
On Generators of Random Quasigroup Problems

Roman Barták*

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 2/25, Prague, Czech Republic

roman.bartak@mff.cuni.cz

Abstract. Random problems are a good source of test suites for comparing
quality of constraint satisfaction techniques. Quasigroup problems are represen-
tatives of structured random problems that are closer to real-life problems and
hence might be more suitable for benchmarking. In this paper, we describe in
detail generators for Quasigroup Completion Problem (QCP) and Quasigroups
with Holes (QWH). In particular, we study an improvement of the generator for
QCP that produces a larger number of satisfiable problems by using propaga-
tion through the all-different constraint. We also re-formulate the algorithm for
generating QWH that is much faster than the original generator. Last but not
least, we provide an experimental comparison of all presented generators.

1 Introduction

Generators of random problems are a useful source of problem instances for testing
constraint satisfaction algorithms. Writing generators for some types of problems, like
Random CSP [11], is not a complicated task but it could be more complicated for
other types of problems, typically for structured problems like quasigroup problems.
This paper gives all necessary information for researchers that would like to use qua-
sigroup problems as benchmarks.

The quasigroup problems have been first proposed as a benchmark domain for
constraint satisfaction algorithms in [6]. The basic idea is to find a completion of a
partial Latin square representing the multiplication table of a quasigroup. Hence, they
called the problem a Quasigroup Completion Problem (QCP). The generator for a
QCP should produce a partial Latin square that can be completed to a full Latin
square. However, the generator proposed in [6], which fills random values in ran-
domly selected cells of the table, falls short on this task especially when more values
should be filled in. Gomez and Selman observed a behavior of the generator similar
to phase transition with satisfiable instances on one side, unsatisfiable instances on
the other side, and hard instances in between. Shaw et al. [14] proposed an improve-
ment of this generator based on propagation through the all-different constraint [13].
Their algorithm generates a larger number of satisfiable instances that can be used for
testing solvers. It preserves the phase transition behavior but it generates satisfiable
instances on both sides and it makes the phase transition crispier.

* Supported by projects 1M0021620808 and MSM0021620838 of the MŠMT.

The difficulty of QCP generators is that they do not guarantee production of satis-
fiable instances only. This complicates usage of such generators for testing incom-
plete solving algorithms because when the solving algorithm did not find a solution, it
is not clear whether no solution exists or the algorithm is not able to find it. In the
first case (no solution exists) the algorithm can be “glorified” for doing a good job, in
the second case, the algorithm can be blamed for being incomplete. Therefore another
benchmark domain based on quasigroups has been proposed in [1] that guarantees
generation of satisfiable instances. This benchmark domain uses the same idea as a
QCP, that is completing a partially filled Latin square, but it differs in how the in-
complete Latin square is obtained. The idea is to punch holes into a randomly gener-
ated complete Latin square so the obtained partial Latin square can surely be com-
pleted. Hence, this benchmark domain is called Quasigroups With Holes (QWH).
Unfortunately, the authors of QWH did not provide all the details on generating
QWH problems. It is a pity because generating randomly distributed QWH problems
is a non-trivial task based on strong theoretical results presented in [9].

The contribution of this paper is threefold. First, we will give all the details on al-
gorithms for generating random instances of QCP and QWH problems so the inter-
ested reader will be able to write his or her own generator based on the presented
algorithms. Second, we will propose a reformulated algorithm for generating QWH
problems that is significantly faster then the original algorithm from [9]. Last but not
least, we will present an empirical comparison of all presented generators so the read-
ers can select one that suits best their needs.

The paper is structured as follows. In the next section, we will introduce the termi-
nology on quasigroups and Latin squares. In Section 3, we will describe the Qua-
sigroup Completion Problem (QCP) and its relevance to real-world problems and we
will discuss two generators of QCP. In Section 4, the ideas behind Quasigroups With
Holes (QWH) will be explained, the original QWH generator will be presented in
details, and the reformulated generator will be introduced. The paper is concluded by
an experimental evaluation of the generators where we will compare quality and time
efficiency of the generators.

2 Quasigroups and Latin Squares

A quasigroup is an ordered pair (Q, •), where Q is a set and • is a binary operation on
Q such that the equations a•x=b and y•a=b are uniquely solvable for every pair of
elements a, b in Q. The cardinality of the set Q is called an order of the quasigroup.
Let N be the order of the quasigroup Q then the multiplication table Q is a table of
size N×N such that the cell at the coordinates (x,y) contains the result of the operation
x•y (for simplicity reasons we expect Q to be a totally ordered discrete set and so the
rows and columns of the multiplication table can be indexed by the elements of Q).
The multiplication table of the quasigroup must satisfy a property that in each row of
the table, each element of the set Q occurs exactly once, and similarly in each column
of the table, each element of Q occurs exactly once (see Figure 1A). Thus, the multi-
plication table defines a Latin square.

We say that a Latin square of order N is partial or incomplete if the table of size
N×N is partially filled in such a way that no symbol occurs twice in a row or in a
column (see Figure 1B). If the table is filled completely then we are speaking about a
complete Latin square. Note that it is easy to generate a complete Latin square of any
order. First, we take some permutation of the elements in Q. Second, we fill the first
row of the table with this permutation. Third, in each subsequent row, we shift the
permutation one element to the right and the superfluous element on the right is filled
in the first cell of the row (see Figure 1C). However, this method does not produce
every Latin square. In fact, generating any Latin square of a given order with a uni-
form probability is a non-trivial task [9].

Fig. 1. A Latin square (A), a partial Latin square (B), and a simple process of generating a
complete Latin square (C)

The problem of finding a complete Latin square can be stated as a constraint satisfac-
tion problem in the following way. Assume, that the cells of a Latin square of order N
are denoted by the variables with the domain {1,…,N}. Then the property of the
Latin square can be described by a set of binary inequality constraints posted between
every pair of variables that are either in the same row or in the same column. The
constraint network for this CSP has N2 nodes representing the variables and N2(N-1)
edges representing the binary constraints. The network is highly structured – there are
2N interconnected clusters of size N (each cluster connects the variables from a single
row or a single column). Moreover, there exists a path of maximal length two be-
tween any two nodes so the constraint network has a so called small world topology.
Nowadays the binary inequality constraints in each row and column can be encapsu-
lated into an all-different constraint which achieves stronger pruning and makes the
problem easier to solve (but still cannot solve the problem of any order [5,8]).

3 Quasigroup Completion Problem

As we showed in the previous section, a Latin square can be modeled as a CSP so it
can serve as a benchmark domain for constraint satisfaction algorithms. We also
sketched a simple algorithm to find a complete Latin square so such a benchmark is
not very challenging. Assume now, that some cells in the Latin square are pre-filled,
we have a partial Latin square, and the task is to determine whether the empty cells
can be filled in such a way that we obtain a complete Latin square. Gomez and Sel-
man [6] proposed this new benchmark based on completing partial Latin squares and
they called it a Quasigroup Completion Problem (QCP). The problem is parameter-

4 1 3 2
3 1 4 2

4 1 2 3
2 1 4 3

4 2
 1 2

 1 3
2 4

A B C

1 2 3 4

1 2 3 4
1 2 3 4

1 2 3 4

ized by the order of a Latin square and by the number of filled cells. Formally, the
Quasigroup Completion Problem is described by a pair 〈N,p〉, where N is an order of
the Latin square to be completed and p is a filling ratio, that is the ratio between the
number of pre-filled cells and the total number of cells (N2).

Pre-assigning some values to variables modeling the Latin square introduces per-
turbations into the structure of constraint network which makes the structure similar
to that found in real-world domains like scheduling and experimental design [8]. A
particular real-life problem that maps directly to the above mentioned problem of
completing a partially filled Latin square is the problem of assigning wavelengths to
routes in fiber-optic networks [10]. Note also that the Quasigroup Completion Prob-
lem is known to be an NP-complete problem [4]. Not surprisingly, the straightfor-
ward constraint model with the all-different constraints cannot be used alone to solve
instances of higher order (34 and more) [8] and more sophisticated techniques like
hybrid algorithms [8] or dual models with special value selection heuristics [5] are
necessary. This makes the problem non-trivial and hence interesting as a benchmark
for comparing constraint satisfaction techniques. This benchmark bridges the gap
between the purely random problems like a Random CSP and the highly structured
problems.

The question now is how to generate random instances of QCP, in particular how
to select the cells to be pre-filled for a given QCP 〈N,p〉. One possible model could be
selecting the cell to be filled with the probability p. Let us call it a model A similarly
to the classification used for Random CSPs [11]. Another possibility is to select ex-
actly ⎣pN2⎦ cells to be filled, where ⎣X⎦ means the closest (to X) integer between X
and 0. Let us call it a model B. In this paper we will study the model B, where the
cells to be filled are selected randomly and uniformly. We use a random generator
that selects uniformly and randomly ⎣pN2⎦ different elements from the set {0,…,N2-
1}. Each such element z represents a position in the Latin square of order N that can
be described by the coordinates 〈1+⎣z/N⎦, 1+(z mod N)〉 (Figure 2).

Fig. 2. A linear encoding of the positions of cells in a Latin square of order 4

The second open question is how to select a value to be filled in a given cell. The
basic requirement is that the values in cells in each row and in each column must be
different. So, when selecting a value for the cell in the position 〈x,y〉, this value must
be different from the values already filled in the cells of the row x and in the cells of
the column y. We propose the following simple technique based on constraint propa-
gation through binary inequalities. Latin square is modeled as a CSP as described in
the previous section using binary inequalities between the variables of the same row
and of the same column. For a cell to be filled (the cell selection process is described
in the previous paragraph), we select randomly a value from the current domain of

0 1 2 3
74 5 6

10 118 9
13 14 1512

respective variable. Then the problem is made arc consistent which means that the
value is removed from the variables of the same row and of the same column. Conse-
quently, when selecting a value for the next cell, the domain contains only the values
that are different from already filled values in the same row and in the same column.
This technique mimics the behavior of the original generator from [6]. It ensures that
only valid Latin squares are generated, that is no symbol occurs twice in a row or in a
column. However, because of incompleteness of constraint propagation we cannot
guarantee that a “completable” Latin square is found. Figure 3 shows a situation
where a bad initial value selection causes impossibility to fill another cell. Note that
any generator attempting to generate values one by one suffers from this problem.

Fig. 3. The problem of simple QCP generators. If value 1 is selected for the top left cell then no
complete Latin square exists.

When looking at Figure 3 we can see that if value 4 is selected for the top left cell
then the above problem does not occur. Therefore, it might be useful to enhance the
generator by allowing a shallow backtracking that can try another (randomly se-
lected) value after an immediate failure. This process is repeated until a value is
found or all values were tried. It is still possible that no value for the variable is found
so this technique does not guarantee finding a valid Latin square but the hope is that it
increases chances to find one. Unfortunately, our preliminary experiments showed
that this technique does not increase the number of generated valid instances (on
average). Note that the generator should produce the random problems fast so its
complexity should not be exponential. Therefore, we cannot use full backtracking
(probably incomplete search might be used but we did not try it yet).

Another option how to improve chances of finding a value for the variable is stren-
gthening constraint propagation to remove more inconsistent values from the do-
mains. As we already mentioned, there is a natural way how to strengthen propaga-
tion in the constraint model for Latin squares – using the all-different constraint by
Régin. This approach has already been proposed in [14] – we will present a detail
experimental comparison of both generators later in the paper. It will show that the
all-different generator produces a higher number of satisfiable instances.

4 Quasigroups With Holes

As we already mentioned, the main problem of QCP is that the generators cannot
guarantee production of satisfiable benchmark instances which could cause problems
when evaluating incomplete solving techniques. In the previous section we described
a method that increases the number of satisfiable instances via strengthening con-

1,4 1,3

2,31,2

straint propagation, but this method still does not guarantee satisfiability (see the next
section for experimental justification of these claims). It would be possible to accom-
pany the proposed generator by an algorithm that filters the unsatisfiable instances.
Still, the problem is that for some parameters the generator does not produce a valid
instance and hence no satisfiable instance is available for evaluation. This happens
typically in the area where the hardest problems settle (see the section on experi-
ments) so it would be beneficial if the generator produces satisfiable instances di-
rectly. Surprisingly, it is often difficult to develop a direct generator of satisfiable
instances. The problem with such generators is that they should not be biased in the
sense that the generator should produce any satisfiable instance with a uniform distri-
bution. Therefore, the simple generator of complete Latin squares described in the
second section is not appropriate because it produces Latin squares with a specific
structure only (and hence, completing such Latin squares is not a difficult task).

The paper [1] proposes a direct generator for satisfiable quasigroup problems. The
idea is to generate a complete Latin square to which a fraction of holes is punched.
The resulting incomplete Latin square is then guaranteed to be satisfiable. This prob-
lem is called Quasigroups With Holes (QWH). However, the problem of generating
uniformly distributed Latin squares is non-trivial. Actually, the generator is not de-
scribed in [1] and the reader is referred to the paper [9] which describes the method
and gives a theoretical justification. In the next paragraphs, we will survey the
method from [9], we will present the QWH generator based directly on this method,
and then we will reformulate the generator to work directly with the Latin squares.

4.1 Original Generator

Jacobson and Matthews [9] proposed a method for generating uniformly distributed
random Latin squares by randomly traversing a graph, where nodes correspond to
Latin squares and edges describe transformations between the Latin squares. They
proved that the diameter of the graph is 4(N-1)2, where N is the order of the Latin
square. It means that the minimal distance between two Latin squares is no greater
than 4(N-1)2 so it is possible to obtain any Latin square from a given Latin square in
4(N-1)2 moves. The QWH generator can be conceived as follows. We start with a
random Latin square generated for example by the method described in Figure 1C.
After performing 4(N-1)2 random moves we should obtain any Latin square with
uniform probability. The open question is how to perform a move, that is, how to
transform one Latin square into another Latin square. We will answer this question in
the following paragraphs.

To simplify description of moves, Jacobson and Matthews proposed to extend the
graph by nodes describing so called improper Latin squares where the condition of a
Latin square is violated a “little” (see below). Then the diameter of the new graph
and hence the minimal distance between any two (proper or improper) nodes is
bounded by 2(N-1)3 (for a formal proof see [9]). They represent the Latin square of
order N by a contingency table f of size N×N×N that contains {0,1} values only. The
condition on a Latin square (in each row and in each column, each element appears
exactly once) is then equivalent to the formulas:

Basically, x and y describe the coordinates of the cell and z describes the element in
the cell (x,y) if f(x,y,z)=1. So formula (a) says that exactly one element is filled to the
cell (x,y), formula (b) says that the element z appears exactly once in the row x, and
formula (c) says that the element z appears exactly once in the column y. We call a
Latin square with the above (proper) contingency table a proper Latin square. An
improper Latin square is defined by the (improper) contingency table satisfying the
conditions (a)-(c) but allowing exactly one element of the contingency table to con-
tain value -1.

Now, it is easier to formulate the moves as operations over (proper and improper)
contingency tables. Assume that we start with a proper contingency table. We select
randomly a cell of f such that f(x,y,z) = 0 and we will try to increase this value by one
which is equivalent to assigning the value z to the cell (x,y). Each line in f containing
the cell (x,y,z) must hold a cell filled by one according to (a)-(c). Let x’, y’, and z’ be
the indexes of these lines. These coordinates define a sub-cube in the contingency
table with nodes at (x,y,z), (x,y,z’), (x,y’,z), (x’,y,z), (x’,y,z’), (x’,y’,z), (x,y’,z’), and
(x’,y’,z’) (see Figure 4). If we increase the value in f(x,y,z) by one then we need to
decrease the values in f(x,y,z’), f(x,y’,z), f(x’,y,z) by one to keep the conditions (a)-(c)
valid. Next, the values in f(x’,y’,z), f(x,y’,z’), f(x’,y,z’) must be increased by one and
finally the value in f(x’,y’,z’) must be decreased by one. If all these operations are
performed then visibly the conditions (a)-(c) hold again. However, it may happen that
the value in f(x’,y’,z’) will become -1, in the case that f(x’,y’,z’)=0, but this will be the
only cell with a negative value (see Figure 4).

Fig. 4. A plus/minus one move in the proper (left) and improper (right) contingency table.

Notice that if we start with a cell such that f(x,y,z) = -1 (the contingency table is im-
proper) then we can perform the same set of operations as above and again we will
obtain either a proper or improper contingency table (Figure 4 right). Hence the
above described mechanism specifies moves between proper and improper contin-
gency tables. Jacobson and Matthews showed that on average after N such moves we
will obtain a proper contingency table describing a Latin square of order N. Figure 5
shows the algorithm for a single move. By using information about the diameter of

{ } ()
{ }

()

{ } ()
{ }

()

{ } ()
{ }

()czyxfNzy

bzyxfNzx

azyxfNyx

Nx

Ny

Nz

1,,,...,1,

1,,,...,1,

1,,,...,1,

,...,1

,...,1

,...,1

=∈∀

=∈∀

=∈∀

∑

∑

∑

∈

∈

∈

x x’

y

y’

z

z’

0+1 1-1

1-1 0+1

1-1

0+1

0+1

?-1

x x’

y

y’

z

z’

-1+1 1-1

1-1 0+1

1-1

0+1

0+1

?-1

graph with nodes marked by Latin squares (see above) we propose to do at least
2(N-1)3 such moves and then stop when a proper contingency table is obtained.

move
 find x,y,z s.t.
 if f is improper then f(x,y,z)=-1
 if f is proper then f(x,y,z)=0
 find x’,y’,z’ s.t. f(x’,y,z)=f(x,y’,z)=f(x,y,z’)=1
 // if f is proper then these points are unique
 // if f is improper then there are two choices
 // for each point, select one point randomly
 increase f(x,y,z),f(x,y’,z’),f(x’,y,z’),f(x’,y’,z)
 decrease f(x,y,z’),f(x,y’,z),f(x’,y,z),f(x’,y’,z’)
end move

Fig. 5. The algorithm for move between contingency tables.

2.2 Reformulated Generator

In the previous section we presented the algorithm for moves between proper and
improper contingency tables. Notice that if the contingency table is improper, which
happens when f(x’,y’,z’) becomes -1, then the next move starts with f(x’,y’,z’) that
will be increased by one. The improper contingency table describes a situation when
two values, z and the original value in (x’,y’), are assigned to the cell (x’,y’) at the
same time. According to the above observation, we know that in the next move the
original value in (x’,y’) or z will be unassigned and so we propose to postpone as-
signment of z to the cell (x’,y’) to the next move. Before assigning the value we will
check whether the value in (x’,y’) is z’. If this is true then we got a proper Latin
square and we can stop the sequence of improper moves (so z is not assigned to the
cell which is equivalent to assigning it and unassigning it in the next step). Otherwise
we assign the value z to the cell (x’,y’), we took the original value in this cell and
“propagate” it further. Figure 6 describes how the values are moved between the
cells.

Fig. 6. Shifting values in a Latin square when the value z should be placed to position (x,y).

The above idea can now be encoded using the data structures describing directly a
Latin square instead of its contingency table. Figure 7 shows the algorithm for mov-
ing between the proper Latin squares directly. The move is started with a random
position (x,y) and a random value z to be placed there: proper_move(x,y,z,z).

z v

z z’

x x’

y

y’

z

z’ v

z’z

x x’

y

y’

z

When the procedure stops, a proper Latin square is obtained and another random
move can be started. Notice that if the Latin square is improper then there are two
positions in the row x and two positions in the column y where the value v is located.
In such a case, one position in the column and one position in the row are selected
randomly. If the position is selected deterministically, for example the first found
position, then the algorithm starts cycling! Like for the original generator we propose
to call the procedure proper_move at least 2(N-1)3 times (including the recursive
calls inside proper_move) so every Latin square can be obtained with uniform
probability.

proper_move(x,y,z,v)
 z’ ← table(x,y)
 if z’=v then table(x,y) ← z, return
 y’ ← a position (column) of cell with v in the row x
 x’ ← a position (row) of cell with v in the column y
 // if z=v then x’ and y’ are unique
 // otherwise there are two such positions,
 // one position is selected randomly
 table(x,y) ← z
 table(x,y’) ← z’
 table(x’,y) ← z’
 proper_move(x’,y’,v,z’)
end proper_move

Fig. 7. The algorithm for move between proper Latin squares.

5 Experimental Results

We have implemented the presented generators using the clpfd library [3] of SICStus
Prolog version 3.11.2. All presented results were accomplished under Windows XP
Professional on 1.8 GHz Pentium 4 with 512 MB RAM. The running time is meas-
ured in milliseconds via the statistics predicate with the walltime parameter. The
results of 100 runs are presented.

2.2 Generator Quality

Generators of random problems are expected to produce problems in the whole spec-
trum of their parameters. In our first experiment, we measured the number of gener-
ated partial Latin squares relative to the number of attempts to generate a problem.
Recall, that the generator should produce a partial Latin square, namely no symbol
occurs twice in a row or in a column, with a given filling. Figure 8 shows the result
for Latin squares of order 30 and different filling ratios. Notice that the original QCP
generator falls short on the task of generating problems where more pre-filled cells
are requested. Actually, the generator is not able to produce any instance when the

filling ratio is greater than 72%. This is not so surprising because the more cells
should be pre-filled the higher probability is that no value can be found for some cell
(see Figure 3). A similar behavior can be observed for the QCP-alldiff generator but
thanks to stronger propagation via all-different constraints the chances to select a
consistent value increases and hence the generator is still able to produce some in-
stances. It is a pity that the papers [6,14] proposing these generators did not mention
this feature, probably because the authors used Latin squares of small orders (below
20) where this behavior cannot be observed. For the sake of completeness, let us
highlight that the QWH generators always produce a problem instance.

0%

20%

40%

60%

80%

100%

120%

40% 45% 50% 55% 60% 65% 70% 75% 80%

filling

ge
ne

ra
te

d

Fig. 8. The relative number of generated problems for the quasigroup problems of order 30
(: QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new).

The second feature that we focused on is the “hardness” of the generated problems.
We used the presented generators to produce partial Latin squares of order 30 which
is the border where the quasigroup problems are non-trivial but still solvable by stan-
dard constraint satisfaction techniques [8]. To solve the problem we used a standard
MAC algorithm with the constraint model using all-different constraints, “smallest
domain first” variable selection, and “minimal value first” value selection. We used a
time limit of 2 minutes to solve each problem (there are some extra hard instances
that would prevent finishing experiments in a reasonable time if timeout is not used).

0%

20%

40%

60%

80%

100%

120%

40% 45% 50% 55% 60% 65% 70% 75% 80%

filling

so
lv

ed

Fig. 9. The relative number of solved problems for the quasigroup problems of order 30
(: QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new).

Figure 9 shows a relative number of solved instances as a function of filling ratio. As
we can see most of the generated problems are solvable within the 2 minutes timeout
but there are some instances around 62% that were not solved. This is a first indica-
tion where the hard problems might settle but it does not show yet how hard the prob-
lems are. No problem is generated by QCP-orig for filling rations above 72% and
hence no problem is solved there.

We compare hardness of the generated problems by measuring runtime of the abo-
ve described straightforward solver when solving the problems generated by the stud-
ied generators. Figure 10 shows median runtime to solve the generated problems. By
solving the problem we understand finding a completion of the partial Latin square or
proving that no completion exists. This experiment brought some surprising results.
First, the phase transition area is shifted for the QWH generators towards the area
with a higher filling ratio (in comparison with the QCP generators). Second, the
QCP-alldiff generator produces the hardest to solve instances. This could be caused
by using the all-different constraints both inside the QCP-alldiff generator and inside
the solver, but we have no evidence of this (probably trying another solving approach
might show whether the generated instances are hard in general). Finally, notice that
the QCP-orig generator produced quite easy problems. We have observed the above
mentioned features for Latin squares of other orders too.

1

10

100

1000

10000

40% 45% 50% 55% 60% 65% 70% 75% 80%

filling

so
lu

tio
n

tim
e

(m
ill

is
ec

on
ds

)

Fig. 10. Median solution time in milliseconds (logarithmic scale) for the quasigroup problems
of order 30 (: QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new).

As we already mentioned, it should be clear whether the generator produces satisfi-
able instances or not. Production of satisfiable instances is especially important when
the problems are used to compare incomplete algorithms like local search techniques
or incomplete depth-first search techniques [2]. In the next experiment we measured
the number of satisfiable instances among the solved problems. Figure 11 shows the
relative number of satisfiable instances for Latin squares of order 30 and different
filling ratios. QWH generators are guaranteed to produce satisfiable instances; the
experiment just confirmed this feature. Hence these generators are appropriate for
providing instances to compare incomplete algorithms. The behavior of QCP-orig
generator with satisfiable instances on one side and unsatisfiable instances on the
other side has already been presented at [6]. However, taking in account Figure 9, we
can deduce that no satisfiable instance is generated for larger filling ratios simply

because no instance is generated there. Hence the conclusions in [6] are a bit mislead-
ing because the readers might expect that QCP-orig produces unsatisfiable instances
for larger filling ratios which is not true in general (especially for higher order of
Latin squares). The number of satisfiable instances produced by QCP-alldiff is also
decreasing around the phase transition area but it increases again for large filling
ratios. Our other experiments (not presented here) showed that the area with a smaller
number of satisfiable instances enlarges with increasing order of the Latin square.
Nevertheless, QCP-alldiff might still be appropriate for generating problems used to
compare complete algorithms.

0%

20%

40%

60%

80%

100%

120%

40% 45% 50% 55% 60% 65% 70% 75% 80%

filling

sa
tis

fia
bl

e

Fig. 11. The relative number of satisfiable instance for the quasigroup problems of order 30
(: QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new).

In our last experiment, we tried to estimate how complicated the generated problems
are if the constraint model with all-different constraints is used. In particular, we
measured the number of cells that have a value after the all-different constraints are
posted and propagated but before search is started. Mean values among the consistent
problems are presented in Figure 12. The dashed line indicates the initial filling pro-
duced by generators so the curves above this line indicate that additional values are
deduced by the initial constraint propagation using the all-different constraints. No-
tice that for the filling ratio smaller than 60%, no values for additional cells were
deduced while for the filling ratio greater than 70%, the values of all the variables
were set using constraint propagation (so no search is necessary to solve the prob-
lem). We can see that the initial constraint propagation deduced more values for the
problems produced by the QCP-all generator in comparison to the QWH generators.
This is probably caused by using the all-different constraints during generation.
Hence the QCP-alldiff produces instances with a larger number of pre-filled cells
than requested. As proposed in [14] the intended filling can be achieved by measuring
the total number of instantiated variables (including those instantiated through propa-
gation) and stopping the generation process when this number is equal to the required
filling. However, this technique makes the generator “less random” because some
cells are filled by propagation rather than randomly. Moreover, this technique is not
applicable to QWH generators that do not use propagation. If we use an assumption
that stronger initial pruning means that the problems are easier for solving using the
CP technology then the QWH generator produces harder problems in the phase tran-

sition area. This fits our observation from Figure 10, but recall that the phase transi-
tion area is shifted to smaller filling ratios for QCP-alldiff.

0%

20%

40%

60%

80%

100%

120%

40% 45% 50% 55% 60% 65% 70% 75% 80%

filling

re
al

 fi
lli

ng

Fig. 12. The number of pre-filled cells (in percent) using the all-different constraints for the
quasigroup problems of order 30
(: QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new).

2.2 Generator Efficiency

Sometimes the generators of benchmark problems run off-line so they produce prob-
lems that are put into benchmark libraries. Nevertheless, in case of random problems,
the generators are frequently used on-line to generate problems that are used immedi-
ately to test the solvers. In this second case, it is desirable for the generator to be fast
(the users do not want to waste time by generating the problems).

We measured the runtime of studied generators to show how appropriate the gen-
erators are for on-line experiments. Figure 13 shows the runtime as a function of the
filling ratio and Figure 14 shows the runtime as a function of the order of a Latin
square. Visibly the better quality of the QCP-alldiff generator is paid-off by longer
runtime. Moreover, the runtime of the QCP-alldiff generator increases faster than the
runtime for the new QWH generator and from the order 50, it is actually slower.
Consequently, the QCP-alldiff generator pays-off only for smaller order of the Latin
square which also takes in account our discussion from the previous section. Recall
that QCP-alldiff seems to produce the hardest to solve instances (Figure 10) so we
believe that this generator is appropriate for comparing complete solving techniques.
Despite the fact that the original QCP generator is very fast, we do not recommend its
usage simply because it produces less problem instances and the generated problem
instances are order of magnitude easier to solve (Figure 10) in comparison to other
presented generators. The runtime of QWH generators is slower than the original
QCP generator, but recall that all instances produced by the QWH generators are
satisfiable, which makes the QWH generators the only choice for testing incomplete
solving techniques. Notice also that the reformulated QWH generator is about two
times faster than the original QWH generator.

0

200

400

600

800

1000

1200

1400

1600

1800

40% 45% 50% 55% 60% 65% 70% 75% 80%

filling

ge
ne

ra
tio

n
tim

e
(m

ill
is

ec
on

ds
)

Fig. 13. The time (in milliseconds) to generate a quasigroup problem of order 30 and variable
filling (: QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new).

Figure 14 compares the runtimes of the generators on problems with a fixed filling
ratio 0.6 and with changing order of a Latin square. We have selected the filing ratio
0.6 because it is within the phase transition region, however, we performed experi-
ments with other filling ratios and the results were similar.

0

1

10

100

1000

10000

100000

0 10 20 30 40 50 60 70

order of Latin square

tim
e

(m
ill

is
ec

on
ds

)

Fig. 14. The time (in milliseconds, a logarithmic scale) to generate a quasigroup problem with
the filling ratio 0.6 (: QCP-orig, : QCP-alldiff, : QWH-orig, : QWH-new).

5 Conclusions

Completion of a partial Latin square is an interesting problem whose structure is close
to real-life problems [7,10]. It is also a non-trivial problem [4] whose solving requires
sophisticated techniques [5,8]. Finally, it is a problem whose instances can be gener-
ated randomly as a Quasigroup Completion Problem (QCP) [6] or Quasigroups With
Holes (QWH) [1]. These features make the completion of partial Latin squares an
ideal candidate for benchmarking constraint satisfaction techniques. In this paper, we
studied the generators for both QCP and QWH and we provided detailed guidelines

how to construct such generators. This alone is an important contribution because
writing the generator for QWH is a non-trivial problem. Moreover, as far as we know
this is the first paper in the CSP literature giving the exact description of the generator
for QWH. We experimentally compared the existing generators and we proposed a
reformulated version of the QWH generator that is much faster than the original gen-
erator. Even if the QWH generators are slower than the original QCP generator, their
quality measured as a number of produced satisfiable instances is much higher.
Hence, the QWH generators are appropriate to prepare problem instances for testing
incomplete algorithms like in [2] while the QCP generators may still be useful for
testing complete algorithms like in [12].

References

1. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating Satisfiable Problem In-
stances. In Proceedings of the Seventeenth National Conference on Artificial Intelligence.
AAAI Press (2000) 256–261

2. Barták, R., Rudová, H.: Limited Assignments: A New Cutoff Strategy for Incomplete
Depth-First Search. In Proceedings of the 2005 ACM Symposium on Applied Computing.
ACM (2005) 388–392

3. Carlsson, M., Ottosson, G., Carlson, B.: An Open-ended Finite Domain Constraint Solver.
In Programming Languages: Implementations, Logics, and Programming. LNCS 1292.
Springer-Verlag (1997)

4. Colbourn, C.: The Complexity of Completing Partial Latin Squares. Discrete Applied
Mathematics 8 (1984) 25–30

5. Dotú, I., del Val, A., Cebrián, M.: Channeling Constraints and Value Ordering in the Qua-
sigroup Completion Problem. In Proceedings of Eighteenth International Joint Conference
on Artificial Inteligence. Morgan Kaufmann Publishers (2003) 1372–1373

6. Gomez, C., Selman, B.: Problem Structure in the Presence of Perturbations. In Proceedings
of Fourteenth National Conference on Artificial Intelligence. AAAI Press (1997) 221–226

7. Gomez, C., Shmoys, D.: Completing Quasigroups or Latin Squares: A Structured Graph
Coloring Problem. In Proceedings Computational Symposium on Graph Coloring and Gen-
eralizations (2002)

8. Gomez, C., Shmoys, D.: The Promise of LP to Boost CSP Techniques for Combinatorial
Problems. In Proceedings CPAIOR’02 (2002) 291–305

9. Jacobson, M.T., Matthews, P.: Generating Uniformly Distributed Random Latin Squares.
Journal of Combinatorial Designs 4 (1996) 405–437

10. Kumar, S.K., Russell, A., Sundaram, R.: Approximating Latin Square Extensions. Algo-
rithmica 24 (1999) 128–138

11. MacIntyre, E., Prosser, P., Smith, B., Walsh, T.: Random Constraint Satisfaction: theory
meets practice. In Principles and Practice of Constraint Programming - CP98. LNCS 1520.
Springer-Verlag (1998) 325–339

12. Meseguer, P., Walsh, T.: Interleaved and Discrepancy Based Search. In Proceedings of
13th European Conference on Artificial Intelligence. Wiley (1998) 239–243

13. Régin, J.-Ch.: A filtering algorithm for constraints of difference in CSPs. In Proceedings of
Twelfth National Conference on Artificial Intelligence. AAAI Press (1994) 362–367

14. Shaw, P., Stergiou, K., Walsh, T.: Arc Consistency and Quasigroup Completion. In Pro-
ceedings of the ECAI-98 workshop on non-binary constraints (1998)

