ← max(LB, min(ValidLB,InvalidLB))
 UB ← min(UB, max(ValidUB,InvalidUB))
 else
 Valid(A) ← 1
 LB ← max(LB, ValidLB)
 UB ← min(UB, ValidUB))
 else
 if InvalidLB ≤ MaxObj & InvalidUB ≥ MinObj
 then
 Valid(A) ← 0
 LB ← max(LB, InvalidLB)
 UB ← min(UB, InvalidUB))
 else fail
 end for
 lb(Obj) ← LB
 ub(Obj) ← UB
 if NumValid + NumInvalid = N then exit

5. Experimental results

To evaluate the practical applicability of the proposed
filtering rules, we did some preliminary experiments with
log-based reconciliation problems and min-cutset
problems. The proposed filtering rules were implemented
in SICStus Prolog 3.12.3 using the standard interface for
the definition of global constraints. The experiments run
under Windows XP Professional on 1.1 GHz Pentium-M
processor with 1280 MB RAM.

5.1. Log-based reconciliation problems

Though our original motivation to introduce
dependency constraints into a precedence graph is in
scheduling, log-based reconciliation problems fit
perfectly our problem specification where precedence and
dependency constraints are combined. We took the
problem set from [3] and we compared our approach with
the constraint model proposed in [2]. Unfortunately
implementation of the cutset global constraint proposed in
[3] was not available to us so we have no direct

comparison of runtimes yet. Nevertheless, for two
problems, where neither approach found (proved) an
optimal solution, our technique improved significantly the
lower bound of the objective function. Table 1 presents
the results for the CLP model (Original) from [2] and our
approach (Precedence). We compare both runtime (RT –
measured in milliseconds) and the number of backtracks
(BT) to find an optimal solution. We used a limit of 50
minutes to cut the search and we report the best solution
found within this time limit (recall that the task is to
maximize the number of valid activities).

Table 1. Log-based reconciliation benchmarks from [3].

Original Precedence Bench
Best RT BT Best RT BT

r100v1 98 141 16 98 438 1
r100v2 77 250 85 77 125 3
r100v3 95 156 49 95 313 7
r100v4 100 31 1 100 360 1
r100v5 52 16 3 52 62 5
r200v1 65 63 13 65 78 5
r200v2 191 74657 8015 191 3313 42
r500v1 198 219 3 198 407 5
r500v2 498 1265 32 498 2547 2
r800v1 770 - - 780 - -
r800v2 318 3828 327 318 984 10
r1000v1 389 672 3 389 1266 5
r1000v2 935 - - 957 - -

We have found most of the problems quite easy;

frequently the first found solution was the optimal
solution. The runtime of our approach for these problems
is slightly longer than in the original model; this is due to
overhead for building more complex data structures.
Nevertheless, the table clearly demonstrates that our
approach requires significantly less backtracks to find the
solution so the filtering power of the proposed
propagation rules pays off there. The table also
demonstrates that as soon as the problems are becoming
harder, the difference between our approach and the
original model is more significant (see problems r200v2
and r800v2). For two problems, r800v1 and r1000v2,
neither approach was able to find/prove an optimal
solution within the fifty minutes limit. Nevertheless, our
propagation rules lead to much better lower bound. The
lower bounds for these problems reported in [3] are 771
for r800v1 and 943 for r1000v2, so we also improved the
best lower bounds reported there.

To support the above claim that our approach is
prevailing over the original model for harder problems,
we did a second set of experiments using pseudo-real log-
based reconciliation problems proposed in [5]. These

problems have a structure typical for real-life problems so
the results are more interesting from the practical point
than using completely random problems. Table 2 shows
the specification of problems used in our experiment –
this specification is identical to problems used in [5],
though we generated own problems because the problems
from [5] were not available. The table also shows the best
solutions obtained in our experiments.

Table 2. Pseudo-real log-based reconciliation problems.

Bench Act Prec Dep Original
best

Precedence
best

p50-3 150 162 175 146 146
p50-4 200 229 211 193 193
p50-5 250 290 346 244 244
p50-6 300 375 377 288 290
p50-7 350 451 468 333 333
p50-8 400 527 593 376 378
p50-9 450 630 680 404 406

We again compared the CLP model proposed in [2]

with our filtering rules. We used the time limit of four
hours (14 400 000 milliseconds) to cut search, Table 2
reports the best solution found within this time limit.
Starting with p50-6, the original model was not able to
find/prove the optimal solution within the time limit while
our technique found and proved optimal solutions for all
the problems. Figure 2 shows the comparison of runtimes
and the number of backtracks for both approaches (we
use a logarithmic scale). Our approach requires more than
an order of magnitude less backtracks to find the solution
and it also requires much less time.

1000

10000

100000

1000000

10000000

100000000

100 150 200 250 300 350 400 450 500
Number of activities

R
un

tim
e

(m
s)

Original
Precedence

10

100

1000

10000

100000

1000000

100 150 200 250 300 350 400 450 500

Number of activities

B
ac

kt
ra

ck
s

Original
Precedence

Figure 2. Computation results on pseudo-real log-based
reconciliation problems

5.2. Min-cutset problems

We believe that using a precedence graph is better than
using absolute positioning in a sequence for modelling
problems with precedence relations. Though our approach
is proposed for problems with both precedence and
dependency constraints, we also demonstrate superiority
of the precedence graph over absolute positioning on a
well known min-cutset problem. The min-cutset problem
consists of precedence relations only and the task is to
find the largest set of vertices such that the sub-graph
induced by these vertices does not contain any cycle (or
symmetrically to find the smallest set of vertices such that
all cycles are broken if these vertices are removed from
the graph). This problem is known to be NP-hard [4].

We use the data set from [7] to compare our approach
based on the precedence graph with the CLP model from
[2] based on absolute positioning in the sequence of
activities. All the problems in the data set consist of 50
activities while the number of precedence constraints
varies. Figure 3 shows the comparison of runtimes and
the number of backtracks for both approaches (we use a
logarithmic scale). Again our approach requires more
than an order of magnitude less backtracks and less
runtime to find the optimal solution. In fact, with the
exception of problems with 50 and 100 precedence
constraints, the original CLP model was not able to find
the optimal solution (or to prove optimality) within the
time limit of 50 minutes while our approach (Precedence)
found and proved optimal solutions. Note finally, that
concerning the runtime we cannot compete with the
GRASP heuristic proposed in [7], but this was not our
original ambition as we tackle different problems.
Moreover, opposite to the GRASP approach our
technique is complete and, indeed, for some problems we
have found better solutions than reported in [7].

6. Conclusions

In the paper we proposed new incremental filtering
rules integrating reasoning on precedence and
dependency constraints in the context of constraint
satisfaction. We experimentally demonstrated that our
approach is prevailing over the existing model on log-
based reconciliation problems and min-cutset problems.
Though we focused on a particular form of dependencies,
we believe that our approach is extendable to other
dependency constraints, for example, those in [6] where
existence of some activity forces removal of another
activity etc. Moreover, with the exception of cost-based
filtering, our model can be extended to open precedence
graphs where the number of activities is not known in
advance and new activities are added to the precedence
graph as the solving proceeds.

100

1000

10000

100000

1000000

10000000

0 200 400 600 800 1000
Number of precedences

R
un

tim
e

(m
s)

Original
Precedence

10

100

1000

10000

100000

1000000

10000000

0 200 400 600 800 1000

Number of precedences

B
ac

kt
ra

ck
s

Original
Precedence

Figure 3. Computation results on min-cutset problems

7. Acknowledgements

The research is supported by the Czech Science
Foundation under the contract no. 201/04/1102.

8. References

[1] R.Barták, “Incremental Propagation of Time Windows
on Disjunctive Resources”, Proceedings of the Nineteenth
International Florida Artificial Intelligence Research
Society Conference, AAAI Press, 2006, pp. 25-30.
[2] F. Fages, “CLP versus LS on log-based reconciliation
problems for nomadic applications”, ERCIM
CompulogNet Workshop on Constraints, Praha, 2001.
[3] F. Fages, A. Lal, “A Global Constraint for Cutset
Problems”, Proceedings of Fifth International Workshop
on Integration of AI and OR techniques in constraint
programming for combinatorial optimization problems
(CPAIOR’03), Montreal, 2003.
[4] M. R. Garey, D. S. Johnson, Computers and
Intractability: A Guide to the Theory of NP-
Completeness. Freeman & Comp., San Francisco, 1979.
[5] Y. Hamadi, “Cycle-cut decomposition and log-based
reconciliation”, ICAPS Workshop on Connecting
Planning Theory with Practice, Whistler, 2004, pp. 30-35
[6] W. Nuijten, T. Bousonville, F. Focacci, D. Godard, C.
Le Pape, “MaScLib: Problem description and test bed
design”, 2003. http://www2.ilog.com/masclib
[7] P.M. Pardalos, T. Qian, M.G. Resende, “A greedy
randomized adaptive search procedure for the feedback
vertex set problem” Journal of Combinatorial
Optimization, 2:399-412, 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B10020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B903C703B503B903C103B703BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020039C03C003BF03C103B503AF03C403B5002003BD03B1002003B103BD03BF03AF03BE03B503C403B5002003C403B1002003AD03B303B303C103B103C603B10020005000440046002003BC03AD03C303C9002003C403BF03C50020004100630072006F006200610074002003BA03B103B9002000520065006100640065007200200035002C0030002003BA03B103B9002003BC03B503C403B103B303B503BD03AD03C303C403B503C103C903BD002003B503BA03B403CC03C303B503C903BD002E>
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406360648062706280637002006440625064606340627062100200648062B06270626064200200050004400460020064506440627062606450629002006440644063906310636002006480627064406370628062706390629002006270644064506460627063306280629002006440648062B062706260642002006270644063906450644002E00200645064600200627064406450645064306460020062306460020064A062A064500200641062A062D00200648062B06270626064200200050004400460020064506390020004100630072006F0062006100740020064800520065006100640065007200200035002E003000200648062706440623062D062F062B002E>
 /HUN <FEFF0045007A0065006B006B0065006C0020006100200062006500E1006C006C00ED007400E10073006F006B006B0061006C00200068006F007A0068006100740020006C00E9007400720065002000610020006800690076006100740061006C006F007300200064006F006B0075006D0065006E00740075006D006F006B0020006D00650067006200ED007A00680061007400F30020006D0065006700740065006B0069006E007400E9007300E900720065002000E900730020006E0079006F006D00740061007400E1007300E10072006100200061006C006B0061006C006D00610073002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00610074002E00200041002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061002000520065006100640065007200200035002E0030002C00200069006C006C00650074007600650020006B00E9007301510062006200690020007600650072007A006900F3006900760061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /POL <FEFF0055017C0079006A0020007400790063006800200075007300740061007700690065014400200064006F002000740077006F0072007A0065006E0069006100200064006F006B0075006D0065006E007400F3007700200050004400460020007A0061007000650077006E00690061006A010500630079006300680020006E00690065007A00610077006F0064006E0065002000770079015B0077006900650074006C0061006E00690065002000690020006400720075006B006F00770061006E0069006500200064006F006B0075006D0065006E007400F300770020006600690072006D006F0077007900630068002E00200044006F006B0075006D0065006E0074007900200050004400460020006D006F0067010500200062007901070020006F007400770069006500720061006E00650020007A006100200070006F006D006F00630105002000700072006F006700720061006D00F300770020004100630072006F0062006100740020006F00720061007A002000520065006100640065007200200035002E00300020006C007500620020006E006F00770073007A007900630068002E>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043F043004400430043C043504420440044B00200434043B044F00200441043E043704340430043D0438044F0020005000440046002D0434043E043A0443043C0435043D0442043E0432002C0020043E043104350441043F04350447043804320430044E04490438044500200433043004400430043D044204380440043E04320430043D043D044B04390020043F0440043E0441043C043E04420440002004380020043F0435044704300442044C002004340435043B043E0432044B044500200434043E043A0443043C0435043D0442043E0432002E0020005000440046002D0434043E043A0443043C0435043D0442044B0020043E0442043A0440044B04320430044E04420441044F002004320020043F04400438043B043E04360435043D0438044F04450020004100630072006F00620061007400200438002000520065006100640065007200200035002E003000200028043800200431043E043B043504350020043F043E04370434043D04380445002004320435044004410438044F04450029002E>
 /TUR <FEFF005400690063006100720069002000620065006C00670065006C006500720069006E0020006700FC00760065006E0069006C0069007200200062006900720020015F0065006B0069006C006400650020006700F6007200FC006E007400FC006C0065006E006D006500730069002000760065002000790061007A0064013100720131006C006D006100730131006E006100200075007900670075006E0020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E002000500044004600200064006F007300790061006C0061007201310020004100630072006F006200610074002000520065006100640065007200200035002E003000200076006500200073006F006E00720061007301310020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /HEB (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /CZE <FEFF0049004500450045002000580050006c006f0072006500200066006f0072006d00610074>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

