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STANDARD FORMULATION OF THE
(ASYMMETRIC) TRAVELLING
SALESMAN PROBLEM

Conventional Formulation:

(cities 1,2, ..., n) (Dantzig, Fulkerson,
Johnson) (1954).  x; is a link in tour

Minimise:
>cX,
subject to: Z x; =1 all
inj =1 all i

]

> x; <|S|-1allS = {2...,n}

I,jeS



e.g.

Gvﬁ X+ Yop + X3
\9/ + Xy + X+ Xg5 < 2

02") Constraints = 2m14+pn =2)

0(n?) Variables =nn-1)



EQUIVALENT FORMULATION

Replace subtour elimination
constraints with

>x >1all S {2, ,..,n}

ieS
jes

Add second set of constraints for all i in S and
subtract from subtour elimination constraints for S



OPTIMAL SOLUTON TO A 10 CITY
TRAVELLING SALESMAN PROBLEM

Cost = 881



FRACTIONAL SOLUTION FROM
CONVENTIONAL (EXPONENTIAL)
FORMULATION)

Cost = 878 (Optimal Cost = 881)



Sequential Formulation (Miller, Tucker, Zemlin (1960))

u, = Sequence Number in which city i visited
Defined fori=2,3, ..., n
Subtour elimination constraints replaced by

S: u; - u;tnx; < n- 14j=23 .., n

Avoids subtours
but allows total tours (containing city 1)

e G u, - us+nx, < n-1

U, — U+ X5 < n-1

- < 11
U; = Uyt NX;,S 1 1

(3) |

3n<3n-1)
0(n?) Constraints = (m?2-n+2)
0(n?) Variables = Mm-1)(m+1)

Weak but can add 'Logic Cuts'

eg. U =1+ X + Xy — X



FRACTIONAL SOLUTION FROM
SEQUENTIAL FORMULATION

Subtour Constraints Violated : e.g. X, + X, <1

Logic Cuts Violated: e.g. U, Z1+X_ +X —X_

Cost= 77373/, (Optimal Cost = 881)



Flow Formulations

Single Commodity (Gavish & Graves (1978))

Introduce extra variables (‘Flow’ in an arc)

Replace subtour elimination constraints by

oy <-Dx alli, ]

>y, =n-1
2y, -2y, =lall j=1

Can improve (F1’) by amended constraints:

y, <(n-2)x, all 1, ]#1



Network Flow formulation in Y, variables over
complete graph

1\@ (Y
n-l/@ @_,1

Graph must be connected. Hence no subtours possible.

o(n%) Constraints =n(n+2)

o(n%) Variables =2n(n-1)



FRACTIONAL SOLUTION FROM SINGLE
COMMODITY FLOW FORMULATION

a0

OSEEO

15 15 49
7D
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2

Cost = 7945 (Optimal solution = 881)



FRACTIONAL SOLUTION FROM MODIFIED SINGLE
COMMODITY FLOW FORMULATION

|~
.

= =

oo e

Cost = 7942—;3 (Optimal solution = 881)  (192=3x64)



Two Commodity Flow (Finke, Claus Gunn (1983))

y, Isflow of commoditylinarci — j
z, Is flow of commodity 2inarci — |

= -1 1#1
273, =n-1 i=1
F2: Y7 -Y7 = 1 i#1
| | = —(n-1) i=1
22,-%1, = n-1 alli
y, +2, — (n _1)Xij all i, J
1 Commodity 1
1 Commodity 2
n-1
n-1 Commodity 2
Commodity 1

0(n*) Constraints = n(n + 4)

O(n?) Variables =3n(n-1)

1



Multi-Commodity (Wong (1980) Claus (1984))

“Dissaggregate” variables

y: is flow in arc destined for k

y, <X, alli, J, Kk

F3  Sy.=1 Sy.=1 Ty.=0 Xy,=0 allk

Syr=Yyrall jk, j=1 j=k.

0(n*) Constraints =n°-2n®+6n-3

0(n')  Variables =n*(n-1)

LP Relaxation of equal strength to Conventional
Formulation.

But of polynomial size.

Tight Formulation of Min Cost Spanning Tree
+ (Tight) Assignment Problem



FRACTIONAL SOLUTION FROM MULTI
COMMODITY FLOW FORMULATION (=
FRACTIONAL SOLUTION FROM CONVENTIONAL
(EXPONENTIAL) FORMULATION)

142

Cost = 878 (Optimal Cost = 881)



Stage Dependent Formulations

First (Fox, Gavish, Graves (1980))
= lifarc 1> ] traversed at stage ¢

0 otherwise

T1:
y, =n

n n

> Sty =Y Sty' =1i=2,3..n

1 otz Y i = T

i,j,t

(Stage at which i left 1 more than stage at which entered)

y,=0,t=n
y, =0,t=1
y,=0,1=1

0(n) Constraints = n
0(n*) Variables =n’(n-1)

Also convenient to introduce x, variables with constraints

X, = Zt: yitj



FRACTIONAL SOLUTION FROM 157
(AGGREGATED) TIME-STAGED FORMULATION

onj—

==

Cost = 364.5 (Optimal solution = 881)
NB ‘Lengths” of Arcs can be > 1



Second (Fox, Gavish, Graves (1980))

T2: Disaggregate to give

2 v =1 allj
2 Vi =1 all i

Z Vi = 1 all t

n n

>ty - n i ty, =1i=23..n

j=1  t=2 =1 t=1

Initial conditions no longer necessary
O(n) Constraints = 4n-1
0(n3) Variables = n?mn-1)



FRACTIONAL SOLUTION FROM 2nd
TIME-STAGED FORMULATION

ost = 799;6?‘71 (optimal solution = 881)

(714 =2x3x7x17)



Third  (Vajda/Hadley (1960))

T3: Y i interpreted as before
> vy =1 allj
> yi =1 alli
d oy =1 all t
t t+1
2 Yy ~2 Vi = all j, t

1# ] K+
Z Y11j =1
j#1

Z Yo =1

0 (n?) Constraints = (2n?+ 3)
0 (n3) Variables = n?(n-1)



FRACTIONAL SOLUTION FROM 2nd
TIME 2™ TIME-STAGED FORMULATION

o=

|

-‘ °

n o
-t

n |t

n |

1
2

Cost= 804=  Optimal solution = 881



OBSERVATION

Multicommodity Flow Formulation

Sy, -3y, =0

t
yi,- is flow i — j destined for node ¢

Time Staged Formulation
Xy -2y =0
i ij k jk
y,=11iff goi — j atstaget

Are these formulations related?

Can extra variables (y!), introduced
syntactically, be given different semantic
interpretations?



COMPARING FORMULATIONS

Minimise: CX

Subject to: Ax+By<b
X,y =0, xinteger

W ={w|wB >0,w >0}

W forms a cone which can be characterised by
its extreme rays giving matrix Q such that

QB >0

Hence QAXx < Qb

This is the projection of formulation
into space of original variables X,



COMPARING FORMULATIONS

Project out variables by Fourier-Motzkin
elimination to reduce to space of conventional
formulation.

P (r) is polytope of LP relaxation of projection of
formulation r.

Formulation S (Sequential)

Project out around each directed cycle S by
summing

u-u +nx <n-1

n>x, <(n-1)S

: « <[s S| weaker than |S|-1 (forSa
1€ <S|—-—
hies n subset of nodes)



Formulation F1 (1 Commodity Network Flow)

Projectsto > x; <IS |—% stronger than|S|-|i—|

Hence P(S)>P(F1) o P(C)

Formulation F1' (Amended 1 Commodity Network
Flow)

1 S|
Projectsto . PRI SISI——

je S—{l} i,jeS
Jes

Hence P(S) D) P(Fl) D F(Fl') D) P(C)

Formulation F2 (2 Commodity Network Flow)

Projectsto > x; <S 151
] n-1

Hence P(F2) = P(F1)



Formulation F3 (Multi Commodity Network
Flow)

Projects to .Z:' X; <[S -1
es

Hence P(F3)= P(C)

Formulation T1 (First Stage Dependant)

Projects to

Z Xij 2
ieS
je S

i -{1}

X, =N
i,jeN

o / / o
Cannot convert 15t constraint to * DX, < “form since
]|

i,jeb

Assignment Constraints not present)



Formulation T2 (Second Stage Dependant)

Projects to

1 1 | S |
X+ X .+ X <|S |-
-1 i_esZ ! n -1 sz{l} ! ijjzes ! | | n -1
je S -{1} je s
+ others

Hence P(12) < P(F1')

Formulation T3 (Third Stage Dependant)

Projects to

1 1 'S |
X .

N —1 <S¢ n
je S

+ others

Can show stronger than T2

Hence P(13)<P(12)



Computational Results of a 10-City TSP in order to
compare sizes and strengths of LP Relaxations

Model Size LP Its Secs | IP Nodes | Secs
Obj Obj
)
C 502x90
(Conventional
(Ass. Relax 766 37| 1 766 0 1
+Subtours (5) 804 40| 1 804 0 1
+Subtours (3) 835 431 1 835 0 1
+Subtours (2) 878 48| 1 881 9 1
S 92x99 773.6 77| 3 881 | 665 16
(Sequential)
F1 120x180 79422 | 148 | 1 881 | 449 13
(Commodity Flow
F' 120x180 79489 | 142 1 881 | 369 11
(F1 Modified)
F2 140x270 79422 | 229| 2 881 | 373 12
(2 Commodity Flow)
F3 857x900 878 1024 | 7 881 9 13
(Multi
Commodity Flow)
T1 90x990 364.5 63| 4 881
(1¢ Stage (10)x(900) oo | ©
Dependent)
T2 120x990 79946 | 246 | 18 881 | 483 36
2nd Stage Dependent 39) x (900
g¢ Lep
T3 193x990 804.5| 307| 5 881 | 145 27
(34 Stage (102)x(900)
Dependent)

Solutions obtained using NEW MAGIC and
EMSOL




P(TSP) TSP Polytope — not fully known
P(X) Polytope of Projected LP relaxations



