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Introduction

Action planning deals with the problem of finding a 
sequence of actions (a plan) to transfer the world from 
the current state to a desired state.

There are causal relations between actions (pick-up 
is done before put-down).

A formal model of actions is required so planning is a 
model-based approach.

This tutorial is about how to model planning tasks.



Tutorial outline

Part I: Introduction and Background
– AI Planning
– Formal models (STRIPS, control rules)

Part II. Planning Domain Modelling Languages and Tools
– Modelling languages
– Modelling tools
– Lessons from ICKEPS

Part III. Designing and Developing a Domain Model
– Nomystery problem
– Efficient plan generation, enhancing domain models

Part IV. Development of Real-World Planning Application
– Petrobras
– Task Planning for Autonomous Underwater Vehicles

Part V. Closing Remarks and Open Problems

INTRODUCTION AND BACKGROUND
Part I:



Automated Planning

Planning deals with selection and organization of 
actions that are changing world states.

System S modelling states and transitions:
– set of states S (recursively enumerable)
– set of actions A (recursively enumerable)

• actions are controlled by the planner!
• no-op

– set of events E (recursively enumerable)
• events are out of control of the planner!
• neutral event e

– transition function g: S´A´E ® 2S

• actions and events are sometimes applied separately
g: S´(AÈE) ® 2S

Goals in planning

A planning task is to find which actions are applied to 
world states to reach some goal from a given initial 
state.

What is a goal?
– goal state or a set of of goal states
– satisfaction of some constraint over a sequence of visited 

states
• for example, some states must be excluded or some states must 

be visited
– optimisation of some objective function over a sequence 

of visited states (actions)
• for example, maximal cost or a sum of costs



Modeling planning problems

Representing world states as sets of atoms 
(factored representation).
Representing actions as entities changing 
validity of certain atoms.

Classical representation: states

State is a set of instantiated atoms (no variables). There is 
a finite number of states!

– The truth value of some 
atoms is changing in states:

• fluents
• example: at(r1,loc2)

– The truth value of some state 
is the same in all states

• rigid atoms
• example: 

adjacent(loc1,loc2)

We will use a classical closed world assumption.
An atom that is not included in the state does not hold at that state!



Classical representation: planning operators

operator o is a triple (name(o), precond(o), effects(o))
– name(o):  name of the operator in the form n(x1,…,xk)

• n: a symbol of the operator (a unique name for each operator)
• x1,…,xk: symbols for variables (operator parameters)

– Must contain all variables appearing in the operator definition!

– precond(o):
• literals that must hold in the state so the operator is applicable on it

– effects(o):
• literals that will become true after operator application (only fluents

can be there!)

Classical representation: actions

An action is a fully instantiated operator
– substitute constants to variables

action

operator



Classical representation: action usage

Notation:
– S+ = {positive atoms in S}
– S– = {atoms, whose negation is in S}

Action a is applicable to state s if any only
precond+(a) ⊆ s ∧ precond–(a) ∩ s = ∅

The result of application of action a to s is
%(s,a) = (s – effects–(a)) ∪ effects+(a)

Classical representation: a planning problem

The planning problem is given by a triple (O,s0,g).
– O defines the the operators and predicates used

(this is also called a domain model)
– s0 is an initial state, it provides the particular 

constants (objects)

– g is a set of instantiated literals
• state s satisfies the goal condition g if and only if

g+ ⊆ s ∧ g– ∩ s = ∅
• Sg = {s ∈ S | s satisfies g} – a set of goal states



Blockworld: classical representation

Constants
– blocks: a,b,c,d,e

Predicates:
– ontable(x)

block x is on a table
– on(x,y)

block x is on y
– clear(x)

block x is free to move
– holding(x)

the hand holds block x
– handempty

the hand is empty

Operators
unstack(x,y)

Precond: on(x,y), clear(x), handempty
Effects: ¬on(x,y), ¬clear(x), clear(y),

¬handempty, holding(x), 

stack(x,y)
Precond: holding(x), clear(y)
Effects: ¬holding(x), ¬clear(y),

on(x,y), clear(x), handempty

pickup(x)
Precond: ontable(x), clear(x), handempty
Effects: ¬ontable(x), ¬clear(x),

¬handempty, holding(x)

putdown(x)
Precond: holding(x)
Effects: ¬holding(x), ontable(x),

clear(x), handempty

c

a b

c
a b

c

a b

c

a
b
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Forward planning

move r1

take c2
…

take c3

of an operator in O,
Heuristics suggest 

which action to 
select



Domain knowledge

Heuristics guide the planner towards a goal state by ordering 
alternative plans. They do not solve the problem with the large 
number of alternatives.

Example (blockworld)
– If a block is placed correctly (consistent with the goal) then any action 

that moves that block just enlarges the plan.
– If a block is on a wrong place and there is an action that moves it to 

the correct place then any action that moves the block elsewhere just 
enlarges the plan.

It is possible to describe desirable/forbidden sequences of states 
using linear temporal logic.

– control rules

It is possible to describe expected plans via task decompositions.
– hierarchical task networks

Temporal logic

We need a formalism to express relations between the 
current world state and future states.

Simple temporal logic
– extension of first-order logic by modal operators

• (1 ∪ (2 (until) (1 is true in all states until the first state (if any)
in which (2 is true

• ¨ ( (always) ( is true now and in all future states
• ¯ ( (eventually) ( is true now or in any future state
• ¡ ( (next) ( is true in the next state
• GOAL(() ( (no modal operators) is true in the goal state

– ( is a logical formula expressing relations between the 
objects of the world (it can include modal operators)



Control rules: an example

Goodtower is a tower such that
no block needs to be moved.
Badtower is a tower that is not good.

Control rule:

goodtower

badtower

goodtower remains goodtower

do not put anything on 
badtower

do not take a block from a table until you 
can put it on a goodtower

Planning with control rules

Forward state-space planning guided by control rules.
– If a partial plan S) violates the control rule progress((, S)), 

then the plan is not expanded.

a partial plan violates the control rule (

a complete plan found

actions applicable to state s

control rule progression (

a new state after the action



PLANNING DOMAIN MODELLING 
LANGUAGES AND TOOLS

Part II.

Domain-independent planning concept

Domain Model
(environment,actions)

Problem Specification
(initial state, goals)

Planning Engine

Plan



Domain-independent planning concept

● A (description) language
– Describe domain model and problem 

specification (usually one domain model for a class of problems)

● A planning engine
– must support the language

– should be efficient for the given domain 
model

● Plans interpreting

PDDL [McDermott et al, 1998]

● Planning Domain 
Definition Language 
(PDDL)

● Inspired by the STRIPS 
and ADL languages

● Most widespread
● Official language of 

International Planning 
Competitions (IPCs)

(define (domain blocksworld)
(:requirements :strips :typing)
(:types block)
(:predicates (on ?x - block ?y - block)

(ontable ?x - block)
(clear ?x - block)
(handempty)
(holding ?x - block)
)

(:action pick-up
:parameters (?x - block)
:precondition (and (clear ?x)

(ontable ?x)                                             
(handempty))

:effect (and (not (ontable ?x))
(not (clear ?x))
(not (handempty))
(holding ?x))

)
…



Versions of PDDL

● PDDL 1.2
– Predicate centric (i.e., classical representation)
– Object types
– ADL features (e.g., conditional effects, equality)

● PDDL 2.1
– Numeric Fluents
– Durative Actions

● PDDL 2.2
– Timed-initial literals
– Derived Predicates

● PDDL 3.0
– State-trajectory constraints (hard constraints for the planning 

process)
– Preferences (soft constraints for the planning process)

• PDDL 3.1
– Object Fluents

Extensions of PDDL

● PDDL+
– Continuous processes
– Exogenous events

● PPDDL
– Probabilistic action effects
– Reward fluents

● MA-PDDL
– Multi-agent planning



NDDL [Frank & Jonsson, 2002]

● NASA’s response to 
PDDL

● Variable 
representation

● Timelines/activities
● Constraints between 

activities

class Instrument
{

Rover rover;
InstrumentLocation location;
InstrumentState state;

Instrument(Rover r)
{

rover = r;
location = new InstrumentLocation();

state = new InstrumentState();
}

action TakeSample{
Location rock;
eq(10, duration);

}
…

}

Instrument::TakeSample
{

met_by(condition object.state.Placed on);
eq(on.rock, rock);

contained_by(condition object.location.Unstowed);

equals(effect object.state.Sampling sample);
eq(sample.rock, rock);

starts(effect object.rover.mainBattery.consume tx);
eq(tx.quantity, 120); // consume battery power

}

https://github.com/nasa/europa/wiki/Example-Rover

ANML [Smith et al., 2008]

● Combines aspects from 
NDDL and PDDL

– Actions and states 
(PDDL)

– Variable representation 
(NDDL)

– Temporal Constraints 
(NDDL)

● Hierarchical methods

action Pickup (crew ev, object item)
{
duration := 5 ;
[start] located(ev) == located(item);
[all] possesses(ev,item) == 
FALSE:−>TRUE ;
[end] located(item) := POSSESSED ;
}

action Putaway (crew ev, object item, 
location stowage)
{
Duration := 10 ;
[start] located(ev) == stowage ;
[all] possesses(ev, item) ==  
TRUE:−>FALSE ;
[end] located(item):= stowage ;
}

[Boddy & Bonasso, 2010]



RDDL [Sanner, 2011]

● became the official 
language of the 
probabilistic track of 
the IPC since 2011

● models partial 
observability

● efficient description of 
(PO)MDPs

domain wildfire_mdp {

types {
x_pos : object;
y_pos : object;
};

pvariables {

// Action costs and penalties
COST_CUTOUT       : {non-fluent, real, default =   -5 }; // 
Cost to cut-out fuel from a cell
COST_PUTOUT       : {non-fluent, real, default =  -10 }; // 
Cost to put-out a fire from a cell
PENALTY_TARGET_BURN : {non-fluent, real, default = -100 }; // 
Penalty for each target cell that is burning  
PENALTY_NONTARGET_BURN : {non-fluent, real, default =   -5 }; 
// Penalty for each non-target cell that is burning
…..
}

cpfs{
burning'(?x, ?y) =  if ( put-out(?x, ?y) ) // Intervention to 
put out fire?

then false
// Modification: targets can only start to burn if at 

least one neighbor is on fire
else if (~out-of-fuel(?x, ?y) ^ ~burning(?x, ?y)) 

// Ignition of a new fire? Depends on neighbors.
then [if (TARGET(?x, ?y) ^ ~exists_{?x2: x_pos, 

?y2: y_pos} (NEIGHBOR(?x, ?y, ?x2, ?y2) ^ burning(?x2, ?y2)))
then false
else Bernoulli( 1.0 / (1.0 + exp[4.5 -

(sum_{?x2: x_pos, ?y2: y_pos} (NEIGHBOR(?x, ?y, ?x2, ?y2) ^ 
burning(?x2, ?y2)))]) ) ]

else
burning(?x, ?y); // State persists

…
}

https://cs.uwaterloo.ca/~mgrzes/IPPC_2014/

Domain-independent planners

● Dozens of classical planners
– support typed STRIPS
– newer planners support action costs, and some ADL 

features
– many of them are optimal

● Several temporal planners
– support durative actions
– few support numeric fluents or timed-initial literals
– few fully support concurrency
– very few are optimal

● Several probabilistic planners
– (PO)MDP
– FOND

● A few continuous planners
● ....



Language expressiveness vs. planning engines

“It is almost a law in PDDL planning that for 
every language feature one adds to a domain 
definition, the number of planners that can solve 
(or even parse) it, and the efficiency of those 
planners, falls exponentially” [anonymous 
reviewer]
Motivate development of more expressive 
planning engines
Reduce the number of features in models

Picat

Picat is a logic-based multi-paradigm language 
that integrates logic programming, functional 
programming, constraint programming, and 
scripting.

– logic variables, unification, backtracking, pattern-
matching rules, functions, list/array 
comprehensions, loops, assignments

– tabling for dynamic programming and planning
– constraint solving with CP (constraint 

programming), SAT (satisfiability), and MIP (mixed 
integer programming).



Picat planning module

Forward planning in Picat language (using tabling):

Cost optimization done via:
– iterative deepening
– branch-and-bound

plan(S,Plan,Cost),final(S) => 
Plan=[],Cost=0.

plan(S,Plan,Cost) =>
action(S,S1,Action,ActionCost),
plan(S1,Plan1,Cost1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

table (+,-,min)
plan(S,Plan,Cost),final(S) => 

Plan=[],Cost=0.
plan(S,Plan,Cost) =>

action(S,S1,Action,ActionCost),
plan(S1,Plan1,Cost1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

table (+,-,min)

Picat Planning Domain Model

Goal condition
final(+State) => goal_condition.

Action description 
action(+State,-NextState,-Action,-Cost), 

precondition,
[control_knowledge]

?=>
description_of_next_state, 
action_cost_calculation, 
[heuristic_and_deadend_verification].



Example: The farmer’s problem

action([F,F,G,C],S1, Action,Cost) ?=>
Action=farmer_wolf, Cost=1,
opposite(F,F1),
S1=[F1,F1,G,C], safe(S1).

action([F,W,F,C],S1, Action,Cost) ?=>
Action=farmer_goat, Cost=1,
opposite(F,F1),
S1=[F1,W,F1,C], safe(S1).

action([F,W,G,F],S1, Action,Cost) ?=>
Action=farmer_cabbage, Cost=1,
opposite(F,F1),
S1=[F1,W,G,F1], safe(S1).

action([F,W,G,C],S1, Action,Cost) =>
Action=farmer_alone, Cost=1,
opposite(F,F1),
S1=[F1,W,G,C], safe(S1).

Locations of
Farmer, Wolf, Goat, and Cabbage

KE Tools for Planning Domain 
Modelling



Purpose of KE tools

Assist in domain developing process
– Support development cycle (as in SW 

engineering)
– Visualize (parts of) the model

– Verification and Validation support (e.g. 
consistency check)

– …
Usable by non-experts (but with basic knowledge of 
planning)

GIPO [Simpson et al., 2007]

● GIPO (Graphical Interface for Planning with 
Objects) won the ICKEPS 2005 competition

● Based on the OCL (Object-Centered Language)
● Define life histories of objects
● Supports “classical” PDDL (limitedly also 

”durative” actions)
● Supports HTN (HyHTN planner is integrated) 

[McCluskey et al., 2003]



ItSimple [Vaquero et al., 2007;2012]

● Supports development cycle
● Exploits UML for domain modelling
● Exploits Petri Nets for dynamic analysis of 

state machines (e.g. reachability analysis)
● Supports PDDL 3.1
● Project webpage

https://code.google.com/archive/p/itsimple/

• Tutorial on domain modelling in ItSimple by 
Chris Muise
http://www.youtube.com/watch?feature=player_embedded&v=FGBhvBnzyvo

ItSimple – sample use case



ItSimple – sample class diagram

ItSimple – sample state machine (Satellite)



ItSimple – sample state machine (Instrument)

Some other KE frameworks

● EUROPA [Barreiro et al., 2012]
– Framework supporting NDDL and ANML

● JABBAH [Gonzalez-Ferrer et al., 2009]
– Supports HTN

● KEWI [Wickler et al., 2014]
– Object Centered (including inheritance)
– Web Application (supports collaboration)

● VIZ [Vodrážka & Chrpa, 2010]
– A “light-weight” KE tool



Planning.Domains

● “A Collection of Tools for Working with 
Planning Domains” [Muise]

● Web application
● Rich editor (syntax highlighting, autocomplete, 

etc.)
● Plug-in support
● Repository of all domains and problems from 

the IPCs

Planning.Domains – sample domain (Satellite)



Planning.Domains – sample plan (Satellite domain)

Planning.Domains – analysis (by TorchLight)



The Fifth International Competition 
on Knowledge Engineering for 

Planning and Scheduling
(ICKEPS 2016)

ICKEPS mission

“Promote the knowledge-based and domain 
modelling aspects of AI P&S, to accelerate 

knowledge engineering research, to encourage 
the development and sharing of prototype tools 
or software platforms that promise more rapid, 

accessible, and effective ways to construct 
reliable and efficient P&S systems”



ICKEPS history

● ICKEPS 2005 (San Francisco) - Tools and Tools 
Environments for KE

● ICKEPS 2007 (Providence) - teams working 
(offline) on KE tasks and application scenarios

● ICKEPS 2009 (Thessaloniki) - Tools for translating 
into planner-ready language from application-
oriented language

● ICKEPS 2012 (Sao Paulo) - teams working (offline) 
on KE tasks and application scenarios

● ICKEPS 2016 (London) teams working (online) on 
KE tasks and application scenarios

ICKEPS 2016 roadmap

● Pre-competition
– Organizers prepared 4 scenarios

● 2 temporal (Star-trek, Roundabout)
● 2 classical (RPG, Match Three Harry)

– Organizers composed competition rules and 
evaluation criteria

● On-site modelling
– Teams up to 4 members
– 6 hours time limit for modelling

● Demonstration
– 10 minutes per team to present their KE process

● Board of Judges
– Deciding the winners



ICKEPS 2016 evaluation criteria

● KE process
– Use of KE tools
– Teamwork

● Models
– Correctness
– Generality
– Readability
– Planners’ performance

ICKEPS 2016 key observations

● It was fun !
● Teams often selected easier domains to tackle 

(e.g. classical ones)
● Provided models were different, in some cases 

quite considerably
● Interesting modelling approaches – e.g. analysing

domain transition graph to identify “bad” states
● Not many KE tools were exploited

– The winning team (Muise & Lipovetzky) 
exploited the Planning.Domains framework



RPG domain – some observations

● According to the specification the hero dies if:
– does not have a sword and enters a room with a 

monster
– destroys the sword in a room with a monster
– in a room with a trap, the hero performs any other 

action than “disarm” (for this action the hero must 
be empty handed)

● The competitors observed:
– the hero must have a sword in order to enter a 

room with a monster
– the hero must be empty handed to enter a room 

with a trap

RPG domain – some observations

● The models do not explicitly consider hero's 
death

● Some Planning Operators encoded in the models:
– move-without-sword

– move-with-sword
– destroy-sword-move-disarm

– …
● Models were rather “planner-friendly” than 

“user-friendly”



Future of ICKEPS

● Modelling oriented rather than KE tools oriented
● Practical applications

– Combine offline and on-site modelling
● Get more competing teams

– 6 teams competed on ICKEPS 2016
● Automatize the model evaluation process
● Attract interest outside “planning” community

– “expert bias” can be mitigated
● ...

DESIGNING AND DEVELOPING
A DOMAIN MODEL

Part III.



NoMystery problem

A truck moves between locations to pickup and 
deliver packages while consuming fuel during 
moves.

– setting:
• initial locations of packages and truck
• goal locations of packages
• initial fuel level, fuel cost for moving between locations

– possible actions: load, unload, drive
– assumption: track can carry any number

of packages

Nomystery: state representation

Factored representation
– state = a set of atoms that hold in that state (a vector of 

values of state variables)
{at(p0,l2),at(p1,l2),at(p2,l1),at(t0,l2),
in(p3,t0),in(p4,t0),in(p5,t0),
fuel(t0,level84)}

Structured representation
– state = a term describing objects and their relations

objects represented by properties rather than by names 
to break object symmetries

s(l2, level84, [l2,l2,l4], [[l1|l3],[l2|l3],[l2|l4]]) 

truck location

fuel level

destinations of 
loaded packages

current and desired locations of 
waiting packages



Nomystery: actions

Factored representation
action(S,NextS,Act,Cost),

truck(T), member(at(T,L),S),
select(at(P,L),S,RestS), P != T

?=>
Act = load(L,P,T), Cost = 1,
NewS = insert_ordered(RestS,in(P,T)).

Structured representation
action(s(Loc,Fuel,LPs,WPs),NextS,Act,Cost), 

select([Loc|PkGoal],WPs,WPs1)
?=>

Act = load(Loc,PkGoal), Cost = 1,
LPs1 = insert_ordered(LPs,PkGoal),
NextS = s(Loc,Fuel,LPs1,WPs1). 

Nomystery: heuristics

Estimate distance to goal
Precise heuristic for Nomystery domain:

– each package must be loaded and unloaded
– each place with packages to load or unload must 

be visited
action(S,NextS,Act,Cost),

truck(T), member(at(T,L),S),
select(at(P,L),S,RestS), P != T

?=>
Act = load(L,P,T), Cost = 1,
NewS = insert_ordered(RestS,in(P,T)),
heuristics(NewS) < current_resource().



Nomystery: control knowledge

Tell the planner what to do at a given state based on the 
goal
• unload all packages destined for current location (and 

only those packages)

• load all undelivered packages at current location
• move somewhere

– move to a location with waiting package or to a destination 
of some loaded package

action(s(Loc,Fuel,LoadedPks,WaitPks), NextState, Action, Cost),
select(Loc,LoadedPks,LoadedPks1)

=>
Action = unload(Loc,Loc),
NextState = s(Loc,Fuel,LoadedPks1, WaitPks),
Cost = 1.

NoMystery model

action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost),
select(Loc,LoadedCGs,LoadedCGs1)

=>
Action = unload(Loc,Loc),
NextState = s(Loc,Fuel,LoadedCGs1,Cargoes), Cost = 1.

Action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost),
select([Loc|CargoGoal],Cargoes,Cargoes1)

=>
insert_ordered(CargoGoal,LoadedCGs,LoadedCGs1),
Action = load(Loc,CargoGoal),
NextState = s(Loc,Fuel,LoadedCGs1,Cargoes1) , Cost = 1.

Action(s(Loc,Fuel,LoadedCGs,Cargoes), NextState, Action, Cost)
?=>

Action = drive(Loc,Loc1),
NextState = s(Loc1,Fuel1,LoadedCGs,Cargoes),
fuelcost(FuelCost,Loc,Loc1),
Fuel1 is Fuel-FuelCost,
Fuel1 >= 0, Cost = 1.



Factored vs. structured representations

Iterative deepening

Branch and bound

Heuristics vs. control knowledge (ID)

Structured representation

Factored representation



Heuristics vs. control knowledge (B-and-B)

Structured representation

Factored representation

Take home message

• using structured representation of states 
instead of factored representation
– object symmetry breaking

• control knowledge helps more than heuristics
• heuristics are more important for iterative-

deepening than for branch-and-bound

• control knowledge is critical for branch-and-
bound



Efficient Plan Generation

Planning Portfolios

No planner “rules them all”
Planning Portfolios
– Collection of different planning techniques running 

sequentially or in parallel (or combination of both)

Dynamic portfolios
– Configured specifically for a given domain

– PbP

Static portfolios
– Configured once for all (possible) domains

– IBACOP, FDSS



Efficiency of Domain Model

One might introduce “accidental complexity”
– Too large representation

– “Deep” and undetectable dead-ends

– Not “going along” with some classes of heuristics

– ….

Can we improve the planning process by making 
the model more efficient ?

Domain Control Knowledge (DCK)

Captures useful domain-specific information
Provides “guidance” for planning engines
Complement “raw” domain model specification
Two main categories of DCK
– Planner-specific (e.g. TALPlanner, Roller)

– Planner-independent (this talk !)



Planner-independent DCK

Domain and Problem
specification DCK

Enhanced Domain
and Problem specification

Generic Planning Engine

Enhanced Plan

Plan

Obtaining DCK

Automatically

– training based

– online

Manually



Outer Entanglements [Chrpa et al. 2018]

Outer entanglements are relations between 
planning operators and initial or goal predicates
Entanglement by init – allows only such instances 
of an operator requiring an initial predicate
– e.g. unstacking blocks only from their initial positions, 

loading packages only in their initial locations

Entanglement by goal – allows only such 
instances of an operator achieving goal predicates
– e.g. stacking blocks only to their goal positions, 

unloading packages only in their goal locations

A

B

C

B

init goal

on(B,A) on(B,C)

Unstack(X,Y) =
( {on(X,Y),clear(X),handempty} //prec

{on(X,Y),clear(X),handempty} //neg eff
{holding(X),clear(Y)} ) //pos eff

Stack(X,Y) =
( {holding(X),clear(Y)} //prec

{holding(X),clear(Y)} //neg eff
{on(X,Y),clear(X),handempty} ) //pos eff

entangled 
by init

entangled 
by goal

C A
on(A,B)on(C,B)

allowed: Unstack(C,B), Unstack(B,A) allowed: Stack(A,B), Stack(B,C)



Encoding Outer Entanglements

1) Create a “twin” predicate p’ of an “entangled” 
predicate p 

2) Modify the “entangled” operator by adding p’ 
into its precondition (p’ has the same 
parameters as p)

3) Create instances of p’ corresponding with 
instances of p in the initial state (resp. goal) 
and add them to the initial state

Example of “entangled” operators

(:action unstack
:parameters (?x - block ?y - block)
:precondition (and (on ?x ?y)(clear ?x)(handempty)(stai_on ?x ?y))
:effect (and (holding ?x)(clear ?y)

(not (clear ?x))(not (handempty))(not (on ?x ?y)))
)

(:action stack
:parameters (?x - block ?y - block)
:precondition (and (holding ?x)(clear ?y)(stag_on ?x ?y))
:effect (and (on ?x ?y)(clear ?x)

(not (clear ?y))(handempty)(not (holding ?x)))
)



Outer Entanglements – benefits and shortcomings

Outer Entanglements restrict the number of 
instantiated operators and consequently might reduce 
the size of the state space
Outer Entanglements (significantly) reduces memory 
requirements
Remarkable performance in BW, Depots, Gripper and 
Matching-BW
Can be rather restrictive and might work efficiently in 
subclasses of domains/problems
Outer entanglements might be learnt from a set of 
training plans – might compromise completeness

Macro-operators (Macros)

Primitive operators can be assembled into one 
single operator – macro-operator (macro)

Assemblage of operators oi and oj into oi,j:
– pre(oi,j)  = pre(oi) È (pre(oj) – add(oi))
– del(oi,j) =  (del(oi) È del(oj)) – add(oj)
– add(oi,j)= (add(oi) – del(oj)) È add(oj)

Widely studied (e.g. Macro-FF, Wizard, MUM, 
BLOMA)

Can address a specific shortcoming of a planner (e.g. 
Marvin [Coles et al, 2007])



Macros - example

A

B

A

Bunstack(B,A)

A B

putdown(B)

A

B

A B

unstack-putdown(B,A)

unstack(X,Y) =
{ {on(X,Y),clear(X),handempty} //prec

{on(X,Y),clear(X),handempty} //neg eff
{holding(X),clear(Y)} } //pos eff

pudown(X) =
{ {holding(X)} //prec

{holding(X)} //neg eff
{ontable(X),on(X),clear(X),handempty} } //pos eff

unstack-putdown(X,Y) =
{ {on(X,Y),clear(X),handempty} //prec

{on(X,Y),holding(X),} //neg eff
{clear(X),clear(Y),ontable(X),handempty} } //pos eff

Macros – Benefits and Shortcomings

Macros can be understood as “short-cuts” in the search 
space
Solution plans can be much shorter
Introducing macros can increase branching factor
considerably !
There might be high memory requirements for 
planners

“A short-cut is the longest 
way between two points”



Combining Macros and Outer Entanglements

MUM [Chrpa et al., 2014]
– Outer entanglements can reduce branching factor

the macros introduce

– Applying outer entanglements only on macros does 
not compromise completeness

– Outer entanglements provide heuristics in the 
macro learning process

OMA [Chrpa et al., 2015] – an online version of 
MUM

“Block” macros [Chrpa & Siddiqui, 2015]

● Exploiting “Block deordering” technique 
initially used in plan optimization [Siddiqui & 
Haslum 2012]

● Can capture longer repetitive sequences 
within “macroblocks”

● Can learn longer (and sometimes useful) 
macros than other approaches (e.g. MUM)



“Critical Section” Macros [Chrpa & Vallati, 2019]

Critical Sections use a shared resource and has to be completed 
at once (without any other process interfering)
In planning, share resources involve robotic hand, truck etc.
Critical Section Macros involves

– Locker (locks the resource, e.g. pick)

– User (uses the resource, e.g. paint)

– “Gluing” op (“connects” other ops – e.g. move)

– Releaser (releases the resource – e.g. drop)

Can be combined with other “chaining” approaches (e.g. MUM)
Aggressive version removes replaced original ops

Macros – results [Chrpa & Vallati 2019]

Average PAR10 score (in seconds) of the (O)riginal, (M)UM, (B)LoMa, (C)ritical Section Marcos, Aggressive Critical 
Section Macros (AC) and their combination with MUM (CM, ACM respectively) encodings



“Bagged” representation [Riddle et al, 2015]

Representing individual objects might not be 
efficient if we care about their numbers
In Gripper, k balls are moved from roomA to 
roomB
– Standard representation: (at ball1 rooma), …, (at ballk

rooma)

– Bagged representation: (count ball rooma nk)

Bagged representation alleviates some 
unwanted symmetries (e.g. which ball is picked 
first)

“Bagged” representation – sample operators

(:action pick
:parameters (?n1 ?n0 ?obj ?room ?gripper)
:precondition (and (ball ?obj)(room ?room)(gripper 
?gripper)(at-robby ?room)(free ?gripper)(more ?n1 
?n0)(count ?obj ?room ?n1))
:effect (and (carry ?obj ?gripper)(not (count ?obj ?room 
?n1))(count ?obj ?room ?n0)(not (free ?gripper))))

(:action drop
:parameters (?n1 ?n0 ?obj ?room ?gripper)
:precondition (and (ball ?obj)(room ?room)(gripper 
?gripper)(carry ?obj ?gripper)(more ?n1 ?n0)(at-robby
?room)(count ?obj ?room ?n0))
:effect (and (not (count ?obj ?room ?n0))(count ?obj ?room 
?n1)(free ?gripper)(not (carry ?obj ?gripper)))))



Procedural DCK [Baier et al, 2017]

● Representing DCK as Golog-like programs
● Plans are generated in compliance with 

programs
● Programs can be compiled into planning task 

descriptions (in PDDL)
● Programs can hence be exploited by generic 

(state-of-the-art) planning engines  

Procedural DCK - Syntax

1) nil – empty program
2) o – a single operator instance
3) any – any action
4) ψ? - a test action
5) (σ1;σ2) – a sequence of programs
6) if ψ then σ1 else σ2 – a conditional sentence
7) while ψ do σ – a while loop
8) σ* - A nondeterministic iteration
9) (σ1|σ2) – A nondeterministic choice between programs
10) π(x-t)σ - A nondeterministic choice of variable x of type t



Procedural DCK - Examples

while !clear(B) do π(b-block)putOnTable(b)
– While B is not clear choose any block b and put it on 

the table

any*;loaded(A,Truck)?
– Perform any sequence of actions until A is loaded 

into Truck

(load(C,P);fly(P,LA) | load(C,T);drive(T,LA))
– Either load C into the plane P or the truck T and 

perform the appropriate action to move to LA

Transition-based DCK [Chrpa & Barták, 2016]

● Inspired by Finite State Automata
● Define “grammar” of solution plans
● “Schematical” representation is easier to 

understand by non-experts in planning
● Can be incorporated in planning domain 

models



Transition-based DCK – formal specification

A quadruple (S,O,T,s0) where
– S is a set of DCK states

– s0Î S is the initial DCK state

– O is a set of planning operators

– T is a set of transitions

Each transition is in the form (s,o,C,s') where
– s,s'ÎS, oÎO

– C is a set of constraints where each is in the form

– p,¬p – p must or must not be in the current planning state

– g: p – p must be an open goal in the current planning state

Specifying Transition-based DCK – an example

● An empty truck (can carry at most one 
package) should move only to locations where 
some package is waiting to be delivered

● After a package that has to be delivered is 
loaded into the truck, the truck moves to 
package's goal location where the package is 
then unloaded
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Use of Transition-based DCK

Let sP be the current planning state and sK be the current DCK state
The intermediate step of the generic planning algorithm with embedded transition 
based DCK
1. Non-deterministically select an action a such that

– a is applicable in sP

– There is a transition (sK,o,C,s'K) such that a is an instance of o and all 
constraints in C are satisfied

2. Update the current planning state by applying a in sP

3. Set s'K as the current DCK state

A constraint in C in the form p,¬p, g:p is satisfied iff pÎsP,pÏsP, p is an open goal in sP
respectively

Translating into PDDL - Example

(:action Drive-empty
:parameters (?t - truck ?from ?to ?dest -
location ?p - package)
:precondition (and (at ?t ?from)(at ?p 
?to)(DCK-state s0) (open-goal-at ?p ?dest)(not 
(= ?to ?dest)))
:effect (and (not (at ?t ?from))(at ?t ?to))
)

(:action Drive-full
:parameters (?t - truck ?from ?to - location ?p 
- package)
:precondition (and (at ?t ?from)(DCK-state 
s1)(in ?p ?t)(open-goal-at ?p ?to))
:effect (and (not (at ?t ?from))(at ?t ?to)

(not (DCK-state s1))(DCK-state s2))
)

(:action Load
:parameters (?t - truck ?p - package ?l
?dest - location)
:precondition (and (at ?t ?l)(at ?p ?l)(free
?t)(DCK-state s0)(open-goal-at ?p ?dest)(not (= 
?to ?dest)))
:effect (and (not (at ?p ?l))(not (free ?t))(in
?p ?t)(not (DCK-state s0))(DCK-state s1))
)

(:action Unload
:parameters (?t - truck ?p - package ?l -
location)
:precondition (and (at ?t ?l)(in ?p ?t)(DCK-state 
s2)(open-goal-at ?p ?l))
:effect (and (not (in ?p ?t))(free ?t)(at ?p ?l)

(not (open-goal-at ?p ?l))
(not (DCK-state s2))(DCK-state s0))

)

The PDDL encoding of a DCK enhanced Simple Logistic domain 
model (supplementary predicates in red)



Spanner Domain

(:action walk
:parameters (?start - location ?end - location ?m - man)
:precondition (and (at ?m ?start)(link ?start ?end))                                   
:effect (and (not (at ?m ?start)) (at ?m ?end)))

(:action pickup_spanner
:parameters (?l - location ?s - spanner ?m - man)
:precondition (and (at ?m ?l)(at ?s ?l))
:effect (and (not (at ?s ?l))(carrying ?m ?s)))

(:action tighten_nut
:parameters (?l - location ?s - spanner ?m - man ?n - nut)
:precondition (and (at ?m ?l)(at ?n ?l)(carrying ?m ?s)(useable ?s)

(loose ?n))
:effect (and (not (loose ?n))(not (useable ?s)) (tightened ?n)))

)

Issues of the Spanner Domain

Unnecessary symmetries
– It does not matter which spanner is used for 

tightening a nut

– Use bagged representation

Deep dead-ends
– Delete-relaxed heuristics assumes that one spanner 

can be used to tighten all nuts

– Constraint the Walk operator



Spanner Domain – efficient representation

(:action walk
:parameters (?start - location ?end - location ?m - man)
:precondition (and (at ?m ?start)(link ?start ?end)(at-count ?start c0))            

:effect (and (not (at ?m ?start)) (at ?m ?end)))

(:action pickup_spanner
:parameters (?l - location ?m – man ?n0 ?n1 ?n2 ?n3 – counter)
:precondition (and (at ?m ?l)(more ?n1 ?n0)(count ?l ?n1)(more ?n3 ?n2)

(carry-count ?m ?n2))
:effect (and (not (at-count ?l ?n1))(at-count ?l ?n0)(not (carry-count ?m ?n2)) 

(carry-count ?m ?n3)))

(:action tighten_nut
:parameters (?l - location ?m - man ?n – nut ?n2 ?n3 – counter)
:precondition (and (at ?m ?l)(at ?n ?l)(more ?n3 ?n2)(carry-count ?m ?n3)

(loose ?n))
:effect (and (not (loose ?n))(tightened ?n)(not (carry-count ?m ?n3))(carry-

count ?m ?n2)))
)

Impact of DCK

Reducing size of the representation
– Entanglements, bagged representation

Reduced depth of search
– Macros

Guidance of search
– Procedural DCK, Transition-based DCK



Impact of DCK on the KE process

In practice, separating the “raw” domain model and DCK is 
easier to maintain
Extend existing KE tools (e.g. itSimple, Planning.Domains) 
by supporting automatic/manual DCK acquisition
Understanding in which cases planners fail and how DCK 
can alleviate such an issue
– Even changing the order of operators and predicates in their 

preconditions/effects have a significant impact on planners' 
performance !

DEVELOPMENT OF REAL-WORLD 
PLANNING APPLICATION

Part IV.



Petrobras problem

• one of the challenge problems at ICKEPS 2012
• transporting cargo items between ports and 

petroleum platforms while assuming limited 
capacity of vessels and fuel consumption during 
transport

• basic operations:
– navigating, docking/undocking, loading/unloading, 

refueling
• objectives:

– fuel consumption, makespan, docking cost,
waiting queues, the number of ships

Petrobras problem



Petrobras - existing approaches

• Classical planning
– the planning part (decision of actions) modeled in PDDL 

2.1 and solved by SGPlan (optimize fuel)
– the scheduling part (time allocation) solved in post-

processing
• Temporal planning

– modeled completely in PDDL 2.1 (durative actions and 
resources)

– solved using the Filuta planner (optimize makespan)
• Monte Carlo Tree Search

– using abstract actions (Load, Unload, Refuel, GoToWaiting)
– solved using MCTS (optimize “usedFuel + 10 ∗ numActions

+ 5 ∗ makespan”)

Petrobras integrated (B-Prolog) – states

• Each vessel modeled separately as a timeline
(sequence of actions)
[Start,Fuel,Action,Loc,LoadedCargo,Dur]
LoadedCargo = [Weight,CargoLoc,Dest]

• left-to-right scheduling with rolling horizon

vessel 1

vessel 2

vessel 3



Petrobras integrated – actions

This does not work!
– more vessels heading for the same cargo (but only the 

first vessel will load it)
– useless planned actions (just to do something –

refueling)

navigate

wait

dock undock

load

unload

refuel

w
aiting area

port
platform

refueling station

loaded

something 
to load

Petrobras integrated – actions

Exploiting macro actions, landmarks (cargo must 
be picked up), control rules, heuristics

Pickup
navigate, dock, load,{refuel}, undock 

Deliver
navigate, dock, unload,{refuel}, undock 

Go2Wait
{navigate, dock, refuel, undock}, navigate 

Wait

cargo available
loaded

loaded

available cargo
+empty

empty



Petrobras separated (Picat) - states

• Solving approach:
– separate planning (fuel optimization) from 

scheduling (time allocation, makespan)
– separate route selection from cargo-to-deliver 

selection
• State representation:

– cargo Items: [[OriginLoc, [DestinationLoc, 
Weight1,Weight2,...]], ...] 

– vessels: [[Location, FuelLevel1, 
FuelLevel2,...], ...] 

Removes symmetries between items and vessels.

Petrobras separated - main loop

table (+,+, -,min)
plan([], _Vessels, Plan, Fuel) =>

Plan = [], Fuel = 0.
plan(Cargo, Vessels, Plan, Fuel) =>

select_port(Cargo, Port, PortCargo, RestCargo), 
select_cargo(PortCargo,Destinations,FreeCap,RestPortCargo),
select_and_move_vessel(Vessels, Port, FuelLevel1, 
RestVessels, Plan1, Fuel1),
load_at_other_ports(RestCargo, Port, FreeCap, FuelLevel1, 
Destinations2, RestCargo2, Port2, FuelLevel2, Plan2, 
Fuel2),
path_plan(Port2, FuelLevel2, Destinations ++ Destinations2, 

FinalLoc, FinalLevel, Plan3, Fuel3),
plan(addCargo(RestCargo2, Port, RestPortCargo),

addVessel(RestVessels, FinalLoc, FinalLevel),Plan4,Fuel4),
Plan = Plan1 ++ $[load(Port),undock(Port)] ++ Plan2

++ Plan3 ++ Plan4,
Fuel = Fuel1 + Fuel2 + Fuel3 + Fuel4. 



Petrobras results: setting

• The challenge problem from ICKEPS 2012
– 10 vessels with fuel capacity 600l, 15 cargo items

• Random problems from ICTAI 2012
– varying the number of vessels, fuel capacity:

• Group A – 3 vessels, fuel tank capacity 600 liters
• Group B – 10 vessels, fuel tank capacity 600 liters

– varying the number of items (1-15) in each group
• Comparison of

– temporal planner FILUTA
– MCTS planner
– B-Prolog planner
– Picat planner

Petrobras results: objectives

System
Optimization Criteria

Fuel
(l)

Makespan
(h)

Vessels Runtime 
(ms)

B-Prolog 1263 162 4 ~60 000

Filuta 1989 263 4 ~600 000

MCTS 887 204 5 ~600 000

Picat 812 341 3 813

10 vessels with fuel capacity 600l, 15 cargo items



Petrobras results: fuel consumption
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Petrobras results: makespan
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Petrobras results: vessels used
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Mixed-initiative Task Planning for 
Autonomous Underwater Vehicles

In collaboration with LSTS lab, University of Porto
[Chrpa et al., 2015;2017]



System requirements [Chrpa et al., 2015]

● Necessity to control multiple heterogeneous 
Autonomous Underwater Vehicles (AUVs)

● An operator (human) specifies high-level tasks 
(e.g. “sample an object with ctd camera”)

● Task assignment to each AUV should be 
automatized

How task assignment can be automatized ?

● Each task has specific requirements
● Each vehicle has specific capabilities
● For completing tasks AUVs have to perform 

certain sequences of actions
● Hence, we need to find a plan that if 

executed, the AUVs will complete all given 
tasks



Available “machinery”

● In LSTS, AUVs are controlled via NEPTUS (a 
decision support tool with GUI) and DUNE
(onboard vehicle control) → “low-level” control

● Domain-independent AI planning (i.e., finding a 
sequence of actions that achieves a defined goal) 
→ “high-level” task planning

– PDDL, a language for specifying planning 
domain models and problem instances

– LPG-td, a planning engine accepting domain 
and problem descriptions in PDDL and returning 
a plan (if exists)

Modular architecture

● User specifies tasks in 
NEPTUS

● NEPTUS generate a 
planning problem and 
sends it to LPG-td

● LPG-td returns a plan to 
NEPTUS

● NEPTUS distributes the 
plan to each of the 
vehicles



“High-level” specification

● Each AUV has certain payloads attached to it
● Each task must be completed by using a certain 

payload (e.g. camera, sidescan)
● Each AUV has a limited amount of energy that is 

consumed by executing actions
● Collected data can be communicated while an AUV is 

in its “depot” (a “safe spot” close to shore/ship)
● Two (or more) AUVs cannot be at the same location

or perform the same task simultaneously

Formal conceptualization - objects

● Vehicles (V)
● Payloads (P)
● Phenomenons (X)
● Tasks (T)
● Locations (L)



Formal conceptualization – predicates

● at ⊆ V�L (vehicle’s location)
● base ⊆ V�L (vehicle’s “depot”)
● has ⊆ V�P (attached payloads to the vehicle)
● at-phen ⊆ X�L (phenomenon’s location)
● task ⊆ T�X�P (task description)
● sampled ⊆ T�V (acquired task data by vehicle)
● data ⊆ T (acquired task data by the control 

centre)

Formal conceptualization – (numeric) fluents

● dist: L � L → ℝ+ (distance between locations)
● survey-dist: L � L → ℝ+ (length of survey)
● speed: V → ℝ+ (vehicle’s speed)
● battery-level: V → ℝ+ (vehicle’s battery level)
● battery-use: V∪ P → ℝ+ (vehicle’s or payload’s 

energy consumption)



Formal conceptualization - actions

Move (v,l1,l2)
Duration: d=dist(l1,l2)/speed(v)
Precondition:

At start: (v,l1)∈at, battery-level(v)≥ d*battery-use(v)

At end: ∄v’≠v: (v’,l2)∈at

Effects:
At start: (v,l1)∉at, battery-level(v)=battery-level(v)-d*battery-use(v)

At end: (v,l2)∈at

Formal conceptualization - actions

Sample (v,t,x,p,l)
Duration: d=60 (constant duration)
Precondition:

At start: battery-level(v)≥ d*battery-use(p)

Overall: (v,l)∈at, (x,l)∈at-phen, (v,p)∈has, (t,x,v)∈task

Effects:
At start: battery-level(v)=battery-level(v)-d*battery-use(p)

At end: (t,v)∈sampled



Formal conceptualization - actions

Survey (v,t,x,p,l1,l2)
Duration: d=survey-dist(l1,l2)
Precondition:

At start: (v,l1)∈at, battery-level(v)≥ d*(battery-use(v)+battery-use(p))

Overall: (x,l1)∈at-phen, (x,l2)∈at-phen, (v,p)∈has, (t,x,v)∈task

Effects:
At start: (v,l1)∉at,

battery-level(v)=battery-level(v)-d*(battery-use(v)+battery-use(p))

At end: (v,l2)∈at, (t,v)∈sampled

No concurrent survey action can be executed over x

Formal conceptualization - actions

Collect-data (v,t,l)
Duration: d=60 (constant duration)
Precondition:

Overall: (v,l)∈at, (v,l)∈base,(t,v)∈sampled

Effects:
At end: t∈data



PDDL model of the Sample action

(:durative-action sample
:parameters (?v - vehicle ?l – location ?t -task

?o - phenomenon ?p - payload)
:duration (= ?duration 60)
:condition (and (over all (at-phen ?o ?l))

(over all (task ?t ?o ?p))
(over all (at ?v ?l))
(over all (has ?p ?v))
(at start (>= (battery-level ?v)

(* (battery-use ?p) 60))))
:effect (and (at end (sampled ?t ?v))

(at start (decrease (battery-level ?v)
(* (battery-use ?p) 60)))) )

Execution of the model: settings

● Evaluated in Leixões
Harbour, Porto

● 3  light AUVs carrying 
different payloads

● In phase one, areas of 
interest were surveyed

● In phase two, contacts 
identified in phase one 
were explored



Planned vs. execution time

● The plans were 
executable

● High discrepancies, 
especially for move 
and survey actions

● Rough time 
predictions that were 
done only on distance 
and type of vehicle

Vehicle Action Time Difference

Noptilus-1 

move
survey 
sample 
communicate 

47.80 ± 49.11 
23.15 ± 23.26 
1.33 ± 0.58
0.16 ± 0.17 

Noptilus-2 

move
survey 
sample 
communicate 

39.57 ± 35.66 
107.88 ± 141.10 
N/A
0.25 ± 0.07 

Noptilus-3 

move
survey
sample 
communicate

59.90 ± 57.05 
24.00 ± 0.00
9.57 ± 13.64 
0.11 ± 0.16 

Additional assumptions [Chrpa et al., 2017]

1) Users can add, remove or modify tasks during 
the mission

2) Vehicles might fail to execute an action

3) Communication with the control center is 
possible only when a vehicle is in its “depot”



Additional requirements for the system

● System has to be flexible (e.g. a user can add a 
new task) and robust (e.g. handling vehicles’ 
failures)

● Dynamic Planning, Execution and Re-planning
– Automatized response on task changes by 

user and/or exceptional circumstances during 
plan execution

● How the “one shot” model has to be changed?

Model amendments

● Removed battery constraints
– vehicles’ battery levels were much higher than duration of 

operations

● Added maximum “away” time constraints
– Vehicles have to come to their depots to establish 

communication (if they are “away” communication might 
not be possible)

● Split the move action into move-to-sample, move-to-survey, 
move-to-base, the former two must be succeeded by 
sample and survey action respectively

● Optimizing plans (vehicles cannot go to locations they do 
not have anything to do)

● Modified representation of phenomenons (objects and 
areas of interests are explicitly distinguished)



Maximum “away” time constraints

● Numeric fluents
– from-base: V → ℝ+ (how long the vehicle is “away”)

– max-to-base: V → ℝ+ (maximum “away”time)
● Preconditions (at start) of the move, sample, survey actions 

contain (d – action duration):
– from-depot(v) ≤ max-to-depot(v) – d

● Effects (at end) of the move, sample, survey actions contain 
(d – action duration):

– from-depot(v) = from-depot(v) + d
● Effects (at end) of the move-to-base action contain:

– from-depot(v)=0

PDDL model of amended sample action

(:durative-action sample
:parameters (?v - vehicle ?l - location ?t -task ?o – oi

?p - payload)
:duration (= ?duration 60)
:condition (and (over all (at-oi ?o ?l))

(over all (task ?t ?o ?p))
(over all (at ?v ?l))
(over all (has ?p ?v))
(at start (<= (from-base ?v)

(- (max-to-base ?v) 60)))
)

:effect (and (at end (sampled ?t ?v))
(at end (can-move ?v))
(at start (increase (from-base ?v) 60))

)
)



Considered models

● All Tasks
– Allocates all specified tasks to the vehicles

– Minimizes the plan execution time and the 
number of vehicles’ returns to their depots

● One Round
– Allocates only tasks for the next “round” (i.e., 

after vehicles return to their depots they cannot 
move)

– Maximizes the number of completed tasks

Execution

● Preprocessing
– Splitting large surveillance areas into smaller ones

● Planning
– NEPTUS generates a problem specification in PDDL, runs LPG-td, then 

processes and distributes the plan among the vehicles
● Execution

– Each vehicle is responsible for executing its actions
– Move actions are translated into timed-waypoints for mitigating the 

differences between planned and actual times
– When in depots vehicles communicate status of completed tasks 

(success/failure) – failed tasks are “re-inserted”
● Replanning

– If a new planning request comes (e.g. a user added a new task), 
vehicles continue to execute their current plans until they come back 
to their depots, then they receive new plans



Execution of the models: settings

● Evaluated in Leixões Harbour, 
Porto

● Mine-hunting scenario was 
used

● 3  light AUVs, 2 carried 
sidescan, one carried camera

● In phase one, areas of 
interest were surveyed

● In phase two, contacts 
identified in phase one 
sampled to identify them as 
mines, or false positives

Results of the models execution

● Both models produced correct 
plans that were successfully 
executed

● During one of the executions one 
AUV (Noptilus 3) failed (depth 
sensor fault) – tasks were 
automatically re-inserted and 
allocated to a different AUV, which 
completed them

● All Tasks model produces better 
quality plans (for larger scenarios, 
however, One Round model might 
be more efficient)

• Most planned/actual differences are 
quite small (less than 3 seconds).

• Around time 1000 a noticeable 
difference occurred (vehicle had to 
ascend during the survey). The delay 
was eliminated by accelerating 
during the following move action.



CLOSING REMARKS AND OPEN 
PROBLEMS

Part V.

Summary

● Domain model is the key component for domain-
independent planning

– User-friendly (e.g., human readable)

– Planner-friendly (e.g. planners are efficient)
● We have languages to describe domain models
● We have planning engines supporting those 

languages
● We have (some) KE tools supporting domain 

modelling



Good news

● Planning succeeded in many real-world 
applications
– Space Exploration
– Manufacture Planning
– Narrative Generation
– Task Planning for Autonomous Robots
– Urban Traffic Control
– …...

Not so good news

A limited number of expressive planning engines
– In IPC 2014, 67 planners participated, out of which 

only 6 competed in temporal track
– In IPC 2018, only 5 competed in temporal track

Domain modelling is still a “black art”
– “Expert bias”
– No guidelines (e.g. how to make model planner-

efficient)
– Limited tool support (e.g. debugging is still manual)
– Lack of interest from the community



Questions to ask ourselves

● Do researches outside the planning community use 
domain-independent planning ?

● If not, why ?
– Lack of guidelines for domain modelling

– Lack of efficient and expressive planning engines

– Lack of awareness

– ….
● How can we motivate researches outside the planning 

community to use domain-independent planning in 
their research ?

Challenges

● The notion of quality of domain models
– What it exactly stands for
– How to assess it

● KE tool support
– Debugging
– Dynamic testing
– Planner efficiency assessing
– …

● Adopting SW engineering principles
– Development life cycle
– Collaboration
– Maintenance
– ….


