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Abstract

We present a modification of the Leung-Palem-Pnueli parallel
processors scheduling algorithm and prove its optimality for
scheduling monotone interval orders with release dates and
deadlines on Unit Execution Time (UET) typed task systems
in polynomial time. This problem is motivated by the relax-
ation of Resource-Constrained Project Scheduling Problems
(RCPSP) with precedence delays and UET operations.

Introduction

Scheduling problems dgped task systenf3affe 1980) gen-
eralize the parallel processors scheduling problems by intro-
ducingk types{7, }1<,<, and)_, ., ., m, processors with

m,. processors of type,. Each operatiorQ; has a type

7; € {7 }1<r<k and may only execute on processors of type
7;. We denote typed task systems with P in thea-field of
the | 5|y scheduling problem denotation (Brucker 2004).

Scheduling typed task systems is motivated by two main
applications: resource-constrained scheduling in high-level
synthesis of digital circuits (Chaudhuri, Walker, & Mitchell
1994), and instruction scheduling in compilers for VLIW
processors (Dupont de Dinechin 2004). In high-level syn-

thesis, execution resources correspond to the synthesized

functional units, which are partitioned by classes such as
adder or multiplier with a particular bit-width. Operations

interval-ordered typed UET operations. Verriet (Verriet
1998) solves proble®* P|intOrder; ¢! = 1;p; = 1|Cpaz

in polynomial time, that is, interval-ordered typed UET op-
erations subject to unit communication delays.

Interval ordersare a class of precedence graphs where
UET scheduling on parallel processors is polynomial-time,
while non-UET scheduling on 2 processors is strongly NP-
hard (Papadimitriou & Yannakakis 1979). In particular,
Papadimitriou and Yannakakis sol\B|intOrder;p; =
1|Cpmaz in polynomial-time. Scheduling interval orders
with communication delays on parallel processors is also
polynomial-time, as the algorithm by Ali and EI-Rewini
(Ali & EI-Rewini 1992) solvesP|intOrder;c] = 1;p;
1|Craz- Verriet (Verriet 1996) further proposes a dead-
line modification algorithm that solveB|intOrder;c! =
15745 p;i = 1| Linas in polynomial-time.

Scheduling interval orders with precedence delays on par-
allel processors was first considered by Palem and Simons
(Palem & Simons 1993), who introduced monotone inter-
val orders and solvé|intOrder(mono I]); p; = 1|Lmax
in polynomial-time. This result is generalized by Leung-
Palem-Pnueli algorithm (Leung, Palem, & Pnueli 2001).

In the present work, we modify the algorithm of Leung,
Palem and Pnueli (Leung, Palem, & Pnueli 2001) in order

to solve X* P|intOrder(mono 12);r;;di;p; = 1|— feasi-

are typed by these classes and may have non-unit executionPility problems in polynomial time. The resulting algorithm

time. In compiler VLIW instruction scheduling, operations
usually have unit execution time (UET), however on most
VLIW processors an operation requires several resources
for execution, like in the Resource-Constrained Project
Scheduling Problems (RCPSP) (Brucksral. 1999). In
both cases, the pipelined implementation of functional units
yield scheduling problems with precedence delays, that is,
the time required to produce a value is larger than the mini-
mum delay between two activations of a functional unit.

We are aware of the following work in the area of typed
task systems. Jaffe (Jaffe 1980) introduces them to for-
malize instruction scheduling problems that arise in high-
performance computers and data-flow machines, and stud-
ies the performance bounds of list scheduling. Jansen
(Jansen 1994) gives a polynomial time algorithm for prob-
lem ¥ PlintOrder;p; = 1|Chaz, that is, scheduling

thus operates on typed tasks, allows precedence delays, and
handles release dates and deadlines. Thanks to these proper-
ties, it provides useful relaxations of the RCPSP with UET
operations and precedence delays.

The Leung-Palem-Pnueli algorithm (Leung, Palem, &
Pnueli 2001) is a parallel processors scheduling algorithm
based on deadline modification and the use of lower mod-
ified deadline first priority in a Graham list scheduling al-
gorithm. The Leung-Palem-Pnueli algorithm (LPPA) solves
the following feasibility problems in polynomial time:

. 1|p7“66(l§ €{0,1});risdisps = 1]—

o P2lprec(l] € {~1,0});ri;dispi = 1]—
e PlintOrder(mono I2);r;; di; p; = 1|—
o PlinTree(l! =1);di;p; = 1|—



Here, thel? are precedence delays with+ 17 > 0.

Presentation is as follows. In the first section, we extend
the ||~y scheduling problem denotation and we discuss the
Graham list scheduling algorithm (GLSA) for typed task
systems. In the second section, we present our modified
Leung-Palem-Pnueli algorithm (LPPA) and prove its opti-
mality for scheduling monotone interval orders with release
dates and deadlines on UET typed task systems in polyno-
mial time. In the third section, we discuss the application of Figure 1: Set of intervals and the corresponding interval or-
this algorithm to VLIW instruction scheduling. der graph.

Deterministic Scheduling Background
Machine Scheduling Problem Denotation

In parallel processors scheduling problems, an operation se )
{Oi}1<i<n is processed om identical processors. Eachop-  intOrder(mono I7) The precedence graph weighted by

prec(ll =1) All the precedence delay$ equall.
inT'ree The precedence graph is an in-tree.

erationO; requires the exclusive use of one processopfor def i .

time units, s'?arting atitschedule date;. Schtfduling erc))b- w(0;,0;) = p; + I} is a monotone interval order.

lems may involverelease dates; anddue datesi;. This An interval orderis the transitive orientation of the com-
constrains the schedule datgof operationO; aso; > r; plement of an interval graph (Papadimitriou & Yannakakis
and there is a penalty whenev@y > d;, with C; the com- 1979) (see Figure 1). The important property of interval

orders is that given any two operatiots andO;, either
predO; C predO; or predO; C predO; (similarly for suc-
cessors). This is easily understood by referring to the un-
strains the schedule with +p; < o;. In case oprecedence ~ derlying intervals that define the interval order. Adding or
delavi’ betweenO. andO.. the scheduling constraint be-  €moving operations without predecessors and successors to
Y T J 9 an interval order is still an interval order. Also, interval or-
comess; +p; +1; < o;. Theprecedence graphasone arc  ders are transitively closed, that is, any transitive successor
(04, 0;) for each precedena®; < O;. Given an operation  (predecessor) must be a direct successor (predecessor).
O,, we denotauccO; the set of direct successors@f and A monotone interval ordegraph (Palem & Simons 1993)
predO; the set of direct predecessorgafin the precedence is an interval order whose precedence graphFE) is
graph. The seihdepO; contains the operations that are not  yejghted with a non-negative functian on the arcs such

pletion dateof O, defined ag’; Y o; + p;. For problems
whereC; < d; is mandatory, the; are calleddeadlines
A precedence); < O; between two operations con-

connected t@); in the undirected precedence graph. that, given any(0;,0;),(0;,0;) € E : predO; C
Given a scheduling problem over operation set ,eq0, = w(0;,0;) < w(0;,0y). Monotone interval
{Oiticicn with release dates{r;}:<i<, and dead- orders are motivated by the application of interval orders
lines  {di}i<i<n, the precedence-consistent re- properties to scheduling problems with precedence delays.
lease dates {r;}1<i<, are recursively defined as Indeed, in scheduling problems with interval orders, the
T;r def max(r;, Maxo, epredo, (T;r +pj + l;'.)). Likewise, the precedence arc weight considered between any two opera-

. . def . .
precedence-consistent deadlies },<;<,, are recursively  tionsO; andO; is w(0;, 0;) = p; with p; the processing

' 4 def . . n 7 time of O;. In case of monotone interval orders, the arc
defined asl;” = min(d;, minp, esucco, (dj —p; —17)). ) def o .

o _ _ weights arew(0;,0;) = p; + I with I] the precedence
Machine scheduling problems are denoted by a triplet delay betweerO; andO;. An interval order graph where
a|B|~y (Brucker 2004), where: describes the processing en-  all arcs leaving any given node have the same weight is
vironment,3 specifies the operation properties andefines obviously monotone, so interval order precedences without

the optimality criterion. Values aof, 3, v include: precedence delays imply monotone interval order graphs.

« : 1 for a single processol? for parallel processor?m i i i .
for the giverm parallel processors. We denote typed task Graham List Scheduling Algorithm Extension
systems withk: types by>* P. The Graham list scheduling algorithm (GLSA) is a classic
B : r; for release dates; for deadlines (ify = —) or due scheduling algorithm where the time steps are considered in
datesp; = 1 for Unit Execution Time (UET) operations. ~ non-decreasing order. For each time step, if a processor is
idle, the highest priority operation available at this time is
scheduled An operation is available if the current time step
is not earlier than the release date and all direct predecessors

~ : — for the feasibility,C,,, 4. O L4, for the minimiza-
tion of these objectives.

The makesparis Cy,qp = max; C; and themaximum late- have completed their execution early enough to satisfy the
nessis I, del s Lo L O d. The meaning of precedence delays. On typed_task systems, the operation
the ad di{iglrfaw fiel dé isl' C ! v type must match the type of an idle processor.

' The GLSA is optimal for P|r;;d;;p; = 1|]— and

prec(lf) Precedence delayﬁ assumingg > —p;. P|ri; pi = 1| Lma. Wwhen using the earliest deadlines (or due



dates)d; first as priority (Brucker 2004) (Jackson's rule). (3) Update the modified deadline 6F; asd; — o} + 1.

This property directly extends to typed task systems:
Theorem 1 The GLSA with Jackson’s rule optimally solves
EkP‘Ti;di;pi = 1|_ andzkp‘ri;pi = 1|L’rnaa:-

Proof: In typed task systems, operations are partitioned by
processor type. In problem* P|r;;d;;p; = 1|— (respec-
tively X* P|r;; p; = 1|L.maz), there are no precedences be-

(4) Update the modified deadlines of ea@p € predO; with

dj, < min(dj},,d, — 1 —1}).

(5) Go to (1) until a fixpoint of the modified deadlines

{d'}1<i<n is reached.

In our modified LPPA, we define theackward schedul-
ing problem B(O;, S;) as the search for a set of dates

tween operations. Therefore, optimal scheduling can be {07 }o,ec(0.3us, that satisfy:

achieved by considering operations and processors of each

type independently. For each type, the problem reduces dd) VO; € 5;: 0; <05 = oj + 1417 < o}

P|ri;di; pi = 1|— (respectivelyP|r;; p; = 1| Lmaz), Which
is optimally solved with Jackson’s rule. 0

In this work, we allow precedences deldys= —p; =
o; < o0j, that is, precedences with zero start-start time lags.
Thus we extend the GLSA as follows: in cases of available
operations with equal priorities, schedule first the earliest
operations in the precedence topological sort order.

The Modified Leung-Palem-Pnueli Algorithm
Algorithm Description

The Leung-Palem-Pnueli algorithm (LPPA) is similar to
classic UET scheduling algorithms on parallel processors
like Garey & Johnson (Garey & Johnson 1976), in that it
uses a lower modified deadlines first priority in a GLSA.
Given a scheduling problem with deadlingd; }1<;<x,
modified deadline§d;},<;<, are such thati € [1,n] :
o; +p; < d} < d, for any scheduldo; }1<;<,. The distin-
guishing feature of the LPPA is the computation of its mod-
ified deadlines, which we cdiixpoint modified deadlinés
Precisely, the LPPA definesteackward scheduling prob-
lem denotedB(0;, S;) for each operatio®;. An optimal
backward schedulingrocedure computes the latest possi-
ble schedule date; of operationO; in eachB(O;, S;). Op-
timal backward scheduling aB(O;, S;) is used to update
the current modified deadline @f; asd, — o} + p;. This
process of deadline modification is iterated over all prob-
lems B(O;, S;) until a fixpoint of the modified deadlines
{df}1<i<n is reached (Leung, Palem, & Pnueli 2001).

We modify the Leung-Palem-Pnueli algorithm (LPPA) to
compute the fixpoint modified deadlinés; }1<;<, by exe-
cuting the following procedure:

(i) Compute the precedence-consistent release datesB

{T’;_}lgign; the precedence-consistent deadlines
{df}1<i<n and initialize the modified deadlines
{d} }1<i<n With the precedence-consistent deadlines.

(i) For each operatio;, define the backward scheduling
problemB(0;, S;) with S; dZEfsuccOi U indepO;.

(1) Let O; be the current operation in some iteration over

z‘}1§z‘§n-

(2) Compute the optimal backward schedule agtef O; by

optimal backward scheduling &(O;, S;).

!Leung, Palem and Pnueli call them “consistent and stable mod-
ified deadlines”.

(b) vVt € N,Vr € [1,]6] : |{O7 S {Ol} u.s; NT; = T‘/\O‘; =

th < m,

(C) VOJ S {OL}USL : ’I“;_ < 0';— < d;

Constraints (a) state that only the precedences bet@een
and its direct successors are kept in the backward scheduling
problemB(0;, S;). Constraints (b) are the resources limi-
tations of typed task systems with UET operations. Con-
straints (c) ensure that operations are backward scheduled
within the precedence-consistent release dates and the cur-
rent modified deadlines. Aoptimal backward schedufer
O; maximizess, in B(O;, S;).

Let {T;_}lgign be the precedence-consistent release dates
and{d}}lgign be the current modified deadlines. The sim-
plest way to find the optimum backward schedule dai@ of
in B(0O;, S;) is to search for the lateste [r;", d; — 1] such
that the constrained backward scheduling problerh =
s) A B(0O;, S;) is feasible. Even though each such con-
strained problem can be solved in polynomial time by reduc-
ing to some=* P|r;;d;; p; = 1|— over{O;} U S;, optimal
backward scheduling oB(O;, S;) would require pseudo-
polynomial time, as there are updp—r;" constrained back-
ward scheduling problems to solve. Please note that a sim-
ple dichotomy search for the latest feasible [r;", d, — 1]
does not work, aso, = s) A B(O;, S;) is infeasible does
not imply that(o, = s + 1) A B(0;, S;) is infeasible.

In order to avoid the pseudo-polynomial time complexity
of optimal backward scheduling, we rely instead on a pro-
cedure with two successive dichotomy searches for feasible
relaxations of constrained backward scheduling problems,
like in the original LPPA. Describing this procedure requires
further definitions. Assumé = —oco if O; 4 O;. Given a
constrained backward scheduling problés € [p,q]) A
(04,5;), we define a relaxatio™* P|7;;dj;p; = 1]|—
over the operation sé0;} U S; such that:

~ def

i =D

CL’ (j:efq+1
0;,€8 = 7 d:”max(r}",q+l+l{)
Oj €S — CZj d:efd;‘

In other words, the precedences fra@m to each direct
successof); € S; are converted into release dates assuming
the release date and deadlinafrespectively equah and
q + 1. We calltype 2 relaxationthe resulting scheduling

problem¥*P|#;:d;;p; = 1|— andtype 1 relaxationthis
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Figure 2: Optimal backward scheduling proof.

problem when disregarding the resource constraini9,of
Both type 1 and type 2 relaxations are optimally solved by
the GLSA with the earllest first priority (Theorem 1). If
any relaxation is |nfea3|ble so is the constrained backward
scheduling problenio; € [p, ¢]) A B(O;, S;).

Observe that the type 1 relaxation is increasingly con-
strained ag increases, independently of the valueofAnd
for any fixedq, the type 2 relaxation is increasingly con-
strained a® increases. Therefore, it is correct to explore
the feasibility of any of these relaxations using dichotomy
search. So the optimal backward scheduling procedure is
based on two dichotomy searches as foIIows

The first dichotomy search initializes = 7 andqg =
d; — 1. Then it proceeds to find the Iate;tsuch that the
type 1 relaxation is feasible. The second dichotomy search
keepsq constant and finds the latestsuch that the type 2

relaxation is feasible. Whenever both searches succeed, the

optimum backward schedule date(®fis taken ag; = p so
the new modified deadline i§ = p + 1. If any dichotomy
search fails B(0O;, S;) is assumed infeasible.

Algorithm Proofs

Theorem 2 The optimal backward scheduling procedure
computes the latest schedule dafef O; among the sched-
ules that satisfy conditions (a), (b), (c) BfO;, S;).

Proof: The two dichotomy searches are equivalent to linear
searches, respectively by increasingnd by increasing.

If no feasible relaxatiort* P|7;; d;; p; = 1|— exist in any

O]‘// OrL
b=~ % —  t
ty tut1 d; o

Figure 3: Modified Leung-Palem-Pnueli algorithm proof.

[p +1,q]) A B(O;, S;) is infeasible imply there is a sét
of operations that fill all slots of type; in range[p + 1, ¢
and prevents the GLSA from schedullng@;c in that range
(Figure 2). SO, eE:>d <d; =q+1A7;>p+1.
Now assume eX|sts somec [p + 1, ¢] such that problem
(o} € [s,8])AB(0;, S;) is feasible. This imply that problem
(o} € [p+ 1,s]) A B(O;,S;) is also feasible. The type 2
relaxation of(o} € [p + 1,s]) A B(O;, S;) differs from the
type 2 relaxation ofo; € [p+1,q]) AB(O;, S;) only by the
decrease of the release datesf some operation®; € S;,
yetr]>p+1a87“]dfmax( sH14+)y >p+1+
14 /. As all the operations oE must still be scheduled
in range[p + 1, ¢| in the type 2 relaxation ofs} € [p +
,s]) A B(O;, S ), there is still no scheduling slot f@p; in
that range. So problertv; € [p + 1,s]) A B(O;, S;) and
problem(c; € [s, s]) A B(O;, S;) are infeasible.

U
Theorem 3 The  modified algorithm  of Leung,
Palem and Pnueli solves any feasible problem

YF PlintOrder(mono lf);ri; di;p; = 1]—.

Proof: The correctness of this modified Leung-Palem-
Pnueli algorithm (LPPA), like the correctness of the origi-
nal LPPA, is based on two arguments. The first argument
is that the fixpoint modified deadlines are indeed deadlines
of the original problem. This is apparent, as each backward
scheduling problenB(0;, S;) is a relaxation of the orig-
inal scheduling problem and optimal backward scheduling
computes the latest schedule dat®gfnithin B(O;, S;) by

of these linear searches, the backward scheduling problem Theorem 2. Let us calforethe GLSA that uses the earli-

B(0;, S;) is obviously infeasible.

If a feasible relaxation exists in the second linear search,
this search yields a backward schedule wifh= p. Indeed,
let {6}0,e{0,3us; be schedule dates for the type 2 relax-
ation of (o} € [p, q]) A B(O;, S;). We haves; = p because
the type 2 relaxation of proble(@; € [p+1, ¢]) AB(O;, S;)
is infeasible and the only difference between these two re-
laxations is the release date 6. Moreover, the dates
{6;}0,e10.us, satisty (@), (b), (c). Condition (a) is sat-
isfied from the definition of; and becausé; = p < q.
Conditions (b) and (c) are satisfied by the GLSA.

Let us prove that the backward schedule found by the sec-
ond search is in fact optimal, that is, there isshe [p+1, ¢
such that problerm{s} € [s,s]) A B(O;, S;) is feasible.
This is obvious ifp = ¢, so consider cases whepe< gq.

The type 2 relaxation of probleifw € [p,q]) A B(O;, S;)
is feasible while the type 2 relaxation of problem, €

est fixpoint modified deadlines first as priorities. The second
correctness argument is a proof that the core GLSA does not
miss any fixpoint modified deadlines.

Precisely, assume that sorok is the earliest operation
that misses its fixpoint modified deadlirg in the core
GLSA schedule. In a similar way to (Leung, Palem, &
Pnueli 2001), we will prove that an earlier operat@pnec-
essarily misses its fixpoint modified deadliigin the same
schedule. This contradiction ensures that the core GLSA
schedule does not miss any fixpoint modified deadline. The
details of this proof rely on a few definitions and observa-
tions illustrated in Figure 3.

Letr = 7; be the type of operatio®;. An operation0O;
is saidsaturatedif ; = r andd}; < d;. Definet, < d}
as the latest time step that is not filled with saturated opera-
tions on the processors of type If ¢, < 0, the problem is
infeasible, as there are not enough slots to schedule opera-



tions of typer onm,. processors within the deadlines. Else,
some scheduling slots of typeat ¢, are either empty or
filled with operationg0,, : d;, > d! of lower priority than

saturated operations in the core GLSA. Define the operation
def

setX = {0, saturated ¢, < 0, < d*} U {O;}. Define the
operation subset’ & {0, €% rj <t.}.

Consider problemP* |intOrder(mono 1));r:;di;pi =
1|—. In an interval order, given two operatiofs andO;,
eitherpredO; C predO; or predO; C predO;. SelectO;
amongO; € X' such thatpredO;| is minimal. AsO;: € ¥
is not scheduled at datg or earlier by the core GLSA, there
must be a constraining operaticn, that is a direct prede-

cessor of operatlorj) i with o, + 1 + lk =0 >ty =

or+1>t,— li, . Note thatO;, can have any type. Opera-
tions inpredO;. are the direct predecessors of all operations
O; € ¥’ and no predecessor Of; is in ¥/. ThusO;, ¢ ¥’
andOj, is a direct predecessor of all operatians € 3'.

We call stable backward schedusmy optimal backward
schedule ofB(Oy, Si) where the modified deadlines equal

the fixpoint modified deadlines. Sinc®, £ succO; U
indepOy, we haveX C Sj. By the fixpoint property, we
may assume that a stable backward schedulB (6}, Si)
exists. Such stable backward schedule must slotth@ —
1—t,)+1 operations ok befored! onm, processors, so at
least one operatio@; € X' is scheduled at datg or earlier
by any stable backward schedule®fOy, Sy).

Theorem 2 ensures that optimal backward scheduling of
B(Oy, Sy) satisfies the precedence delays betw@grand

0;. Thusay +1+1, < t,s0df —1+1+1 <t,. By

the monotone interval order properpyedO g predO; =

w(Ok, 0;) < w(Ok,0;) = 1410 <141 = 1 <1 for
O; selected above ar@; € ¥', sod; <t, — li However

in the core GLSA schedule, +1 > ¢, — lfc s00;, misses
its fixpoint modified deadlind;;. 0

The overall time complexity of this modified LPPA is
the sum of the complexity of initialization steps (i-ii), of
the number of iterations times the complexity of steps (1-5)
and of the complexity of the core GLSA. Leung, Palem and
Pnueli (Leung, Palem, & Pnueli 2001) observe that the num-
ber of iterations to reach a fixpoint is upper boundechby
a fact that still holds for our modified algorithm. As the time
complexity of the GLSA on typed task systems witkypes
is within a factork of the time complexity of the GLSA on
parallel processors, our modified LPPA has polynomial time
complexity.

In their work, Leung, Palem and Pnueli (Leung, Palem,
& Pnueli 2001) describe further technigues that enable to
lower the overall complexity of their algorithm. The first
is a proof that applying optimal backward scheduling in re-
verse topological order of the operations directly yields the
fixpoint modified deadlines. The second is a fast implemen-
tation of list scheduling for problem®|r;; d;; p; = 1|—.
These techniques apply to typed task systems as well.

Table 1: ST200 VLIW processor resource availabilities and
operation class resource requirements

Resource | Issue Memory Control Align

Availability 4 1 1 2
ALU 1 0 0 0
ALUX 2 0 0 1
MUL 1 0 0 1
MULX 2 0 0 1
MEM 1 1 0 0
MEMX 2 1 0 1
CTL 1 0 1 1

Application to VLIW Instruction Scheduling
ST200 VLIW Instruction Scheduling Problem

We illustrate VLIW instruction scheduling problems on the
ST200 VLIW processor manufactured by STMicroelectron-
ics. The ST200 VLIW processor executes up to 4 oper-
ations per time unit with a maximum of one control op-
eration (goto, jump, call, return), one memory operation
(load, store, prefetch), and two multiply operations per time
unit. All arithmetic operations operate on integer values with
operands belonging either to the General Register file{64
32-bit) or to the Branch Register file (8 1-bit). In order

to eliminate some conditional branches, the ST200 VLIW
architecture also provides conditional selection instructions.
The processing time of any operation is a single time unit

(pi = 1), while the precedence delaj/sbetween operations
range from -1 to 2 time units.

The resource availabilities of the ST200 VLIW proces-
sor and the resource requirements of each operation are dis-
played in Table 1. The resources arssue for the in-
struction issue widthMemory for the memory access unit;
Control for the control unit. An artificial resourcalign is
also introduced to satisfy some encoding constraints. Oper-
ations with identical resource requirements are factored into
classes ALU, MUL, MEM and CTL correspond respec-
tively to the arithmetic, multiply, memory and control op-
erations. The classes ALUX, MULX and MEMX represent
the operations that require an extended immediate operand.
Operations namedDH MULL ADDQ CMPNEBRF belong
respectively to classes MEM, MUL, ALU, ALU, CTL.

A sample C program and the corresponding ST200 VLIW
processor operations for the inner loop are given in Fig-
ure 4. The operations are numbered in their appearance
order. In Figure 5, we display the precedence graph be-
tween operations of the inner loop of Figure 4 after remov-
ing the redundant transitive arcs. As usual in RCPSP, the
precedence graph is augmented with dummy nagieand
Op+1 @ n = 7 with null resource requirements. Also, the
precedence arcs are labeled with the corresponding start-
start time-lag, that is, the values pf + l7 The critical path
of this graph iy — 01 — Oy — O3 2 O7 — Og so the
makespan is lower bounded by 7.

This example illustrates that null start-start time-lags, or
precedence delayl§5 —p;, occur frequently in actual
VLIW instruction scheduling problems. Moreover, the start-



int L?_0_8:
prod(int n, short af], short b) { LDH_1 gl31 = 0, G127
int s=0, i MULL_2  g132 = G126, g131
for (i=0;i<n;i++) { ADD_3 G129 = G129, g132
s += ai*b; ADD_4 G128 = G128, 1
ADD_5 G127 = G127, 2
return s; CMPNE_6 b135 = G118, G128
} BRF_7 b135, L?__0_8

Figure 4: A sample C program and the corresponding ST200 operations
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)
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3

Figure 5: Precedence graph of the inner loop instruction scheduling problem

start time-lags are non-negative, so classic RCPSP sched-precedence graph properties. From the way we defined the
ule generation schemes (Kolisch & Hartmann 1999) (list relaxation to typed task systems, it is apparent that these fix-
scheduling) are guaranteed to build feasible (sub-optimal) point modified deadlines are also deadlines of the original
solutions for these VLIW instruction scheduling problems. problem (UET RCPSP with non-negative time-lags).

In this setting, the main value of VLIW instruction schedul- _

ing problem relaxations such as typed task systems is to In Table 2, we collect the results of lower bounding the
strengthen the bounds on operation schedule dates includ-makespan of ST200 VLIW instruction scheduling problems
ing the makespan. Improving bounds benefits scheduling With our modified LPPA for typed task systems. These
techniques such as solving time-indexed integer linear pro- results are obtained by first computing the fixpoint mod-

gramming formulations (Dupont de Dinechin 2007). ified deadlines on the reverse precedence graph, yielding
strengthened release dates. The modified LPPA is then
ST200 VLIW Compiler Experimental Results applied to the precedence graph with strengthened release

dates, and this computes fixpoint modified deadlines includ-
ing a makespan lower bound. The benchmarks used to ex-
tract these results include an image processing program, and
thec-lex Specint program.

The first column of Table 2 identifies the code block that
defined the VLIW instruction scheduling problem. Column
n gives the number of operations to schedule. Columns
Resource, Critical, MLPPA respectively give the makespan
e Expand each operation that requires several resources tolower bound in time units computed with resource use,

a chain of sub-operations that use only one resource type critical path, and the modified LPPA. The last column

per sub-operation. Set the chain precedence delays to -11LP gives the optimal makespan as computed by solving a

(zero start-start time-lags). time-indexed linear programming formulation (Dupont de
« Assign to each sub-operation the release date and deadlinePin€chin 2007). According to this experimental data, there

of its parent operation. exists cases where using the moc_j|_f|ed LPPA yields a_5|gn|f|-

cantly stronger relaxation than critical path computation.

We implemented our modified Leung-Palem-Pnueli algo-
rithm in the instruction scheduler of the production compiler
for the ST200 VLIW processor family. In order to apply this
algorithm, we first relax instances of RCPSP with UET op-
erations and non-negative start-start time-lags to instances of
scheduling problems on typed task systems with precedence
delays, release dates and deadlines:

The resultis a UET typed task system with release dates and

deadlines, whose precedence graph is arbitrary. ;
Applying our modified Leung-Palem-Pnueli algorithm to Summary and Conclusions

an arbitrary precedence graph implies that optimal schedul- We present a modification of the algorithm of Leung, Palem

ing is no longer guaranteed. However, the fixpoint modified and Pnueli (LPPA) (Leung, Palem, & Pnueli 2001) that

deadlines are still deadlines of the UET typed task system schedules monotone interval orders with release dates and

considered, as the proof of Theorem 2 does not involve the deadlines on UET typed task systems (Jaffe 1980) in poly-



Table 2: ST200 VLIW compiler results of the modified
Leung-Palem-Pnueli algorithm

Label n | Resource Critical MLPPA ILP
BB26 41 11 15 19 19
BB23 34 10 14 18 18
BB30 10 3 5 5 5
BB29 16 5 10 10 10
131 34 9 14 18 18
BB9_Short | 16 4 10 10 10
BB22 16 4 10 10 10
LAOO021 22 6 6 7 7
LAOO11 20 6 18 18 18
BB80 14 6 17 17 17
LAOO033 41 11 31 32 32
41362 23 9 38 38 38
BB916 34 14 30 31 31
41181 15 8 18 19 19
41180 7 2 9 10 10
4.998 14 4 10 11 11
41211 9 2 9 9 9
41209 14 7 18 18 18
41388 6 2 8 9 9
4.949 13 5 12 13 13
BB740 11 4 13 14 14
LAOO0160 | 17 7 7 11 11

nomial time. In an extended|3|y denotation, this is prob-
lem Xk PlintOrder(mono I});r4; di; pi = 1|—.

Compared to the original LPPA (Leung, Palem, & Pnueli
2001), our main modifications are: use of the Graham list
scheduling algorithm (GLSA) adapted to typed task systems
and to zero start-start time-lags; new definition of the back-
ward scheduling problen3(O;, S;) that does not involve
the transitive successors of operatiof core LPPA proof
adapted to typed task systems and simplified thanks to the
properties of monotone interval orders.

Like the original LPPA, our modified algorithm opti-
mally solves a feasibility problem: after scheduling with
the core GLSA, one needs to check if the schedule meets
the deadlines. By embedding this algorithm in a dichotomy
search for the smalledt,, ... such that the scheduling prob-
lem with deadlines!; + L,,.. is feasible, one also solves
¥ PlintOrder(mono 1));ri;pi = 1|Lmas in polyno-
mial time. This is a significant generalization over the
Yk PlintOrder;p; = 1|Cpae problem solved by Jansen
(Jansen 1994) in polynomial time.

Our motivation for the study of typed task systems with
precedence delays is their use as relaxations of the Resource-
Constrained Scheduling Problems (RCPSP) with Unit Exe-
cution Time (UET) operations and non-negative start-start
time-lags. In this setting, precedence delays are important,
yet no previous polynomial-time scheduling algorithms for
typed task systems consider them. The facts that interval
orders include operations without predecessors and succes-
sors, and that the LPPA enforces releases dates and dead-
lines, are also valuable for these relaxations.
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