
Constraint Programming Constraint Programming
and Local Searchand Local Search

Filippo Focacci, Andrea Lodi, François Laburthe
Louis-Martin Rousseau

page 2

OutlineOutline
1. Introduction
2. A didactic optimization problem (dTP)

– Motivations for cooperation
3. A zoo of CP / LS hybrids

– Sequential combination
– Master / sub-problem decomposition
– Improved neighborhood exploration
– CP Neighborhood search
– Large neighborhood search
– Local moves during construction
– Local moves over a heuristic

page 3

What this tutorial addressesWhat this tutorial addresses

Solving large hard combinatorial
optimization problems
Systematic description of ways of
combining LS and CP techniques
Goal: provide a check-list of recipes
that can be tried when tackling a new
optimization application
Illustrated on a didactic problem

page 4

When should you enquire When should you enquire
about CP / LS hybrids ?about CP / LS hybrids ?

When you have:
– A large complex optimization problem
– No solution neither with CP nor with LS
– The problem specification may change over

time
Best in case of strong execution
requirements
– Limited planning resource
– On-line optimization

page 5

When can’t it help ?When can’t it help ?

When modeling is the issue
When optimization is the single
difficulty
When thousands of man.year have
been spent studying your very
problem
=> useless for solving a 1M node TSP

page 6

Comparing CP and LSComparing CP and LS

Constraint Programming
– Solves complex problems
– Models capturing many side constraints
– Solves by global search and propagation

Local search
– Solves problems with simple models
– Efficiency: quick first solution, rapid early

convergence

page 7

Opportunities for collaborationOpportunities for collaboration
Expected combination of :
– Generality (solve complex problems)

• Nice modeling
• Generic methods from the model
• Easy to add/modify constraints

– Efficiency (solve them fast)
• Initial solution
• Quick convergence

– Address both feasibility and optimization issues
• keep constraints hard

Difficulty to combine:
– monotonic reasoning (CP)
– non-monotonic modifications (LS)

page 8

OutlineOutline

1. Introduction
2. A didactic optimization problem (dTP)

– Motivations for cooperation
3. A zoo of CP / LS hybrids

– Sequential combination
– Master / sub-problem decomposition
– Improved neighborhood exploration
– CP Neighborhood search
– Large neighborhood search
– Local moves during construction
– Local moves over a heuristic

page 9

A didactic transportation problemA didactic transportation problem

Collect goods from clients
– Set of trucks located in a depot
– Each truck can carry two bins
– Each bin may contain only goods from

the same type
– Clients have time window constraints
– Bins have capacity constraints

page 10

A simple model for A simple model for dTPdTP

i,j ∈ {1, ..., n}: clients (their locations)
k ∈ {1, …, M}: trucks
h ∈ {1, …, 2M}: bins
l ∈ {1, …, P}: types of goods

page 11

ModelModel

Minimize totCost = Σk=1
M costk

On ∀k, costk ≥ 0
truckk: UnaryResource(tt,c,costk)

∀h, collectsh ∈ [1 .. P]
∀i, starti ∈ [ai .. bi]

servicei : Activity(starti,di,i)
visitedByi ∈ [1 .. M]
collectedIni ∈ [1 .. 2M]

page 12

Model (2)Model (2)

Subject to

∀i, servicei requires truck[visitedByi]
∀h, Σi | collectedIn i = h qi ≤ C
∀i, collects[collectedIni] = typei

∀i, visitedByi = ⎡collectedIni / 2⎤

page 13

A CP approachA CP approach
Strengthen the model
– Add redundant constraints
– Add global constraints
– Add constraints evaluating the cost of the

solutions
– Symmetry breaking (dominance) constraints

Find a search heuristic
– Variable / value orderings
– Explore part of the search tree through Branch

and Bound

page 14

A CP approachA CP approach
Redundant models for stronger propagation
Example: redundant routing model
∀k, firstk ∈ [1 .. N]
∀i, nexti ∈ [1 .. N+M]

succi ∈ [{} .. {1, …, N}]
multiPath(first,next,succ,visitedBy)
costPaths(first,next,succ,c,totCost)

∀i,j, j ∈ succi ⇔
(visitedByi = visitedByj ∧ starti < startj)

page 15

Solving through CPSolving through CP

Instantiate visitedByi

Rank all activities on the routes
(instantiate nexti / succi)

Instantiate starti to their earliest
possible value

page 16

Difficulties with CPDifficulties with CP

Poor global reasoning
Poor cost anticipation
Goes backtracking « forever »
As propagation is strengthened, the
model is slowed down

page 17

A local search approachA local search approach

Two possibilities:
– Work in the space of feasible solutions
– Accept infeasible solutions by turning

constraints into penalties
Possible combinations, work with
feasible but add, if needed, extra
resources (trucks and bins)

page 18

Local search for Local search for dTPdTP

Generate an initial solution
– Select clients i in random order
– Assign it to a truck that has a bin of

typei , or to a truck that can be added an
extra bin of typei

Move from a solution to one of its
neighbors, in order to improve the
objective

page 19

Neighborhoods for Neighborhoods for dTPdTP
Node transfer:
– Change values of visitedByi and collectedIni

for some i

Bin swap:
– Select bins h1, h2 on trucks k1= ⎡h1/2⎤, k2= ⎡h2/2⎤
– For all clients i,

collectedIni = h1 ⇒ collectedIni = h2, visitedByi =k2
collectedIni = h2 ⇒ collectedIni = h1, visitedByi =k1

– Swap collectsh1 and collectsh2

page 20

NeighborhoodsNeighborhoods

k-opt:
– select i1, i2, i3 such that

visitedByi1 = visitedByi2 = visitedByi3

– Exchange edges:
• Replace nexti1=j1, nexti2=j2, nexti3=j3
• By nexti1=j2, nexti2=j3, nexti3=j1

page 21

Driving the local search processDriving the local search process
Main iteration:
Until a global stopping criterion is met:
– generate a new initial solution
– perform a local walk

Each walk:
Until a local criterion is met:
– Iterate the neighborhood, until a neighbor

satisfying all constraints as well as the
acceptance criterion is found

– Perform the move

page 22

Difficulties with LSDifficulties with LS

As the problem gets more constrained…
Generating a good feasible first
solution becomes harder
Exploring neighborhoods
– takes longer: constraints checks
– is less interesting: fewer valid nodes
– more local optima appear

page 23

ConclusionConclusion

Neither of the “pure” approaches works
Need for hybridization with other
techniques
– Try a cooperation between CP and LS
– Expect to retain :

• Good sides of CP: handling side constraints,
building valid solutions, systematic search

• Good sides of LS: quick easy improvements,
quick convergence.

page 24

OutlineOutline
1. Introduction
2. A didactic optimization problem (dTP)

– Motivations for cooperation
3. A zoo of CP / LS hybrids

– Sequential combination
– Master / sub-problem decomposition
– Improved neighborhood exploration
– CP Neighborhood search
– Large neighborhood search
– Local moves during construction
– Local moves over a heuristic

page 25

Sequential combination: LSSequential combination: LS--CPCP

Use local search for the beginning of the
optimization descent – switch to CP at
time t0

timet0

objective
CP

LS

page 26

DiscussionDiscussion

A good idea
– When the feasibility problem is easy
– For time-constrained optimization

But, the switch from LS to CP is not immediate
– CP starts with a good upper bound, but without no-

goods
On the didactic Transportation Problem (dTP)
– Lack of good lower bounds

=> Systematic CP search gets stuck near the optimal region

page 27

Sequential combination: CPSequential combination: CP--LSLS

Build a first feasible solution with CP
– Greedy heuristic

Try to improve it through LS
– Constraints can be softened to support

dense neighborhoods

page 28

Greedy insertion algorithmGreedy insertion algorithm

At each choice point a
function h is evaluated for all
possible choices

The choice that minimizes h
is considered as preferred
decision

The preferred decision is
taken

page 29

Greedy insertion for Greedy insertion for dTPdTP

dCost1
dCost2

dCost3dCost4
dCost5 dCost6

…

page 30

DiscussionDiscussion

CP then LS: can be interesting for dTP
– In particular in case of tight side

constraints
« One-shot » use of CP:
– as long as no valid solution has been

found, we look for one
– Enables to start LS with a valid solution

page 31

A systematic combinationA systematic combination

Solve the problem through CP (global search tree)
Try to improve each solution found through local
search
Improve the optimization cuts

page 32

DiscussionDiscussion

Local moves should change the
assignment of « early » variables
– Avoid visiting the same region as with

backtracking
Especially interesting in case of
incomplete search
– CP provides a set of diversified seeds

for local search

page 33

OutlineOutline
1. Introduction
2. A didactic optimization problem (dTP)

– Motivations for cooperation
3. A zoo of CP / LS hybrids

– Sequential combination
– Master / sub-problem decomposition
– Improved neighborhood exploration
– CP Neighborhood search
– Large neighborhood search
– Local moves during construction
– Local moves over a heuristic

page 34

Master / subMaster / sub--problem decompositionproblem decomposition

Idea: identify two sub-problems and
solve them by different techniques
– Master problem
– Induced sub-problem

Decomposition: the sub-problem can
only be stated once the master
problem is solved.

page 35

Purpose of decompositionPurpose of decomposition

Decompose into easier problems
– Smaller size
– Simpler models
– Well known structure

Traditional approach with exact
methods (Dantzig, Lagrangean,
Benders)

page 36

A decomposition on A decomposition on dTPdTP
Master Problem:
– Assignment of clients to trucks (visitedBy)

Induced sub-problem:
– Traveling salesman with time windows

Algorithms:
– Assess a cost for each client (e.g. distance to neighbor),

solve assignment with some method
– Solve small TSPs with CP
– Analyze TSPs, re-assess client cost and try improving

local moves on the master problem.

page 37

DiscussionDiscussion

Decomposition makes the problem
easier to solve
Estimating the cost in the master
problem may be difficult
Try local changes on the evaluated
cost of the master problem
– improve subsequent optimization

(feedback from the sub-problem)

page 38

OutlineOutline
1. Introduction
2. A didactic optimization problem (dTP)

– Motivations for cooperation
3. A zoo of CP / LS hybrids

– Sequential combination
– Master / sub-problem decomposition
– Improved neighborhood exploration
– CP Neighborhood search
– Large neighborhood search
– Local moves during construction
– Local moves over a heuristic

page 39

Constrained local searchConstrained local search

Small neighborhoods
– A neighbor solution S1 can be reached

from a given solution S* by performing
“simple” modifications of S*.

– Examples:
• Choose two visits i1 and i2, remove i1 from

its current position and reinsert it after i2
• Choose two visits i1 and i2 and exchange

their positions

page 40

Constrained local searchConstrained local search

Node Exchange
– Choose two visits i1 and i2 assigned to

different trucks and exchange their positions
– Accept the first exchange improving the cost

page 41

Node Exchange: version 1Node Exchange: version 1

Procedure exchange(P,S)
forall nodes i1

forall nodes i2 | (svisitedByi1 ≠ svisitedByi2)
exchangeInstantiate(P,S,i1,i2)
// check feasibility and check cost function
if (propagate(P) && improving(P,S))

storeSolution(P,S)
resetProblem(P)
exit iterations

// reinitialize the domain variables
resetProblem(P)

page 42

Node Exchange: version 1Node Exchange: version 1
Procedure exchangeInstantiate(P,S,i1,i2)

// exchange i1 and i2
next[sprevi1] = i2; next[i2] = snexti1;
next[sprevi2] = i1; next[i1] = snexti2;
// restore the rest
forall k ∉{i1,i2,sprevi1,sprevi2}

next[k] = snextk;

i1 i2

sprevi2

snexti1
sprevi1

snexti2

i1 i2

sprevi2

snexti1
sprevi1

snexti2

page 43

Node Exchange: version 1Node Exchange: version 1
Pros:
– Independent from side-constraints

Cons:
– CP imposes monotonic changes

while moving from one neighbor to the next one
all problem variables are un-instantiated and
re-instantiated

– Constraints are checked in “generate and test”
inefficient

page 44

Node Exchange: version 2Node Exchange: version 2
Add inlined constraint checks
Procedure exchange(P,S)

forall nodes i1
forall truks k | (k ≠ svisitedByi1)

if (not binCompatible(P,S,svisitedByi1,k)) continue
forall nodes i2 | (svisitedByi2 = k)

if (not timeWindowCompatible(P,S,i1,i2)) continue
if (not improving(P,S,i1,i2)) continue
exchangeInstantiate(P,S,i1,i2)
// check feasibility && check cost function
if (propagate(P) && improving(P,S))

storeSolution(P,S)
resetProblem(P)
exit iterations

resetProblem(P); // reinitialize the domains

page 45

Node Exchange: version 2Node Exchange: version 2
Pros:
– “Almost” independent from side-constraints
– Some constraints are tested before performing the

move
much more efficient

Cons:
– CP imposes monotonic changes
– Some constraints are still checked in “generate and

test”

page 46

OutlineOutline
1. Introduction
2. A didactic optimization problem (dTP)

– Motivations for cooperation
3. A zoo of CP / LS hybrids

– Sequential combination
– Master / sub-problem decomposition
– Improved neighborhood exploration
– CP Neighborhood search
– Large neighborhood search
– Local moves during construction
– Local moves over a heuristic

page 47

CP Based OperatorsCP Based Operators

Operators define neighborhoods

Finding the best solution in a neighborhood is an
optimization problem

Which can be solved with constraint programming

Neighborhood search problem can be expressed:
– With a specific model and interface constraints
– With the original model and additional constraints

page 48

Specific ModelSpecific Model

A special model is developed to represent the
neighborhood
Interface constraints link the new model to the original
model
All the constraints stated in the original model are
enforced in the specific model via the interface
constraints
During search, constraint propagation allows to prune (via
the interface) regions of the neighborhood
No restrictions on the neighborhood which can be defined

Original model
for the problem

Specific model to define
the neighborhood

Interface

constraints

page 49

Original ModelOriginal Model

The neighborhood is defined simply by adding additional
constraints to the original model
No need to define a new model and interface constraints
All the constraints in the original model are naturally enforced
During search, constraint propagation allows to prune directly
large regions of the neighborhood
Not all neighborhoods can defined inside the original model (i.e.
GENeralized Insertion)

Original model for the problem

Additional constraints
for the neighborhood

page 50

Node ExchangeNode Exchange
CP based neighborhoods

The neighborhood of a solution S for a
problem P is defined by a constraint
problem

NP(P,S) :: [{INP(P,S) :: [{I11,…,I,…,Inn},{C},{C11,…,C,…,Cmm}] }]

Each solution of NP represents a
neighbor of S for P

page 51

Node Exchange: Node Exchange: nhoodnhood modelmodel

Variables: I::[0..n-1], J::[0..n-1], DCost::[-∞..0]
I, J are domain-variables representing the nodes i,j that
we want to exchange.

Constraints:
// neighborhood cst
I > J
svisitedBy[I] ≠ svisitedBy[J]
next[I] = snext[J]
next[J] = snext[I]
next[sprev[I]] = J
next[sprev[J]] = I
// interface cst
forall k, (k ≠ I ∧ k ≠ J)

⇒ next[k] = snext[k], visitedBy[k] = svisitedBy[k]

i1 i2

sprevi2

snexti1
sprevi1

snexti2 i1 i2

sprevi2

snexti1
sprevi1

snexti2

page 52

Node Exchange: Node Exchange: nhoodnhood modelmodel

DCost represents the gain w.r.t S:
DCost = cost[sprev[J], I] + cost[I, snext[J]] +

cost[sprev[I],J] + cost[J,snext[I]] -
cost[sprev[I], I] - cost[I,snext[I]] -

cost[sprev[J],J] - cost[J,snext[J]]
// improving cst
DCost < 0

Search (explore via tree search):
instantiate(I) && instantiate(J)

page 53

Node Exchange: Node Exchange: nhoodnhood modelmodel

Search: instantiate(I) && instantiate(J)
Each leaf defines a feasible exchange

I::[1..3], J::[2..4]

I::[2..3],J::[3..4]

I::[2],J::[3..4] I::[3],J::[4]

I::[2],J::[3] I::[2],J::[4]

I::[1],J::[2..4]

I::[1],J::[2] I::[1],J::[3..4]

I::[1],J::[3] I::[1],J::[4]

page 54

Node Exchange: Node Exchange: nhoodnhood modelmodel

Suppose that in S:
clients 1,2 are visited by truck 1,
clients 3,4 are visited by truck 2

I::[1..3], J::[2..4]

I::[2,3],J::[3,4]

I::[2],J::[3..4]

I::[2],J::[3] I::[2],J::[4]

I::[1],J::[2,3,4]

I::[1],J::[3] I::[1],J::[4]

svisitedBy[I] ≠ svisitedBy[J]

page 55

Node Exchange: Node Exchange: nhoodnhood modelmodel

Pros:
– Independent from side-constraints
– Constraint Propagation removes infeasible

neighbors a priori.
efficient when many side constraints
efficient when large neighborhoods

– May freely mix tree search and local search
Cons:
– Overhead due to tree search

page 56

Node Exchange: Node Exchange: nhoodnhood modelmodel

Overhead due to tree search

Often most problem variables are instantiated by the
interface constraints only when ALL neighborhood
variables are instantiated (at every leaf of the nhood
tree search)

In this case the nhood tree search keeps “doing”
and “undoing” the instantiations of ALL the problem
variables

page 57

Local Search via solution deltasLocal Search via solution deltas

Goal: avoid instantiating and un-
instantiating ALL problem variables while
moving from one neighbor to the other

– A neighbor is identified by the modification over
the original solution S. This modification is
defined solution delta.

– A neighborhood is an array of deltas.
– The exploration of the neighborhood takes

place on a tree search.

page 58

LS via solution deltas : Node ExchangeLS via solution deltas : Node Exchange

Procedure exchange(P,S)
SolutionArray neighborArray
forall nodes i1
forall nodes i2 | (svisitedByi1 ≠ svisitedByi2)

Solution delta = {(next[sprev[i2]] = i1),
(next[i1] = snext[i2]),
(next[sprev[i1]] = i2),
(next[i2] = snext[i1])}

neighborArray.add(delta)
exploreNeighborhood(P,S,neighborArray)

page 59

LS via solution deltas: explore the neighborhoodLS via solution deltas: explore the neighborhood

Map the array of deltas in a tree search
– recursively split the array of deltas in two

parts
– a split correspond to a branching node in

the tree search
– each feasible neighbor is a leaf of the tree
– at each node restore the fraction of S that

is shared by all neighbors in that node

page 60

Exploring the neighborhood Exploring the neighborhood
through solution deltasthrough solution deltas

Example: deltas = [d1,d2,d3,d4,d5,d6]

[d1,d2,d3,d4,d5,d6]

[d1,d2,d3] [d4,d5,d6]

[d1,d2] [d3] [d4,d5] [d6]

[d1] [d4] [d5][d2]

page 61

Local Search via solution deltasLocal Search via solution deltas

Pros:
– Independent from side-constraints
– Constraint Propagation removes infeasible

neighbors a priori.
efficient when many side constraints
efficient when large neighborhood

– May freely mix tree search and local search
– Reduced overhead of the tree search

Cons:
– Requires an explicit generation of the neighborhood
– Requires to fully specify each move

page 62

OutlineOutline
1. Introduction
2. A didactic optimization problem (dTP)

– Motivations for cooperation
3. A zoo of CP / LS hybrids

– Sequential combination
– Master / sub-problem decomposition
– Improved neighborhood exploration
– CP Neighborhood search
– Large neighborhood search
– Local moves during construction
– Local moves over a heuristic

page 63

A local minimum is reached when no solutions in
the neighborhood is better than the current
solution

Usual solution is to use metaheuristics to allow a
temporary degradations of the objective

LS and Local Minima LS and Local Minima

Local minimum

Global minimum
Neighborhood

page 64

Large Neighborhoods: GainsLarge Neighborhoods: Gains

A larger neighborhood means:
– More solutions are considered
– Better chance of avoiding local minima

– Can still use metaheuristics

Local minimum

Global minimum

Improving solution

Neighborhood

page 65

Large Neighborhoods: lossLarge Neighborhoods: loss

A larger neighborhood also means:
– More solutions need to be evaluated
– The complexity of evaluating all solutions makes having

neighborhoods too large unattractive

Unless we don’t evaluate all the solutions !
This is were Constraint Programming is useful

page 66

Large neighborhood searchLarge neighborhood search

Idea: partition the variables of the
current solution into two subsets
– A fragment: assignments are kept as

they are
– A shuffle set: assignments may be

changed

page 67

Large neighborhood search on Large neighborhood search on dTPdTP

From a solution

page 68

Select a shuffle set

Select a subset of clients
i1, i2 , …, ik ⊂ C

Large neighborhood search on Large neighborhood search on dTPdTP

page 69

Example on dTP

Shuffle set

For all clients i from the shuffle
set :

• Unassign variable:
- visitedByi , collectedIni
- starti
• Undo all ordering decisions
between i and other clients j
• Unassign all cost variables
• Post a cost improvement cut

cost ≤ getValue(cost,S) - ε

Large neighborhood search on Large neighborhood search on dTPdTP

page 70

• Look for a new solution
by solving the remaining
sub-problem

Large neighborhood search on Large neighborhood search on dTPdTP

page 71

Large neighborhood searchLarge neighborhood search
Exploring the neighborhood

Procedure moveLNS(P,S,algorithm)
// define current sub-problem
Problem P’ = P ∧ (cost ≤ getValue(cost,S) – ε)
propagate(P’)
while (not stop())

VariableSet shuffleSet = defineShuffleSet(P,S)
foreach variable X | X ∉ shuffleSet

P’ = P’ ∧ (X = getValue(X,S))
if solve(P’,algorithm,S) succeeds

stop iteration

page 72

Selecting shuffle setsSelecting shuffle sets

Select a set:
– large enough to introduce enough flexibility
– small enough to reduce the overall problem
– of inter-dependent variables
– of ill-assigned variables (an improvement can

be expected)
Vary the types of sets that are shuffled
Vary the size of sets that are shuffled
– variable neighborhood search

page 73

Shuffle sets for Shuffle sets for dTPdTP

A set of clients that are
– Within short distance of some specific

client
– Visited by the same truck
– Sharing a common type of goods
– Visited within a common time frame
– …

page 74

A few hints for LNS with CPA few hints for LNS with CP
Use incomplete tree search to speedup the sub-
problem solution (e.g. LDS)
Use strong constraint propagation to reduce the
neighborhood exploration
Compute relaxations to prune non-improving
neighbors
Rather switch neighborhood than fully explore
one by backtracking

page 75

OutlineOutline
1. Introduction
2. A didactic optimization problem (dTP)

– Motivations for cooperation
3. A zoo of CP / LS hybrids

– Sequential combination
– Master / sub-problem decomposition
– Improved neighborhood exploration
– CP Neighborhood search
– Large neighborhood search
– Local moves during construction
– Local moves over a heuristic

page 76

Local Search and Greedy ConstructionLocal Search and Greedy Construction

Local search is most often applied to
complete solutions
First build a solution, then improve it
Idea: better repair while building than
afterwards.
=> Incremental Local Optimization

page 77

Incremental Local OptimizationIncremental Local Optimization

The greedy algorithm makes a
mistake at step n
The mistake is discovered at step
n+k
Try to repair the steps n .. n+k
Resume the greedy construction at
step n+k+1

page 78

ILO for general ILO for general CSPsCSPs
A simple incomplete method:

For a variable ordering v1…vn
Compute a lower bound lb
Start assigning variables
Choose the value aik such that vi = aik yields
the least increase in lb
Whenever lb strictly increases,
– keep vi = aik ,
– un-assign all variables linked to vi and
– try to re-assign them to find the least increase for lb

page 79

ILO illustrated on ILO illustrated on dTPdTP

Enriched greedy construction scheme:
– Place clients on a stack
– Insert them one by one minimizing the insertion cost.

For client i, instantiate
• visitedByi

• succi

– Apply local optimization on the truck assigned to i
• Change the order of visits j (forall j | visitedByj = visitedByi)

– If an improving sub-route is found, change it

page 80

Allows insertion between non-adjacent customers
Performs a local optimization simultaneously with the
insertion

ci cj and ck are defined as finite domain variable and their
value are identified thru the solution of specific constraint
programming model link to the original routing model

GENeralizedGENeralized Insertion in CPInsertion in CP

page 81

Illustration on a search spaceIllustration on a search space

page 82

Ejection chains during a Ejection chains during a
greedy processgreedy process

Recursive version of the ILO approach
– For a variable ordering v1…vn

– Choose the value aik such that vi = aik yields
the least increase ∆lb in lb

– When ∆lb > 0, un-assign some variable vl so
that lb decreases

– Reassign vl to some other value
– Go-on un-assigning / re-assigning past

variables until the least increase in lb is found

page 83

Ejection chains on Ejection chains on dTPdTP
visitedByi1 visitedByi2 visitedByi3

truck k1

truck k2

truck k3

truck k4

truck k5

Reschedule k4

ok without i2

Reschedule k1

ok without i3

Reschedule k3

ok with all clients

page 84

Finding a good ejection chainFinding a good ejection chain

Search for the smallest ejection chain in
breadth first search
Similar to the search for augmenting paths
(flows)

i1 in

i2 in

i3 in

i2 out i7 outi5 out

i3 out i4 out

page 85

OutlineOutline
1. Introduction
2. A didactic optimization problem (dTP)

– Motivations for cooperation
3. A zoo of CP / LS hybrids

– Sequential combination
– Master / sub-problem decomposition
– Improved neighborhood exploration
– CP Neighborhood search
– Large neighborhood search
– Local moves during construction
– Local moves over a heuristic

page 86

Local moves over a heuristicLocal moves over a heuristic

LS is defined as variations over a
solution.
LS can also be applied over an
encoding of a solution
– For a greedy CP method, the search

heuristic itself is an encoding
– Idea: instead of exploring the whole

tree, explore variations of the
constructive heuristic.

page 87

Local Local searchsearch overover a a heuristicheuristic

Two families of methods
– Local moves over a value ordering heuristic

• Restricted candidate lists
• GRASP
• Discrepancy based search

– Local moves over a variable ordering heuristic
• List scheduling heuristics
• Preference-based programming

page 88

Local search over the value Local search over the value
selection heuristicselection heuristic

Constructive heuristic

page 89

Restricted candidate listRestricted candidate list

At each choice point a function h is
evaluated for all possible choices:
– the k “worst” choices (with high value for h)

are discarded
– the choice that minimizes h is considered as

preferred decision
– the preferred decision is taken, the remaining

choices are taken upon backtracking

page 90

Restricted candidate listRestricted candidate list

dCost3 dCost6

dCost1

dCost4

dCost2

dCost5

…

page 91

Restricted candidate listRestricted candidate list

hminhmax

page 92

GRASPGRASP
“Greedy Randomized Adaptative Search
Procedure”
At each choice point a function h is
evaluated for all possible choices:
– the preferred decision is chosen by a random

function biased towards choices having small
value for h

– the preferred decision is taken
– the process is iterated until a stopping

condition is met

page 93

GRASPGRASP

page 94

Discrepancy based searchDiscrepancy based search

Idea: good solutions are more likely to be
constructed by following always but a few
times the heuristic
– during search, count the number of times the

heuristic is not followed (number of
discrepancies)

– a maximal number of discrepancies is allowed
when generating solutions in the tree.

page 95

Discrepancy based searchDiscrepancy based search

D2D1D1D0 D3D2D2D1 D3D2D2D1 D4D3D3D2

maxDiscrmaxDiscr = 1= 1

page 96

CP + some LS: putting things togetherCP + some LS: putting things together

Example:
Procedure solve(P)

while (not stopping condition)
Solution S = ∅
int failLimit = 50
bool result = solveGRASP(P,S,failLimit)
if (result)
P = (P ∧ (Cost(P) < Cost(S))

page 97

CP + some LS: putting things togetherCP + some LS: putting things together

Example:

Procedure solveGRASP(P,S,failLimit)
while (unscheduled clients exist

and failLimit not reached)
Client v = selectVariable(P,S)
discardBadValues(P,S) //Restricted Candidate List
InsertionPosition position = evaluateRandom(P,S,v)
try (insert(P,S,v, position) OR

notInsert(P,S,v, position))

page 98

Local search over the Local search over the
variable selection heuristicvariable selection heuristic
In some problems, a solution can be described
by a variable ordering
– Natural value ordering heuristics

Examples:
– List-scheduling heuristics
– Configuration problems

Local moves can be applied on the variable
sequence itself

page 99

Local moves on a heuristicLocal moves on a heuristic

Standard process in Genetic Algorithms:
– Encode the solution
– Apply local changes to the encoding
– Construct the new solution (can be done by

a CP-based solver)
In CP: Preference-based programming

page 100

PreferencePreference--based programmingbased programming
Example on Job-Shop scheduling:
– Consider a ordered list of tasks (priority list)

– Choice point: (Schedule asap OR Postpone)
• Take one task at a time from the list and schedule it

at its earliest start time
• otherwise “postpone” the decision on the task for

later

– Local moves on the preferred list of tasks
generate different schedules

– Use tree search to explore a neighborhood of
the preferred list

page 101

ConclusionConclusion
Real life combinatorial optimization
problems often require crafting hybrid
optimization methods:
- local search is a technique that can

complement CP
- many hybrids are possible

« Is it cookery or alchemy ? » M. Wallace

Recipes and tools are emerging …

